A multi-core optical fiber apparatus is disclosed. The multi-core optical fiber apparatus includes a cladding comprising quartz and a plurality of cores embedded in the cladding. Each of the cores has a diameter (D) ranging from 1.3 μm to 2.0 μm, a numerical aperture (NA) from 0.35 to 0.45 and a refractive index profile factor (α) from 2.0 to 4.0. A center of each of the cores has a germanium content of 20 wt % to 30 wt %. An interval between adjacent cores is 3.0 μm or more.
|
1. A multi-core optical fiber comprising:
a cladding further comprising quartz; and
a plurality of cores embedded in the cladding, each of the cores having a diameter (D) from 1.3 μm to 2.0 μm, a numerical aperture (NA) from 0.35 to 0.45, a refractive index profile factor (α) from 2.0 to 4.0, and a center of each of the cores having a germanium content from 20 wt % to 30 wt %,
wherein an interval (d) between adjacent cores is 3.0 μm or more.
2. The multi-core optical fiber of
4. The multi-core optical fiber of
5. The multi-core optical fiber of
|
|||||||||||||||||||||||||||
This application claims priority from Japanese Patent Application No. 2006-300505 filed on Nov. 6, 2006; the entire contents of which are incorporated herein by reference.
1. Field of the Invention
Apparatuses consistent with the present invention relates to a multi-core optical fiber preferably applied to an imaging method using an optical fiber such as a confocal fluorescent imaging method.
2. Description of the Related Art
In many medical fields such as gastroenterology, pulmonary disease, or cardiovascular disease, endoscopes are employed for direct observation of surfaces of tissues or as auxiliary apparatuses for medicine. Further, fluorescence diagnostics carried out in combination with an endoscope attracts great deal of attention.
A tissue irradiated and excited by excitation light emits a fluorescent light having a characteristic spectrum. When the tissue has a lesion such as a tumor or a cancer, the tissue emits a particular fluorescent light having a spectrum different from the normal characteristic spectrum. The fluorescence diagnostics is a diagnostic method utilizing such a characteristic to discern a tissue having a lesion from a normal tissue. As this diagnostic method does not require collection of tissues from a patient's body, patients are released from physical burden. This is one of the many advantages of this method. Japanese Patent Application Laid-open No. H08-224240 discloses a related art.
A confocal fluorescent imaging method utilizing a multi-core optical fiber is often used in combination with the fluorescence diagnostics. In this method, a plurality of excitation light beams having different wavelengths irradiate a tissue through a multi-core optical fiber and then fluorescent lights with the excitation lights from the tissue are collected through the optical fiber. Separation of the fluorescent lights from the excitation lights produces fluorescent spectra. As cores embedded in the multi-core optical fiber have two-dimensional arrangement, such information processing carried out on the cores gives a two-dimensional image. Further, such processing reciprocally carried out with changing a vertical position and filtering information only from each focal point provides a confocal image. Published Japanese translation of International Application No. 2005-532883 discloses a related art.
Certain embodiments of the present invention provide a multi-core optical fiber contributive to accurate fluorescence diagnostics.
According to an exemplary embodiment of the present invention, a multi-core optical fiber includes a cladding including quartz; and a plurality of cores embedded in the cladding, each of the cores having a diameter (D) from 1.3 μm to 2.0 μm, a numerical aperture (NA) from 0.35 to 0.45 and a refractive index profile factor α from 2.0 to 4.0, and a center of each of the cores having a germanium content from 20 wt % to 30 wt %, wherein an interval between adjacent cores is 3.0 μm or more.
The measuring device 100 is comprised of a light source 102 from which laser light of 488 nm in wavelength is emitted as excitation light, an optical lens 104 for condensing the laser light into a beam of from 2 to 3 μm in diameter, a multi-core optical fiber 106 so positioned as to receive the beam, an objective lens 108 provided at an output end of the multi-core optical fiber 106, and a CCD 110 optically coupled to the objective lens 108. The measuring device 100 further includes a dichroic filter 112 allowing laser light from the light source 102 to pass through and reflecting light reflected by the objective lens 108 and passing through the multi-core optical fiber 106 and the optical lens 104 in this order, and a spectrum analyzer 114 to receive the light reflected by the dichroic filter 112 (light reflected by the objective lens 108) and carry out analysis of the light. The measuring device 100 is further comprised of an XYZ stage 116 for regulating the position of the multi-core optical fiber 106 to optically couple the optical lens 104 with the multi-core optical fiber 106, and a reflective filter 118 for reducing noise.
The associated light having a relatively broad spectrum deteriorates the accuracy of fluorescence diagnostics and is difficult to filter out from fluorescent light. Further, the optical fiber itself causes the associated light since it is otherwise not observed. The present invention is based on these findings.
