Method for detecting faults in a device comprising the steps of receiving a plurality of performance parameters, applying the plurality of performance parameters to a first model to produce a plurality of estimated performance parameters, applying the plurality of performance parameters to a second model to produce a plurality of estimated device parameters, computing a plurality of residuals from the plurality of estimated device parameters, computing a plurality of distance measuring from the plurality of residuals, detecting at least one parameter deviation using the plurality of residuals and the plurality of estimated performance parameters, and setting at least one detection flag if the detected at least one parameter deviation is persistent.

Patent
   7415328
Priority
Oct 04 2004
Filed
Oct 04 2004
Issued
Aug 19 2008
Expiry
Jul 09 2025
Extension
278 days
Assg.orig
Entity
Large
12
28
all paid
24. A method for detecting faults in a device, comprising the steps of:
receiving a plurality of performance parameters;
detecting a deviation of at least one of said parameters;
determining a persistency of said deviation; and
setting at least one detection flag if said deviation is persistent;
wherein said determining step uses a short term filter and a long term filter.
1. Method for detecting faults in a device comprising the steps of:
receiving a plurality of performance parameters;
applying said plurality of performance parameters to a first model to produce a plurality of estimated performance parameters;
applying said plurality of performance parameters to a second model to produce a plurality of estimated device parameters;
computing a plurality of residuals from said plurality of estimated device parameters;
computing a plurality of distance measuring from said plurality of residuals;
detecting at least one parameter deviation using said plurality of residuals and said plurality of estimated performance parameters; and
setting at least one detection flag if said detected at least one parameter deviation is persistent.
14. Apparatus for isolating and detecting faults in a device comprising:
means for receiving a plurality of performance parameters;
means for applying said plurality of performance parameters to a first model to produce a plurality of estimated performance parameters;
means for applying said plurality of performance parameters to a second model to produce a plurality of estimated device parameters;
means for computing a plurality of residuals from said plurality of estimated device parameters;
means for computing a plurality of distance measuring from said plurality of residuals;
means for detecting at least one parameter deviation using said plurality of residuals and said plurality of estimated performance parameters; and
means for setting at least one detection flag if said detected at least one parameter deviation is persistent.
2. The method of claim 1 wherein said device is an engine.
3. The method of claim 1 comprising the additional step of performing fault isolation using said plurality of distance measures and said at least one detection flag.
4. The method of claim 1 wherein receiving said plurality of performance parameters comprises receiving a plurality of engine parameters.
5. The method of claim 1 wherein receiving said plurality of performance parameters comprises receiving a plurality of flight parameters.
6. The method of claim 1 wherein receiving said plurality of performance parameters comprises receiving said plurality of performance parameters selected from the group consisting of spool speeds, fuel flow, inter-stage temperatures, inter-stage pressures, bleed commands, variable geometry commands, ambient indicators, and aircraft flight condition indicators.
7. The method of claim 1 wherein said applying said plurality of performance parameters to said first model comprises applying said plurality of performance parameters to a physics based engine model.
8. The method of claim 7 wherein said applying said plurality of performance parameters to a physics based engine model comprises applying said plurality of performance parameters to a physics based engine model selected from the group consisting of a state variable model (SVM), a non-linear aero-thermodynamic model, and a hybrid model.
9. The method of claim 1 wherein said applying said plurality of performance parameters to said second model comprises applying said plurality of performance parameters to an empirical engine model.
10. The method of claim 9 wherein said applying said plurality of performance parameters to an empirical engine model comprises applying said plurality of performance parameters to an empirical engine model selected from the group consisting of a linear Auto-Regressive Moving Average model, artificial neural network, multi-layer perception networks, radial basis function networks, and statistical regression models.
11. The method of claim 1 wherein said detecting step comprises the additional steps of:
applying a long term filter and a short term filter to each of said plurality of residuals; and
applying a long term filter and a short term filter to each of said plurality of estimated performance parameters.
12. The method of claim 11 comprising the additional step of performing persistency logic on an output of said long term filter applied to each of said plurality of residuals, an output of said short term filter applied to each of said plurality of residuals, and a fuzzy membership to detect said at least one parameter deviation.
13. The method of claim 11 comprising the additional step of performing persistency logic on an output of said long term filter applied to a plurality of estimated performance parameters, an output of said short term filter applied to a plurality of estimated performance parameters, and a fuzzy membership to detect said at least one parameter deviation.
15. The apparatus of claim 14 wherein the device is an engine.
16. The apparatus of claim 14 additionally comprising a means for performing fault isolation using said plurality of distance measures and said at least one detection flag.
17. The apparatus of claim 14 wherein said plurality of performance parameters comprises a plurality of engine parameters.
18. The apparatus of claim 14 wherein said plurality of performance parameters comprises receiving a plurality of flight parameters.
19. The apparatus of claim 14 wherein said plurality of performance parameters is selected from the group consisting of spool speeds, fuel flow, inter-stage temperatures, inter-stage pressures, bleed commands, variable geometry commands, ambient indicators, and aircraft flight condition indicators.
20. The apparatus of claim 14 wherein said first model comprises a physics based engine model.
21. The apparatus of claim 20 wherein said physics based engine model is selected from the group consisting of a state variable model (SVM), a non-linear aero-thermodynamic model, and a hybrid model.
22. The apparatus of claim 14 wherein said second model comprises an empirical engine model.
23. The apparatus of claim 22 wherein said empirical engine model is selected from the group consisting of a linear Auto-Regressive Moving Average model, artificial neural network, multi-layer perception networks, radial basis function networks, and statistical regression models.
25. The method of claim 24, wherein said short term and long term filters are of the same construction.