An exemplary embodiment of the present invention will be described hereinafter with reference to the appended drawings. Meanwhile, illustrations of a multi-core optical fiber in these drawings are no more than schematic drawings and therefore the elements shown in the drawings are not necessarily drawn to scale. Shapes, dimensions, proportions and arrangement of elements in practical products may be allowed to differ from those in the illustrations. For example, any structure drawn in a circular shape may be modified into an elliptical shape and any structure drawn in a honeycomb-like arrangement may be modified into an orthogonal array.
Referring to a cross sectional view shown in
The image circle region 12 is further comprised of a cladding 2 that includes quartz and a plurality of cores 1 embedded in the cladding 2. Each core 1 is configured to transmit light to provide information of a pixel of an image. The cladding 2 provides a common base for these cores 1. Spaces among the cores 1 are completely filled with the cladding 2. A diameter of the image circle region 12 is for example about 500 μm and the number of cores 1 embedded therein ranges from ten thousand to thirty thousand. Thereby an image focused on one end of the multi-core optical fiber 10 is spatially divided into the number of cores 1 and the divided images are respectively transmitted through the cores 1 so that the image is reproduced on another end of the multi-core optical fiber 10.
n(r)=n1[1−2Δ(r/a)α]1/2(0≦r≦a),
where n(r) represents a refractive index at a remove of distance r from the center of the core, n1 represents refractive index at the center of the core, and a represents radius of the core.
Further, each of the cores 1 is from 1.3 μm to 2.0 μm in diameter. Interval D between adjacent cores 1 is 4.0 μm or less. Numerical aperture (NA) is from 0.35 to 0.45.
The cladding 2 includes quartz doped with fluorine which decreases the refractive index. The refractive index in the cladding 2 keeps substantially constant.
The multi-core optical fiber is produced in accordance with the following process. First, the process includes forming a quartz core preform soot by a vapor phase axial deposition (VAD) method, which is doped with germanium to have the refractive index profile factor α within the aforementioned range. Next, the process includes heating the preform soot in a sintering furnace so as to have the preform soot transparent-vitrified, thereby a glass rod for cores is obtained. Subsequently, the process includes forming a fluorine-doped glass layer on an outer periphery of the glass rod by a plasma outside vapor deposition method or an outside vapor deposition (OVD) method, which is to be a cladding of the multi-core optical fiber, thereby producing an optical fiber base body. The OVD method includes forming soot particles in an oxyhydrogen flame and vitrifying the soot particles by sintering. Alternatively, the glass rod may be jacketed with a fluorine-doped tube produced by a PCVD method or a MCVD method, instead of the fluorine-doped glass layer formed by the plasma outside vapor deposition method or such. Next, the process includes drawing the optical fiber base body to an optical fiber cord of several hundred μm in diameter. The process further includes cutting the optical fiber cord at intervals of predetermined length into approximately ten thousand optical fiber cords. These optical fiber cords are inserted into a quartz tube and drawn together, thereby a multi-core optical fiber of about 500 μm in diameter is produced. Finally, the process includes forming a coating layer of about 50 μm in thickness on the outermost layer. Thereby, a final product of a multi-core optical fiber is obtained.
Some experiments carried out by the inventors for the purpose of studying the origins of the associated light will be described hereinafter.
A plurality of multi-core optical fibers were utilized for these experiments. The multi-core optical fibers vary in Ge contents in the respective cores 1. The multi-core optical fibers respectively have Ge contents of 10 wt %, 19 wt %, 22 wt %, 26 wt %, 30 wt % and 33 wt % at the centers of the cores. Another multi-core optical fiber which is produced by using a glass rod for cores not-doped with Ge (alternatively referred to as a multi-core optical fiber having Ge content of 0 wt % hereinafter) was further provided for these experiments.
Further, the experiments give results in that the emission intensity increases as the multi-core fiber elongates, and the emission intensity decreases as the wavelength of the excitation light increases (for example, 488 nm or 635 nm). The experiments produces results in that the light corresponding to the broad peak cannot be recognized in cases of multi-core fibers of pure silica cores and F doped silica cores.
From the aforementioned results, it is understood that the emission correspondent to the broad peak is luminescence emitted by Ge in the cores excited by the excitation light. Further, the inventors studied to what extent the emission intensity gives no practical problem, and the result makes it clear that the emission intensity of −65 dBm or less gives no practical problem. More specifically, from
Next, resolution and contrast properties of practical importance of the multi-core optical fiber will be described hereinafter. One of parameters affecting the resolution is an interval between the cores. If the interval between the adjacent cores is shorter, the physical resolution increases, however, a too narrow interval leads to generation of cross talk. If the cross talk increases, spread of light occurs and therefore problems of a drop in contrast or that colored images may occur. While coloring may not lead to a severe problem in a multi-core fiber used in a confocal fluorescent imaging method, the multi-core fiber should be so designed as to realize a proper balance between resolution and contrast in view of a refractive index profile.
According to studies by the inventors, an exemplary embodiment of a multi-core fiber having the following constitution is for the confocal fluorescent imaging method. More specifically, it is a multi-core optical fiber (multi-core optical fiber A, hereinafter) having a cladding of quartz, and a plurality of cores embedded in the cladding, which have a core diameter from 1.3 μm to 2.0 μm; a numerical aperture from 0.35 to 0.45; a refractive index profile factor α from 2.0 to 4.0; and a center of each of the cores having a germanium content from 20 wt % to 30 wt %, wherein an interval between adjacent cores is 3.0 μm or more.
As the multi-core optical fiber A has the Ge content of 30 wt % or less at the centers of the cores, broadband emission ranging from 500 nm to 900 nm caused by Ge excited by excitation light (30 mW) of wavelength ranging from 405 nm to 635 nm may be suppressed. Therefore, fluorescence from observing sites may be obtained in a high S/N ratio at a time of observation by means of the fluorescent imaging method. On the other hand, in a case where the Ge content at the centers of the cores goes below 20 wt %, it is hard to preserve the required NA over 0.35 from the limitation of material. However, as the multi-core optical fiber A has the Ge content ranging from 20 wt % to 30 wt %, the required NA can be assured.
Further, in a case where the refractive index profile factor α is less than 2.0, as substantial NA becomes relatively small, the numerical aperture number is insufficient and fluorescence from observing sites cannot be observed with sufficient intensity. On the other hand, that the refractive index profile factor α is greater than 4.0 means that the Ge content increases substantially. Thereby emission corresponding to the broad peak caused by Ge increases and therefore it gives rise to reduction in S/N ratio. For the foregoing reason, the refractive index profile factor α is preferably from 2.0 to 4.0.
In regard to core diameter, production of a multi-core optical fiber is possible if the diameter is less than 1.3 μm. However, such small core diameter leads to broadening of an electric field of a fundamental mode (LP01) and therefore the effect of the confinement of the light in the cores is reduced. This result may lead to a state in which bending loss increases and therefore it becomes unusable. Alternatively, cross talk may increase and, as a result, resolution becomes worse. However, when the core diameter exceeds 2.0 μm, as content of Ge substantially increases, it gives rise to an increase of broadband emission ranging from 500 nm to 900 nm. For the foregoing reasons, the core diameter is preferably from 1.3 μm to 2.0 μm.
An NA of 0.35 or more is required in order to take sufficient amount of fluorescence from observing sites. If NA exceeding 0.45 is to be realized, an increase in fluorine or boron addition in the cladding is necessary. It results in an increase in the concentration of Ge in the cores. Therefore, NA is preferably 0.45 or less.
Further, in an exemplary embodiment of multi-core optical fiber A, chlorine contained in the cores is preferably 0.05 wt % or less (such fiber will be referred to as a multi-core optical fiber B hereinafter). The reason is that the emission correspondent to the broad peak tends to be higher when chlorine content is greater in accordance with the inventors' studies. To suppress the chlorine content in the cores below 0.05 wt %, it is required not to use raw material containing chlorine such as SiCl4 but to use raw material of the organosilane series compounds such as tetra-methoxy silane (Si(OCH3)4) gas, for example, at the time of production of the optical fiber base body. Further, it is required to avoid using chlorine series gases and to use other halogen series gases during dehydration and sintering.
In particular, in a case where chlorine content in the cores is 0.3 wt % or more, it gives rise to a problem in which a large number of bubbles are generated in the course of drawing the base body to produce an optical fiber. Therefore the process yield is reduced.
Furthermore, in the exemplary embodiment of multi-core optical fiber A, it will be useful when a core interval (distance between centers (center axes)) between two adjacent cores ranges from 3.0 μm to 4.0 μm and the ratio of core diameter/core interval is from 1.7 to 2.6 (such fiber will be referred to as a multi-core optical fiber C hereinafter). Thus, the observing sites are capable of being observed in resolution of a cell level (about 10 μm). If the core interval exceeds 4.0 μm, the resolution of a cell level cannot be retained. It may be inapplicable to a case where observation with this level is required. Further, in a case where the core interval is less than 3.0 μm, as the NA is from 0.35 to 0.45, bend loss and cross talk increases and it leads to a situation in which necessary information (form of spectra and intensities) cannot be obtained. If a ratio of core diameter/core interval is less than 1.7, thickness of the cladding in the multi-core optical fiber becomes insufficient, confinement of the light in the cores becomes insufficient and therefore bend loss and cross talk increase. Further, if the ratio of core diameter to core interval exceeds 2.6, an electric field of a fundamental mode (mode field diameter) is broadened, bend loss increases, and cross talk to adjacent cores increases. These result in an impossibility of increase in pixel density.
Further, in the aforementioned exemplary embodiments of multi-core optical fibers A, B and C, it is preferable that light of 635 nm in wavelength is transmitted in a single mode through the respective cores. Thereby, fluorescence having a wavelength of 635 nm or longer may be transmitted in a single mode. As cross talk increases in higher modes, by realizing a single mode, cross talk due to higher modes may be excluded. More accurate information can be extracted from fluorescence transmitted through the respective cores.
Next, examples will be shown hereinafter to explain properties of the multi-core optical fiber according to the exemplary embodiment of the present invention.