(1) Field of the Invention

The present invention relates to a system, and method for utilizing such a system, for detecting and isolating faults in the operation of a device. More specifically, the present invention relates to a system, and method for utilizing such a system, for detecting faults in engines, such as gas turbine engines.

(2) Description of Related Art

A pivotal requirement for achieving accurate performance tracking of a gas turbine engine, in real time during flight operation, is the application of high fidelity models that impose low computational burdens. Although high fidelity physics based models of a gas turbine engine can be developed, they tend to become too computationally demanding to meet the accuracy requirements necessary to assemble a Fault Detection and Isolation (FDI) system. Likewise, empirical models suffer from a similar problem in that they typically require excessive memory and computational burden. A practical solution to this problem is to employ a mixture of modeling methodologies thereby creating a hybrid engine model that incorporates both physics-based and empirical components.

Hybrid systems have been developed for the purpose of tracking performance deterioration (such as changes in engine module efficiency and flow parameters) in individually monitored gas turbine engines. Such systems employ a physics-based component and use an empirical element to model the difference between the physics model and the monitored engine. Hybrid (engine) models and attendant performance estimation algorithms have been developed for tracking module performance shifts (deltas) in a real-time environment for use in such systems.

What is needed is an extension of the principle used in prior art systems to include the detection and isolation of engine faults other than, and in addition to, Module performance shifts. These include faults in measurement instrumentation (measurement error) as well as engine system faults such as variable geometry actuation faults, cooling flow faults, engine bleed valve faults, or any fault resulting in non-nominal engine operation.

Accordingly, it is an object of the present invention to provide a system, and method for utilizing such a system, for detecting and isolating faults in the operation of a device. More specifically, the present invention relates to a system, and method for utilizing such a system, for detecting faults in engines, such as gas turbine engines.

In accordance with the present invention, a method for detecting faults in a device comprises the steps of receiving a plurality of performance parameters, applying the plurality of performance parameters to a first model to produce a plurality of estimated performance parameters, applying the plurality of performance parameters to a second model to produce a plurality of estimated device parameters, computing a plurality of residuals from the plurality of estimated device parameters, computing a plurality of distance measuring from the plurality of residuals, detecting at least one parameter deviation using the plurality of residuals and the plurality of estimated performance parameters, and setting at least one detection flag if the detected at least one parameter deviation is persistent.