Table 1 lists structure parameters of multi-core optical fibers and evaluation results thereof. In the course of production of the multi-core optical fibers of examples numbers 8 and 22 in Table 1, fluorine had not been added in glass layers which are to be claddings of the multi-core optical fibers and therefore these multi-core optical fibers have claddings of pure silica. Further, in the multi-core optical fibers of examples numbers 9 and 23, glass rods for cores produced by a direct method are used to produce optical fiber base bodies.
TABLE 1
structure parameters and evaluation results
core
Ge
Chlorine
Refractive
Core
interval/
Cutoff
Diam-
content
content in
Additive
index
diam-
Core
core
wave-
eter
Fluores-
Final
in cores
cores
in a
profile
eter
interval
diameter
length
Number
of fiber
Emission
cence
evalu-
No.
(wt %)
(wt %)
cladding
factor α
NA
(μm)
(μm)
(D/d)
(μm)
of pixels
(μm)
intensity
signal
ation
1
30
less than
F
2.3
0.42
1.83
3.3
1.8
0.99
30000
645
Good
Good
Good
0.05
3
26
less than
F
2.6
0.37
1.56
3.9
2.5
0.75
30000
763
Good
Good
Good
0.05
4
23
less than
F
2.3
0.35
1.33
3.2
2.4
0.6
30000
626
Good
Good
Good
0.05
14
26
less than
F
2.9
0.37
1.5
3
2
0.77
30000
626
Good
Good
Good
0.05
16
21
less than
F
2.3
0.37
1.62
3.4
2.1
0.77
30000
665
Good
Good
Good
0.05
17
21
less than
F
2.3
0.37
1.5
3.9
2.6
0.71
30000
763
Good
Good
Good
0.05
22
28
less than
none
2.3
0.35
2
4
2
0.91
10000
452
Good
Good
Good
0.05
2
30
less than
F
2.3
0.42
2.2
3.3
1.5
1.19
30000
645
Good
Bad
Bad
0.05
5
19
less than
F
2.3
0.33
1.26
3.3
2.61
0.53
30000
645
Good
Bad
Bad
0.05
6
33
less than
F
2.3
0.44
2
4
2
1.12
30000
782
Bad
Good
Bad
0.05
7
33
less than
F
2.3
0.44
2.2
3.3
1.5
1.24
30000
645
Bad
Bad
Bad
0.05
8
10
less than
none
2.3
0.21
1.65
3.3
2
0.45
30000
645
Good
Bad
Bad
0.05
9
0
0.3
F
greater
0.21
2
4
2
0.54
30000
782
Good
Bad
Bad
than 10
10
26
less than
F
4
0.37
2.93
4.4
1.5
1.4
30000
860
Good
Bad
Bad
0.05
11
26
less than
F
2.3
0.37
2.5
4
1.6
0.84
30000
782
Good
Bad
Bad
0.05
12
28
less than
F
2.4
0.41
2.93
4.4
1.5
1.09
30000
860
Good
Bad
Bad
0.05
13
19
less than
F
2.3
0.33
1.65
4.3
2.61
0.7
30000
841
Good
Bad
Bad
0.05
15
33
less than
F
2.3
0.44
2.2
3.3
1.5
1.24
30000
645
Bad
Bad
Bad
0.05
18
26
less than
F
2.3
0.4
3.38
4.4
1.3
1.74
30000
860
Good
Bad
Bad
0.05
19
26
less than
F
2.3
0.37
3.13
5
1.6
1.49
30000
978
Good
Bad
Bad
0.05
20
10
less than
F
3
0.29
2
4
2
0.76
10000
452
Good
Bad
Bad
0.05
21
28
less than
F
1.9
0.41
1.89
3.3
1.75
0.54
30000
645
Good
Bad
Bad
0.05
23
28
0.3
F
3
0.41
2.57
4.5
1.75
0.6
30000
880
Good
Bad
Bad
Moreover, total length of the multi-core optical fibers subject to measure is 2 m. It is determined for the reason that at least 2 m is required in view of workability at a time of using a multi-core optical fiber for a fluorescent imaging method. If total length increases, the amount of Ge in the cores increases. As emission caused by Ge as described above tends to be more prominent as total length of a multi-core optical fiber increases, it is important in practice that properties as described later are obtained with this length.
Emission intensities shown in Table 1 are intensities of light measured by means of the measuring device 200 shown in
Table 1 shows that none of the exemplary embodiments of multi-core optical fibers having any of the following structure parameters of the core diameters: the Ge contents at the centers of the cores, the numerical apertures (NA), the refractive index profile factors of the cores, and the intervals between the adjacent cores are out of the range of the structure parameter of the exemplary embodiment multi-core optical fiber A is evaluated as “good” in regard to both the emission intensity and the fluorescence signal. On the other hand, any multi-core optical fibers correspondent to the aforementioned multi-core optical fiber A are evaluated as “good” in regard to the final evaluation. From these points, advantage of the multi-core optical fiber in accordance with the present exemplary embodiment will be understood.
As described above, as the multi-core optical fiber in accordance with the present exemplary embodiment is so structured as to fall within range of the structure parameters of the core diameters, the Ge contents at the centers of the cores, the refractive index profile factors of the cores, and such, emission in the wavelength range from 500 nm to 900 nm caused by Ge in the cores is suppressed and therefore the fiber enables observation of fluorescence from tissues with high S/N ratio. Further, by limiting the numerical aperture (NA), the interval between the adjacent cores and the core interval/core diameter ratio, bend loss and cross talk are reduced and thereby resolution in a cell level is realized. Further, by realizing a single mode, cross talk is further reduced, and, by limiting the chlorine concentration in the cores, emission in the wavelength range from 500 nm to 900 nm is further reduced.
More specifically, in accordance with the present invention, a multi-core fiber which is capable of improving accuracy of fluorescence diagnostics is provided.
Although the invention has been described above by reference to certain exemplary embodiments of the invention, the invention is not limited to the exemplary embodiments described above. Modifications and variations of the embodiments described above will occur to those skilled in the art, in light of the above teachings.
Tsumanuma, Takashi, Aikawa, Kazuhiko, Kudou, Manabu
| Patent | Priority | Assignee | Title |
| 10009063, | Sep 16 2015 | AT&T Intellectual Property I, L P | Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal |
| 10009065, | Dec 05 2012 | AT&T Intellectual Property I, LP | Backhaul link for distributed antenna system |
| 10009067, | Dec 04 2014 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Method and apparatus for configuring a communication interface |
| 10009901, | Sep 16 2015 | AT&T Intellectual Property I, L.P. | Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations |
| 10020587, | Jul 31 2015 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Radial antenna and methods for use therewith |
| 10020844, | Dec 06 2016 | AT&T Intellectual Property I, LP | Method and apparatus for broadcast communication via guided waves |
| 10027397, | Dec 07 2016 | AT&T Intellectual Property I, L P | Distributed antenna system and methods for use therewith |
| 10027398, | Jun 11 2015 | AT&T Intellectual Property I, LP | Repeater and methods for use therewith |
| 10033107, | Jul 14 2015 | AT&T Intellectual Property I, LP | Method and apparatus for coupling an antenna to a device |
| 10033108, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
| 10044409, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
| 10050697, | Jun 03 2015 | AT&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
| 10051483, | Oct 16 2015 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Method and apparatus for directing wireless signals |
| 10051629, | Sep 16 2015 | AT&T Intellectual Property I, L P | Method and apparatus for use with a radio distributed antenna system having an in-band reference signal |
| 10051630, | May 31 2013 | AT&T Intellectual Property I, L.P. | Remote distributed antenna system |
| 10063280, | Sep 17 2014 | AT&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
| 10069185, | Jun 25 2015 | AT&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
| 10069535, | Dec 08 2016 | AT&T Intellectual Property I, L P | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
| 10074886, | Jul 23 2015 | AT&T Intellectual Property I, L.P. | Dielectric transmission medium comprising a plurality of rigid dielectric members coupled together in a ball and socket configuration |
| 10074890, | Oct 02 2015 | AT&T Intellectual Property I, L.P. | Communication device and antenna with integrated light assembly |
| 10079661, | Sep 16 2015 | AT&T Intellectual Property I, L P | Method and apparatus for use with a radio distributed antenna system having a clock reference |
| 10090594, | Nov 23 2016 | AT&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
| 10090601, | Jun 25 2015 | AT&T Intellectual Property I, L.P. | Waveguide system and methods for inducing a non-fundamental wave mode on a transmission medium |
| 10090606, | Jul 15 2015 | AT&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
| 10091787, | May 31 2013 | AT&T Intellectual Property I, L.P. | Remote distributed antenna system |
| 10096881, | Aug 26 2014 | AT&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves to an outer surface of a transmission medium |
| 10103422, | Dec 08 2016 | AT&T Intellectual Property I, L P | Method and apparatus for mounting network devices |
| 10103801, | Jun 03 2015 | AT&T Intellectual Property I, LP | Host node device and methods for use therewith |
| 10135145, | Dec 06 2016 | AT&T Intellectual Property I, L P | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
| 10135146, | Oct 18 2016 | AT&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
| 10135147, | Oct 18 2016 | AT&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
| 10136434, | Sep 16 2015 | AT&T Intellectual Property I, L P | Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel |
| 10139820, | Dec 07 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
| 10142010, | Jun 11 2015 | AT&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
| 10142086, | Jun 11 2015 | AT&T Intellectual Property I, L P | Repeater and methods for use therewith |
| 10144036, | Jan 30 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium |
| 10148016, | Jul 14 2015 | AT&T Intellectual Property I, L P | Apparatus and methods for communicating utilizing an antenna array |
| 10154493, | Jun 03 2015 | AT&T Intellectual Property I, LP | Network termination and methods for use therewith |
| 10168695, | Dec 07 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
| 10170840, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
| 10178445, | Nov 23 2016 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, L P | Methods, devices, and systems for load balancing between a plurality of waveguides |
| 10194437, | Dec 05 2012 | AT&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
| 10205655, | Jul 14 2015 | AT&T Intellectual Property I, L P | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