In accordance with the present invention, an apparatus for isolating and detecting faults in a device comprises an apparatus for receiving a plurality of performance parameters, an apparatus for applying the plurality of performance parameters to a first model to produce a plurality of estimated performance parameters, an apparatus for applying the plurality of performance parameters to a second model to produce a plurality of estimated device parameters, an apparatus for computing a plurality of residuals from the plurality of estimated device parameters, an apparatus for computing a plurality of distance measuring from the plurality of residuals, an apparatus for detecting at least one parameter deviation using the plurality of residuals and the plurality of estimated performance parameters, an apparatus for setting at least one detection flag if the detected at least one parameter deviation is persistent.

In accordance with the present invention, a method for detecting faults in a device, comprises the steps of receiving a plurality of performance parameters, detecting a deviation of at least one of the parameters, determining a persistency of the deviation, and setting at least one detection flag if the deviation is persistent, wherein the determining step uses a short term filter and a long term filter.

FIG. 1—A diagram of the system of the present invention.

FIG. 2—An illustration of short and long term filter response to a step change.

FIG. 3—An illustration of small and large fuzzy membership functions.

FIG. 4—An illustration of a non-persistent perturbation.

FIG. 5—An illustration of a persistent perturbation.

FIG. 6—An illustration of divergence in the case of a persistent perturbation.

FIG. 7—An illustration of divergence in the case of a non-persistent perturbation.

FIG. 8—An illustration of the 2nd short term filter parameter of a persistent perturbation.

FIG. 9—An illustration of the 2nd short term filter parameter of a non-persistent perturbation.

FIG. 10—A flow chart of the logic of the method of the present invention.

FIG. 11 A second part of the flow chart of FIG. 10 is shown.

FIG. 12 The third part of the flow chart of FIG. 10 is shown.

It is a teaching of the present invention to provide a system and a method directed to addressing rapid shifts in performance, measurement error, and other faults by detecting their presence through signal-processing elements operating on observed parameter values. The processing is required to mitigate the number of false alarms that might be caused by model and parameter signal uncertainties. The engine parameters that drive this process are assumed to be those that are typically measured and available in a Full Authority Digital Engine Control (FADEC) or in a separate Engine Diagnostic Unit (EDU) performing the engine monitoring function. Typically observed parameters include spool speeds, fuel flow, inter-stage temperatures and pressures, bleed and variable geometry commands (where applicable), as well as engine ambient and aircraft flight condition indicators (altitude, speed, etc). These observed parameters serve as input parameters to a series of engine models that may be physics based, empirical, or hybrid.

Although the process can potentially be applied to more than two models, the preferred embodiment, for computational bandwidth considerations, will utilize two models; one having a physics-based element and the other employing an empirical methodology. This will insure a degree of model independence between the two model components.

The models, signal processing, persistency checks and isolation logic are illustrated with reference to FIG. 1 wherein there is shown one embodiment of a fault detection and isolation system 10 of the present invention.

The physics based engine model 21 can be, but is not limited to, a simple piecewise linear State Variable Model (SVM) or a variant thereof, a non-linear aero-thermodynamic model, or a hybrid model containing both a physics-based and empirical components. Whatever its nature, it shall accept a vector, (x), of m monitored engine and aircraft parameters as input and produce as output:

x = [ N 1 N 2 T 3 P 5 ] , x ^ PM = [ N ^ 1 N ^ 2 T ^ 3 P ^ 5 ]

and,

y ^ PM = [ y ^ PM ( 1 ) y ^ PM ( 2 ) y ^ PM ( 3 ) y ^ PM ( n PM ) ] = [ Δη FAN ΔΓ FAN Δη HPC Δη LPT ]

Methods for calculating these types of estimates are known in the art.

The empirical engine model 24 can be developed using a variety of known constructions such as linear or non-linear ARMA (Auto-Regressive Moving Average) models, an assortment of Artificial Neural Network (ANN) constructions (Multi-Layer Perceptron Networks, Radial Basis Function Networks, etc), standard statistical regression models and so forth. Whatever the form, the empirical model will accept a vector of monitored engine and aircraft parameters (x) as input and produce as output:

d EM = r = i r i 2 .