| 10224634, | Nov 03 2016 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, L P | Methods and apparatus for adjusting an operational characteristic of an antenna |
| 10224981, | Apr 24 2015 | AT&T Intellectual Property I, LP | Passive electrical coupling device and methods for use therewith |
| 10225025, | Nov 03 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
| 10225842, | Sep 16 2015 | AT&T Intellectual Property I, L.P. | Method, device and storage medium for communications using a modulated signal and a reference signal |
| 10243270, | Dec 07 2016 | AT&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
| 10243784, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
| 10264586, | Dec 09 2016 | AT&T Intellectual Property I, L P | Cloud-based packet controller and methods for use therewith |
| 10291311, | Sep 09 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for mitigating a fault in a distributed antenna system |
| 10291334, | Nov 03 2016 | AT&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
| 10298293, | Mar 13 2017 | AT&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
| 10305190, | Dec 01 2016 | AT&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
| 10312567, | Oct 26 2016 | AT&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
| 10320586, | Jul 14 2015 | AT&T Intellectual Property I, L P | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
| 10326494, | Dec 06 2016 | AT&T Intellectual Property I, L P | Apparatus for measurement de-embedding and methods for use therewith |
| 10326689, | Dec 08 2016 | AT&T Intellectual Property I, LP | Method and system for providing alternative communication paths |
| 10340573, | Oct 26 2016 | AT&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
| 10340600, | Oct 18 2016 | AT&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
| 10340601, | Nov 23 2016 | AT&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
| 10340603, | Nov 23 2016 | AT&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
| 10340983, | Dec 09 2016 | AT&T Intellectual Property I, L P | Method and apparatus for surveying remote sites via guided wave communications |
| 10341142, | Jul 14 2015 | AT&T Intellectual Property I, L P | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
| 10348391, | Jun 03 2015 | AT&T Intellectual Property I, LP | Client node device with frequency conversion and methods for use therewith |
| 10349418, | Sep 16 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for managing utilization of wireless resources via use of a reference signal to reduce distortion |
| 10355367, | Oct 16 2015 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Antenna structure for exchanging wireless signals |
| 10359749, | Dec 07 2016 | AT&T Intellectual Property I, L P | Method and apparatus for utilities management via guided wave communication |
| 10361489, | Dec 01 2016 | AT&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
| 10374316, | Oct 21 2016 | AT&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
| 10382976, | Dec 06 2016 | AT&T Intellectual Property I, LP | Method and apparatus for managing wireless communications based on communication paths and network device positions |
| 10389029, | Dec 07 2016 | AT&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
| 10389037, | Dec 08 2016 | AT&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
| 10396887, | Jun 03 2015 | AT&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
| 10411356, | Dec 08 2016 | AT&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
| 10439675, | Dec 06 2016 | AT&T Intellectual Property I, L P | Method and apparatus for repeating guided wave communication signals |
| 10446936, | Dec 07 2016 | AT&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
| 10498044, | Nov 03 2016 | AT&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
| 10530505, | Dec 08 2016 | AT&T Intellectual Property I, L P | Apparatus and methods for launching electromagnetic waves along a transmission medium |
| 10535928, | Nov 23 2016 | AT&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
| 10547348, | Dec 07 2016 | AT&T Intellectual Property I, L P | Method and apparatus for switching transmission mediums in a communication system |
| 10601494, | Dec 08 2016 | AT&T Intellectual Property I, L P | Dual-band communication device and method for use therewith |
| 10637149, | Dec 06 2016 | AT&T Intellectual Property I, L P | Injection molded dielectric antenna and methods for use therewith |
| 10650940, | May 15 2015 | AT&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
| 10665942, | Oct 16 2015 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Method and apparatus for adjusting wireless communications |
| 10679767, | May 15 2015 | AT&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
| 10694379, | Dec 06 2016 | AT&T Intellectual Property I, LP | Waveguide system with device-based authentication and methods for use therewith |
| 10727599, | Dec 06 2016 | AT&T Intellectual Property I, L P | Launcher with slot antenna and methods for use therewith |
| 10755542, | Dec 06 2016 | AT&T Intellectual Property I, L P | Method and apparatus for surveillance via guided wave communication |
| 10777873, | Dec 08 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
| 10784670, | Jul 23 2015 | AT&T Intellectual Property I, L.P. | Antenna support for aligning an antenna |
| 10797781, | Jun 03 2015 | AT&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
| 10811767, | Oct 21 2016 | AT&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
| 10812174, | Jun 03 2015 | AT&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
| 10819035, | Dec 06 2016 | AT&T Intellectual Property I, L P | Launcher with helical antenna and methods for use therewith |
| 10916863, | Jul 15 2015 | AT&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
| 10916969, | Dec 08 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
| 10938108, | Dec 08 2016 | AT&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
| 11032819, | Sep 15 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a control channel reference signal |
| 9119127, | Dec 05 2012 | AT&T Intellectual Property I, LP | Backhaul link for distributed antenna system |
| 9154966, | Nov 06 2013 | AT&T Intellectual Property I, LP | Surface-wave communications and methods thereof |
| 9209902, | Dec 10 2013 | AT&T Intellectual Property I, L.P. | Quasi-optical coupler |
| 9225141, | Oct 04 2011 | FURUKAWA ELECTRIC CO , LTD | Multi-core amplification optical fiber and multi-core optical fiber amplifier |
| 9312919, | Oct 21 2014 | AT&T Intellectual Property I, LP | Transmission device with impairment compensation and methods for use therewith |
| 9461706, | Jul 31 2015 | AT&T Intellectual Property I, LP | Method and apparatus for exchanging communication signals |
| 9467870, | Nov 06 2013 | AT&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
| 9479266, | Dec 10 2013 | AT&T Intellectual Property I, L.P. | Quasi-optical coupler |
| 9490869, | May 14 2015 | AT&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
| 9503189, | Oct 10 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
| 9509415, | Jun 25 2015 | AT&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
| 9520945, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
| 9525210, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
| 9525524, | May 31 2013 | AT&T Intellectual Property I, L.P. | Remote distributed antenna system |
| 9531427, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
| 9544006, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
| 9564947, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device with diversity and methods for use therewith |
| 9571209, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
| 9577306, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
| 9577307, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
| 9596001, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
| 9608692, | Jun 11 2015 | AT&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
| 9608740, | Jul 15 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
| 9615269, | Oct 02 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
| 9627768, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
| 9628116, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
| 9628854, | Sep 29 2014 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Method and apparatus for distributing content in a communication network |
| 9640850, | Jun 25 2015 | AT&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
| 9653770, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
| 9654173, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Apparatus for powering a communication device and methods thereof |
| 9661505, | Nov 06 2013 | AT&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
| 9667317, | Jun 15 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
| 9674711, | Nov 06 2013 | AT&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
| 9680670, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
| 9685992, | Oct 03 2014 | AT&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
| 9692101, | Aug 26 2014 | AT&T Intellectual Property I, LP | Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire |
| 9699785, | Dec 05 2012 | AT&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
| 9705561, | Apr 24 2015 | AT&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
| 9705571, | Sep 16 2015 | AT&T Intellectual Property I, L P | Method and apparatus for use with a radio distributed antenna system |
| 9705610, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
| 9712350, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
| 9722318, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
| 9729197, | Oct 01 2015 | AT&T Intellectual Property I, LP | Method and apparatus for communicating network management traffic over a network |
| 9735833, | Jul 31 2015 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Method and apparatus for communications management in a neighborhood network |
| 9742462, | Dec 04 2014 | AT&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
| 9742521, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
| 9748626, | May 14 2015 | AT&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
| 9749013, | Mar 17 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
| 9749053, | Jul 23 2015 | AT&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
| 9749083, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
| 9755697, | Sep 15 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
| 9762289, | Oct 14 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for transmitting or receiving signals in a transportation system |
| 9768833, | Sep 15 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
| 9769020, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
| 9769128, | Sep 28 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
| 9780834, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
| 9787412, | Jun 25 2015 | AT&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
| 9788326, | Dec 05 2012 | AT&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
| 9793951, | Jul 15 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
| 9793954, | Apr 28 2015 | AT&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
| 9793955, | Apr 24 2015 | AT&T Intellectual Property I, LP | Passive electrical coupling device and methods for use therewith |
| 9794003, | Dec 10 2013 | AT&T Intellectual Property I, L.P. | Quasi-optical coupler |
| 9800327, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
| 9806818, | Jul 23 2015 | AT&T Intellectual Property I, LP | Node device, repeater and methods for use therewith |
| 9820146, | Jun 12 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
| 9831912, | Apr 24 2015 | AT&T Intellectual Property I, LP | Directional coupling device and methods for use therewith |
| 9836957, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for communicating with premises equipment |
| 9838078, | Jul 31 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
| 9838896, | Dec 09 2016 | AT&T Intellectual Property I, L P | Method and apparatus for assessing network coverage |
| 9847566, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
| 9847850, | Oct 14 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
| 9853342, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
| 9860075, | Aug 26 2016 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, L P | Method and communication node for broadband distribution |
| 9865911, | Jun 25 2015 | AT&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
| 9866276, | Oct 10 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
| 9866309, | Jun 03 2015 | AT&T Intellectual Property I, LP | Host node device and methods for use therewith |