The overall methodology of the present invention makes use of signal processing logic to test for parameter deviation persistency to detect and distinguish true deviations from parameter/system noise induced deviations. The intent of so doing is to detect true deviations and reduce false alarms for short term temporal deviations caused by measurement and process noise. The heart of the persistency logic 23 consists of tracking the output parameters and distance measures of both models by both long term filters 25 and short term filters 26. The filters 25, 26 may take a variety of forms, for example rolling averages, exponential averages, median filters, etc. Whatever the form, it is preferred that long and short term filters 25, 26 be of the same construction. That is to say, regardless of the manner in which the long and short term filters 25, 26 are implemented, each long term filter 25 and its corresponding short term filter 26 should be of the same form noted above. The time constants involved in the filter design become tuning elements to be determined through simulation studies and will in part depend on the sample rate of the input and output data as well as parameter noise levels.

The divergence between these two types of filters 25, 26 is used to detect the initial onset of a parameter trend as well as its degree of persistency. This is done on an individual parameter basis. Persistency logic 23 will be described that will recognize initial large deviations (between long and short term filtered parameters) followed by a subsequent convergence back to small deviations as the central indicator that a persistent trend shift had occurred. The quantification of large and small deviations can most easily be made through the use of fuzzy membership functions 31. Attendant logic can address the classification problem for detected trends.

The short and long-term filters 25, 26 may take many forms. The preferred feature for the filters is that they exhibit a measurable difference in response to a step change as illustrated in FIG. 2.

One method to achieve this is through the use of exponential average filters. These filters take the following form:
rEMShortShortrEMShort+(1−αShort)rEM
ŷPMShortShortŷPMShort+(1−αShort)ŷPM
and
rEMLongLongrEMLong+(1−αLong)rEM
ŷPMLongShortŷPMLong+(1−αShort)ŷPM

Median filters across long and short window buffers work equally as well.

The arithmetic difference (termed divergence) between these two filtered signals provide the requisite information for determining whether the monitored signal has sustained a persistent shift. This is applied on a parameter by parameter basis for each of the monitored engine parameter (residual) signals.

The persistency logic is applied to the differences between the short and long term filtered parameter vectors for both the Physics-based Model {ŷPMShort, ŷPMLong} and the Empirical Model {rEMShort, rEMLong}. These differences define the divergence parameter vectors divPM and divEM, where
divPM(i)=|ŷPMShort(i)−ŷPMLong(i)|i=1, 2, . . . , nPM
divEM(j)=|rEMShort(j)−rEMLong(j)|j=1, 2, . . . , m

The divergence parameter vectors provide the information to assess whether a persistent shift has occurred. The process makes use of fuzzy membership functions 31 to assess whether or not the divergence is large or small. Although these membership functions can take many forms, the sigmoid functions depicted in FIG. 3 are illustrative of the concept.

To assist in the fault isolation associated with detected parameter shifts, a very long filter is maintained for each parameter to establish a Reference level from which the transgression was observed. By “very long” it is meant that the very long term filter operates upon a plurality of data inputs received over a period of time longer than that used in either the long or short term filters 25, 26. These are calculated in the same manner as the long filtered parameters with appropriate filter constants. For example, if exponential averages are being used, the Reference values are calculated as
rEMReferenceVeryLongrEMReference+(1−αVeryLong)rEM
ŷPMReferenceVeryLongŷPMReference+(1−αVeryLong)ŷPM

The persistence logic proceeds as follows (for each parameter under consideration):

1. Calculate divergence vectors (Eq.1)

2. Determine fuzzy Level of Belief (LOB) of being Small for each divergence element for both models.
LOB[divPM(i) is Small]=LOBPM(Small)(i), i=1, 2, . . . , nPM
LOB[divEM(j) is Small]=LOBEM(Small)(j), j=1, 2, . . . , m

Note: LOB of being large is easily computed as
LOBPM(Large)(i)=1−LOBPM(Small)(i), i=1, 2, . . . , nPM
LOBEM(Large)(j)=1−LOBEM(Small)(j), i=1, 2, . . . , m

3. Determine if any LOB is above pre-defined threshold level of confidence for being Large, conf(Large), i.e.
LOBPM(Large)(i)>conf(Large) or LOBEM(Large)(j)>conf(Large)?

4. If a threshold level is exceeded for a given parameter then

a. A trend detection flag (TDPMflag(i)=1,TDEMflag(j)=1) is set for that parameter and the flag is latched.

b. The Reference value, ŷPMReference for the parameter in question is used to calculate the parameter offset. For example, if the ith parameter from the Physical Model was flagged, we would calculate
ΔŷPM(i)=ŷPM(i)−ŷPMReference(i)  (2a)

Likewise, for the jth parameter from the Empirical Model, we would calculate
ΔrEM(j)=rEM(j)−rEMReference(j)  (2b)

These values can be utilized in the Fault Isolation and identification process using fault isolation logic 33. The signature formed by these Δ deviations can be compared to known fault signatures to identify the underlying fault.

Referring to FIG. 2, in order to establish persistency for the observed deviation(s), one needs to observe that the divergence values will eventually become Small within a certain level of confidence. One needs, however, to safeguard against the situation where a Large divergence is observed, followed by a reversal within a short duration, i.e. the process must avoid flagging (as persistent) noise induced perturbations as depicted in FIG. 4 below as opposed to truly persistent shifts as depicted in FIG. 5.

In both instances (FIGS. 4 & 5), the divergence between the long and short filtered values sweep from Small to Large and back to Small (see FIGS. 6 & 7).

In order to differentiate between these two scenarios, a second set of long and short filters are introduced using the (already) short filtered values (rEMShort(j) and ŷPMShort(i)) of the parameters that have a detected shift as a starting baseline. If we refer to these variables as rEMShort2(j), ŷPMShort2(i), and rEMLong2(j), ŷPMLong2(i) respectively, they are calculated (in the case of exponential averages) as follows:

r EM Short2 ( j ) = { r EM Short ( j ) if TD EM flag ( j ) = 0 α Short2 r EM Short2 ( j ) + ( 1 - α Short2 ) r EM ( j ) if TD EM flag ( j ) = 1

r EM Long2 ( j ) = { r EM Short ( j ) if TD EM flag ( j ) = 0 α Long2 r EM Long2 ( j ) + ( 1 - α Long2 ) r EM ( j ) if TD EM flag ( j ) = 1

y ^ PM Short2 ( i ) = { y ^ PM Short ( i ) if TD PM flag ( i ) = 0 α Short2 y ^ PM Short2 ( i ) + ( 1 - α Short2 ) y ^ PM ( i ) if TD PM flag ( i ) = 1

y ^ PM SLong2 ( i ) = { y ^ PM Short ( i ) if TD PM flag ( i ) = 0 α Long2 y ^ PM Long2 ( i ) + ( 1 - α Longt2 ) y ^ PM ( i ) if TD PM flag ( i ) = 1

One capitalizes on this information by computing a second divergence term for these secondary Short and Long Filter parameters, i.e.
divPM2(i)=|ŷPMShort2(i)−ŷPMLong2(i)|i=1, 2, . . . , nPM
divEM2(j)=|rEMShort2(j)−rEMLong2(j)|j=1, 2, . . . , m

These values establish a means to track the (new) shifted level. If a divergence between these filtered parameters occurs, then it would indicate that the shift was temporary. If, however, the divergence remains small, then persistence is established. In mathematical terms we perform the following:

i. Determine the Level Of Belief that the secondary divergence (divPM(2)(i) or divEM(2)(j)) is Small to a prescribed confidence level, i.e.
LOB[divPM(2)(i) is Small]=LOBPM(Small2)(i)>conf(Small2)
LOB[divEM(2)(j) is Small]=LOBEM(Small2)(j)>conf(Small2)

ii. IF TDPMflag(i)=1 And
LOBPM(Small2)(i)>conf(Small2)
And
LOB[|divPM(2)(i)−divPM(i)| is Small]>confSmall3
THEN

Similar analysis is performed for the EM parameters.

The effect of a Persistent and Non-Persistent trend shift on the primary and secondary divergence parameters is illustrated with reference to FIGS. 8 and 9.

Once the persistence of a shift in a parameter (or a set of parameters) is established, calculated delta shifts from the reference level (equations 2a and 2b) are used in the Fault Isolation process to determine the cause of the shift(s). Methods for accomplishing this are known in the art and vary from model-based methods using Kalman filters to empirical methods using Neural Networks and Fuzzy Logic, (to name a few). The process of Fault Isolation can be enhanced by taking advantage of the fact that we have available both Physics-Based Model (PM) performance parameters as well as Empirical Model (EM) residual information. For example, if one or more performance fault (PM) demonstrates a persistent shift and only one (EM) residual has a persistent shift we could conclude that the cause is probably due to a measurement (bias) error (the measurement associated with the shifted the residual) and that the performance shifts are a miss-assessment consequence. Likewise, a persistent performance fault shift (PM) accompanied by more than one (EM) residual shift would more probably be indicative of a true performance problem and not a collection of individual measurement (bias) errors. Logic along these lines can be developed and coupled with known methods of fault isolation to further enhance the process.

An overview of one embodiment of the hybrid model based detection and isolation system is presented in the logic flow diagram depicted in FIG. 10. The models, signal processing, and persistency checks and isolation logic of the fault detection and isolation system 10 may be, but need not be, implemented on a general purpose electronic computing device. As a result, fault detection and isolation system 10 can be implemented on any device capable of receiving digital electronic input and performing arithmetic and other digital signal processing logic upon such input so as to isolate the occurrence of engine faults in accordance with the above description. The logic performed by all modules of fault detection and isolation system 10, including, but not limited to, physics-based engine model 21. Empirical engine model 24, short term filters 25, long term filters 26, persistency logic 23, and fault isolation logic 33, may be implemented in a general purpose electronic computing device as software or may be implemented in hardware.

It is apparent that there has been provided in accordance with the present invention a system, and method for utilizing such a system, for detecting and isolating faults in the operation of an engine. While the present invention has been described in the context of specific embodiments thereof, other alternatives, modifications, and variations will become apparent to those skilled in the art having read the foregoing description. Accordingly, it is intended to embrace those alternatives, modifications, and variations as fall within the broad scope of the appended claims.

Volponi, Allan J.

Patent Priority Assignee Title
10830091, Jan 08 2018 RTX CORPORATION Distress detection in dynamically and thermally coupled systems
7472100, Sep 29 2006 RTX CORPORATION Empirical tuning of an on board real-time gas turbine engine model
7840381, Oct 03 2008 Honeywell International Inc. Method and apparatus for determining the operational state of a navigation system
7861578, Jul 29 2008 General Electric Company Methods and systems for estimating operating parameters of an engine
7881880, Apr 01 2009 RTX CORPORATION Actuator performance monitoring system
8306791, Dec 21 2009 United Technologies Corporation Method and system for modeling the performance of a gas turbine engine
8321118, Dec 23 2008 Honeywell International Inc. Operations support systems and methods with power assurance
8352226, Jan 31 2006 Landmark Graphics Corporation Methods, systems, and computer-readable media for real-time oil and gas field production optimization using a proxy simulator
8364340, Mar 31 2009 General Electric Company Method and systems for virtual sensor selection and blending
8504341, Jan 31 2006 Landmark Graphics Corporation Methods, systems, and computer readable media for fast updating of oil and gas field production models with physical and proxy simulators
8621305, Jul 08 2010 Honeywell International Inc. Methods systems and apparatus for determining whether built-in-test fault codes are indicative of an actual fault condition or a false alarm
8744813, Nov 28 2008 SAFRAN AIRCRAFT ENGINES Detection of anomalies in an aircraft engine
Patent Priority Assignee Title
4215412, Jul 13 1978 The Boeing Company Real time performance monitoring of gas turbine engines
4755925, Sep 24 1985 Kabushiki Kaisha Toshiba Plant diagnostic system
5293323, Oct 24 1991 Lockheed Martin Corporation Method for fault diagnosis by assessment of confidence measure
5519298, Dec 17 1993 EARTHTECHNICA CO , LTD Abnormality detection method, stability degree determination method and operation control method for mechanical equipment
6415276, Aug 14 1998 Science & Technology Corporation @ UNM Bayesian belief networks for industrial processes
6539783, Dec 28 1998 General Electric Co.; General Electric Company Methods and apparatus for estimating engine health
6594620, Aug 17 1998 AspenTech Corporation Sensor validation apparatus and method
6609060, Oct 22 1998 Yamaha Hatsudoki Kabushiki Kaisha System for intelligent control of an engine based on soft computing
6718252, Oct 23 2000 Denso Corporation Control apparatus for internal combustion engine
6766230, Nov 09 2000 Steering Solutions IP Holding Corporation Model-based fault detection and isolation system and method
6909960, Oct 31 2002 RAYTHEON TECHNOLOGIES CORPORATION Method for performing gas turbine performance diagnostics
6985781, Jan 12 1999 ROCKWELL AUTOMATION TECHNOLOGIES, INC Residual activation neural network
7020595, Nov 26 1999 General Electric Company Methods and apparatus for model based diagnostics
7058556, Sep 26 2001 Triumph Engine Control Systems, LLC Adaptive aero-thermodynamic engine model
7062370, Mar 30 2004 Honeywell International Inc. Model-based detection, diagnosis of turbine engine faults
7136809, Oct 31 2002 RTX CORPORATION Method for performing an empirical test for the presence of bi-modal data
7216063, Jun 06 2003 Pratt & Whitney Canada Corp. Method and apparatus for comparing a data set to a baseline value
7216071, Apr 23 2002 RTX CORPORATION Hybrid gas turbine engine state variable model
7277838, Aug 26 2004 RTX CORPORATION Bootstrap data methodology for sequential hybrid model building
20020087221,
20030074171,
20030115037,
20030200069,
20040088100,
20040153815,
20070078576,
20070124113,
WO3091911,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 04 2004United Technologies Corporation(assignment on the face of the patent)
Oct 04 2004VOLPONI, ALLAN J United Technologies CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0158790922 pdf
Apr 03 2020United Technologies CorporationRAYTHEON TECHNOLOGIES CORPORATIONCORRECTIVE ASSIGNMENT TO CORRECT THE AND REMOVE PATENT APPLICATION NUMBER 11886281 AND ADD PATENT APPLICATION NUMBER 14846874 TO CORRECT THE RECEIVING PARTY ADDRESS PREVIOUSLY RECORDED AT REEL: 054062 FRAME: 0001 ASSIGNOR S HEREBY CONFIRMS THE CHANGE OF ADDRESS 0556590001 pdf
Apr 03 2020United Technologies CorporationRAYTHEON TECHNOLOGIES CORPORATIONCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0540620001 pdf
Jul 14 2023RAYTHEON TECHNOLOGIES CORPORATIONRTX CORPORATIONCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0647140001 pdf
Date Maintenance Fee Events
Sep 21 2011M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Jan 28 2016M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jan 23 2020M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Aug 19 20114 years fee payment window open
Feb 19 20126 months grace period start (w surcharge)
Aug 19 2012patent expiry (for year 4)
Aug 19 20142 years to revive unintentionally abandoned end. (for year 4)
Aug 19 20158 years fee payment window open
Feb 19 20166 months grace period start (w surcharge)
Aug 19 2016patent expiry (for year 8)
Aug 19 20182 years to revive unintentionally abandoned end. (for year 8)
Aug 19 201912 years fee payment window open
Feb 19 20206 months grace period start (w surcharge)
Aug 19 2020patent expiry (for year 12)
Aug 19 20222 years to revive unintentionally abandoned end. (for year 12)