| 9871282, | May 14 2015 | AT&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
| 9871283, | Jul 23 2015 | AT&T Intellectual Property I, LP | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
| 9871558, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
| 9876264, | Oct 02 2015 | AT&T Intellectual Property I, LP | Communication system, guided wave switch and methods for use therewith |
| 9876570, | Feb 20 2015 | AT&T Intellectual Property I, LP | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
| 9876571, | Feb 20 2015 | AT&T Intellectual Property I, LP | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
| 9876584, | Dec 10 2013 | AT&T Intellectual Property I, L.P. | Quasi-optical coupler |
| 9876587, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
| 9876605, | Oct 21 2016 | AT&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
| 9882257, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
| 9882277, | Oct 02 2015 | AT&T Intellectual Property I, LP | Communication device and antenna assembly with actuated gimbal mount |
| 9882657, | Jun 25 2015 | AT&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
| 9887447, | May 14 2015 | AT&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
| 9893795, | Dec 07 2016 | AT&T Intellectual Property I, LP | Method and repeater for broadband distribution |
| 9904535, | Sep 14 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
| 9906269, | Sep 17 2014 | AT&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
| 9911020, | Dec 08 2016 | AT&T Intellectual Property I, L P | Method and apparatus for tracking via a radio frequency identification device |
| 9912027, | Jul 23 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
| 9912033, | Oct 21 2014 | AT&T Intellectual Property I, LP | Guided wave coupler, coupling module and methods for use therewith |
| 9912381, | Jun 03 2015 | AT&T Intellectual Property I, LP | Network termination and methods for use therewith |
| 9912382, | Jun 03 2015 | AT&T Intellectual Property I, LP | Network termination and methods for use therewith |
| 9912419, | Aug 24 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for managing a fault in a distributed antenna system |
| 9913139, | Jun 09 2015 | AT&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
| 9917341, | May 27 2015 | AT&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
| 9927517, | Dec 06 2016 | AT&T Intellectual Property I, L P | Apparatus and methods for sensing rainfall |
| 9929755, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
| 9930668, | May 31 2013 | AT&T Intellectual Property I, L.P. | Remote distributed antenna system |
| 9935703, | Jun 03 2015 | AT&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
| 9947982, | Jul 14 2015 | AT&T Intellectual Property I, LP | Dielectric transmission medium connector and methods for use therewith |
| 9948333, | Jul 23 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
| 9948354, | Apr 28 2015 | AT&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
| 9948355, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
| 9954286, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
| 9954287, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
| 9960808, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
| 9967002, | Jun 03 2015 | AT&T INTELLECTUAL I, LP | Network termination and methods for use therewith |
| 9967173, | Jul 31 2015 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Method and apparatus for authentication and identity management of communicating devices |
| 9973299, | Oct 14 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
| 9973416, | Oct 02 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
| 9973940, | Feb 27 2017 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, L P | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
| 9991580, | Oct 21 2016 | AT&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
| 9997819, | Jun 09 2015 | AT&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
| 9998870, | Dec 08 2016 | AT&T Intellectual Property I, L P | Method and apparatus for proximity sensing |
| 9998932, | Oct 02 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
| 9999038, | May 31 2013 | AT&T Intellectual Property I, L P | Remote distributed antenna system |
| Patent | Priority | Assignee | Title |
| 5087108, | Aug 11 1989 | OPTICAL TECHNOLOGIES ITALIA S P A | Double-core active-fiber optical amplifier having a wide-band signal wavelength |
| 6154594, | Jul 15 1998 | Corning Incorporated | Multicore glass optical fiber and methods of manufacturing such fibers |
| EP125828, | |||
| EP391742, | |||
| JP2005512746, | |||
| JP2005512747, | |||
| JP2005515434, | |||
| JP2005532883, | |||
| JP2005532884, | |||
| JP2006511309, | |||
| JP2006515075, | |||
| JP200658740, | |||
| JP62249111, | |||
| JP815535, | |||
| JP8224240, | |||
| JP8240728, |
| Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
| Oct 07 2007 | TSUMANUMA, TAKASHI | Fujikura Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020070 | /0890 | |
| Oct 09 2007 | KUDOU, MANABU | Fujikura Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020070 | /0890 | |
| Oct 09 2007 | AIKAWA, KAZUHIKO | Fujikura Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020070 | /0890 | |
| Nov 05 2007 | Fujikura Ltd. | (assignment on the face of the patent) | / |
| Date | Maintenance Fee Events |
| Mar 19 2009 | ASPN: Payor Number Assigned. |
| Jan 25 2012 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
| Feb 10 2016 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
| Feb 13 2020 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
| Date | Maintenance Schedule |
| Aug 26 2011 | 4 years fee payment window open |
| Feb 26 2012 | 6 months grace period start (w surcharge) |
| Aug 26 2012 | patent expiry (for year 4) |
| Aug 26 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
| Aug 26 2015 | 8 years fee payment window open |
| Feb 26 2016 | 6 months grace period start (w surcharge) |
| Aug 26 2016 | patent expiry (for year 8) |
| Aug 26 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
| Aug 26 2019 | 12 years fee payment window open |
| Feb 26 2020 | 6 months grace period start (w surcharge) |
| Aug 26 2020 | patent expiry (for year 12) |
| Aug 26 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |