A method and an apparatus of reducing the mosquito noise in a decoded image by using a noise reduction algorism that does not depend on the compression coding algorism applied to the image to be improved. The decoded compression-coded digital image is divided into blocks. The standard deviation or the “variance coefficient” of luminance values is calculated for each block of the decoded compression-coded digital image. An ε matrix for the compression-coded digital image is composed so that all components of each block of the ε matrix is filled with the standard deviations or the variance coefficients for each block. An ε filter is composed so that its ε values are expressed by the ε matrix. The decoded compression-coded digital image is applied to the ε filter to reduce the mosquito noise that arises during decoding process.
|
1. A method for reducing the mosquito noise in a decoded image that arises during decoding process by using a mosquito noise reducing algorism wherein: (1) the decoded compression-coded digital image is divided into blocks, (2) the standard deviation or the variance coefficient of luminance values is calculated for each block of said decoded compression-coded digital image, (3) an ε matrix for said compression-coded digital image is composed so that all components of each block of said ε matrix is filled with said standard deviations or said variance coefficients for each block, (4) an ε filter is composed so that its ε values are expressed by said ε matrix and (5) said decoded compression-coded digital image is applied to said ε filter to reduce the mosquito noise that arises during decoding process.
3. An apparatus for reducing the mosquito noise in a decoded image that arises during decoding process by using a mosquito noise reducing algorism wherein: (1) the decoded compression-coded digital image is divided into blocks, (2) the standard deviation or the variance coefficient of luminance values is calculated for each block of said decoded compression-coded digital image, (3) an ε matrix for said compression-coded digital image is composed so that all components of each block of said ε matrix is filled with said standard deviations or said variance coefficients for each block, (4) an ε filter is composed so that its ε values are expressed by said ε matrix and (5) said decoded compression-coded digital image is applied to said ε filter to reduce the mosquito noise that arises during decoding process.
2. A method for reducing the mosquito noise in a decoded image that arises during decoding process claimed in
4. An apparatus for reducing the mosquito noise in a decoded image that arises during decoding process claimed in
|
The invention relates to an algorithm of reducing noises that arise during decoding process for a compression-coded digital image, especially to a method and an apparatus of reducing the mosquito noise using said algorithm, applied to the JPEG compression coding scheme.
The JPEG (Joint Photographic Experts Group: a cooperative working body between ISO and ITU-TS for image compression standardization) compression coding scheme is generally used for compression of a digital image. Although both reversible and irreversible coding methods are provided in the JPEG compression coding scheme, the JPEG baseline algorithm that is a kind of irreversible coding methods is generally used because of its high compression efficiency. A JPEG compressed image can be obtained by using DCT (Discrete Cosine Transform), a quantization table and the Haffman coding scheme. Although an irreversible coding method can realize a drastically high degree of compression of an image, it often induces degradation or noises in the image in return.
The JPEG2000 compression coding scheme was standardized in January 2001 as a new standard that was extended from the JPEG compression coding scheme. Presently, however, the JPEG compression coding scheme is used widely, since there are not so many software programs or software/hardware plug-ins available that use the JPEG2000 format, as compared to those which use the JPEG format.
In the JPEG2000 compression coding scheme, an image is divided into two portions horizontally and then divided into two portions vertically, resulting in four image elements each of which has the half horizontal size and the half vertical size of the original image. Each of these four elements is characterized as a combination of a low frequency component which is visually significant and a high frequency component which is visually less-significant, such as “the low frequency component and the low frequency component”, “the low frequency component and the high frequency component”, “the high frequency component and the low frequency component” and “the high frequency component and the high frequency component”. A hierarchical set of elements is generated by recurrently applying the above-mentioned process to low frequency components which are visually important. During the process, data can be compressed by quantizing high frequency components coarsely as compared to low frequency components. Processing flows of JPEG2000 coding and decoding are shown in
The block noise in JPEG2000 coding is less conspicuous as compared to the one in the JPEG coding where DCT is applied to each of 8×8 blocks, since DWT (Discrete Wavelet Transform) is applied for JPEG2000 coding. JPEG2000 coding also enables reduction of the mosquito noise. On the other hand, however, degradation of image quality increases as the degree of compression increases in JPEG2000 coding; Unsightly degradation often appears at an edge portion in the image, since the edge portion where the change in luminance is sharp tends to become dull after JPEG2000 coding and decoding are applied there.
Major noises arising from the JPEG compression coding scheme are the block noise and the mosquito noise, both of which are unsightly for human eyes (the false contour noise may arise in the JPEG2000 compression coding scheme, although the block noise does not exist in the JPEG2000 scheme because of its algorism characteristics). The inventor has already proposed an algorithm that can reduce the block noise and the false contour noise among major noises mentioned above. This invention relates to an algorithm of reducing especially the mosquito noise, among noises arising during such high-degree compression coding such as the JPEG and the JPEG2000 schemes.
It is known that the mosquito noise arises in an image having a sharp contour, an isolated point or a slant line. It is also known that application of an ε-separation nonlinear digital filter (an ε filter, hereafter) is effective for reducing the mosquito noise while maintaining the contour. The inventor has already proposed a variable ε filter algorism where the value of ε is changed for each region of the image (this variable ε filter algorism will be called “the conventional algorism” hereafter). The ε filter can eliminate noises of which values are smaller than a prescribed ε value, while maintaining the sharp change in the image. The original image is kept unchanged when the ε value is set to 0. When the ε value becomes infinity, the ε filter works as a simple low-pass filter. Conceptual image of an ε filter is shown in
The conventional algorism is explained in the following as Step 1 and as Step 2.
Through the above process, the ε filter that was effective in the JPEG compression coding scheme for reducing noises generated around a contour in an image is basically applied also to this JPEG/JPEG2000 compression coding schemes, in order to reduce noises around a contour in an image while maintaining the contour as it is. In
The transfer function of the ε filter is expressed by equations (1) and (2).
Since the output luminance value yn,m of this filter for the pixel of interest having an original (input) luminance value of xn,m is the average of luminance values in the region considered (the M×M region around the pixel of interest that has the luminance value of xn,m) only for pixels in the region that have a luminance value within the luminance value of xn,m±ε, the filter can remove small noises within ±ε while maintaining a big change that occurs across the contour.
The filter has characteristics such that it passes through all input signals as they are when ε is 0 and that it works as a low-pass filter when ε is infinity. The inventor studied possible noise value distribution for several typical contours in order to obtain an appropriate value for N that is necessary for determining the variance matrix of the image, and an appropriate value for M that is necessary for determining the ε matrix of the image. As the result of the study, the inventor found that almost all of the noise value distributions could be covered when N=7 and M=9. Here the value of ε is set to a fixed value, 0.01 times the maximum value of the 9×9 variance matrix. By these settings, almost all noises arising around typical contours can be filtered.
In the conventional algorism explained above, variation degree of luminance values in a prescribed filtering window (or a “block”) for an image is expressed by the variance of luminance values of all pixel points within the block, by using each luminance value for each pixel point within the block (here, luminance values for the YCbCr color format are used as luminance values for the calculation, if the algorism is to be applied to a JPEG/JPEG2000 decoded color image). It is necessary in the conventional algorism, however, to set an appropriate coefficient for correcting the variance value in order to obtain proper ε values, and strictly speaking, the optimum coefficient value will change if the image changes (in the above explanation, the coefficient is set to a constant value of 0.01).
The purpose of the invention is to revise the conventional ε filter algorism explained above so that the parameter of the noise reduction filter (ε value) can be automatically determined, in order to provide a method and an apparatus of reducing the mosquito noise in a decoded image by using the noise reduction algorism that does not depend on the compression coding algorism applied to the image.
The method or the apparatus of this invention for reducing the mosquito noise in a decoded image that arises during decoding process is characterized in that it uses an algorism wherein: (1) a decoded compression-coded digital image is divided into blocks, (2) the standard deviation or the “variance coefficient” of luminance values is calculated for each block of said decoded compression-coded digital image (in order to numerically express the degree of variance of luminance values in a block, the standard deviation or the “variance coefficient” of luminance values of pixels in the block is used for the invention, where the “variance coefficient” is the standard deviation of luminance values of pixels in the block divided by the average value of luminance values of pixels in the block), (3) an ε matrix for said compression-coded digital image is composed so that all components of each block of said ε matrix is filled with said standard deviations or said variance coefficients for each block, (4) an ε filter is composed so that its ε values are expressed by said ε matrix and (5) said decoded compression-coded digital image is applied to said ε filter to reduce the mosquito noise that arises during decoding process. The invention is especially effective when said compression-coded digital image is an image compressed by the JPEG compression coding scheme.
The algorism of the invention is practical and effective when it is applied to an image that needs picture quality improvement, since the algorism does not require calculation of coefficients for correcting variance values that are necessary for the conventional algorism, and consequently, the calculation is simpler and takes less time as compared to the conventional algorism.
The preferred embodiment of the invention is explained in detail in the following, referring to figures.
The algorism of this invention consists of two phases, “Phase I” for collecting image information and “Phase II” for applying ε filtering, as are explained in the following:
Phase I
In order to find out the region in an original decoded image (2 in
Phase II
ε filtering is then applied to each pixel in the original decoded image by using the ε matrix obtained in Phase I (5 in
Further detailed procedure of Phase II is described in the following:
The output value of the ε filter corresponding to each pixel in the compression decoded image is calculated by the filter by using information in the ε matrix obtained by Step I. Although the block size in the calculation can be arbitral, the size of 5×5, 7×7 or 9×9 is recommended for use.
Here, T[x] is=1 for −ε<x<ε, and 0 for any other x value.
Above procedure is iterated for all pixels in the image. Blocks for the pixel of interest at the bottom/top left or the bottom/top right corner of the image or on one of four sides of the image can have the same size as other blocks by using mirroring as shown in
Experimental Results
Experimental results of using the algorism proposed by the invention are shown in
All images obtained by using the new algorism acquired better subjective ratings of picture quality as compared to images obtained by using the conventional algorism. Although the average used for calculation of standard deviations or variance coefficients in Step I is the arithmetic average, there are several other average such as geometric average or the harmonic average. However, the arithmetic average produced the best results in the experiments. The variance coefficient is used in calculating the image of
As already explained, after calculating each luminance value variance for each pixel of interest and then composing the ε matrix, properly-defined coefficients for correcting ε values are required in the conventional algorism. In the new algorism, however, not only the procedure of calculating ε matrix becomes simpler, but also automatic correction of ε values becomes possible by using only the luminance information of pixels of interest in the image. This makes the calculation method simpler, reduces the total calculation volume and enables efficient program coding. Reduction of the total calculation volume means that the effect of calculation cost reduction becomes more significant when the image size becomes larger.
In terms of picture quality improvement, the new algorism can reduce the mosquito noise better than the conventional algorism while maintaining the texture of the image, as shown clearly by the experimental results.
The method and the apparatus of the invention for reducing the mosquito noise in a decoded compression-coded image with the bit map format thus enable to reduce efficiently the mosquito noise in an image by applying the automatically-variable ε filter, regardless the type of compression coding schemes used.
The method and the apparatus of the invention are especially effective in improving quality of compression coded images transmitted through a transmission medium that has a limited bandwidth. Actual applications such as moving image exchange between mobile telephone subscribers, video distribution to end users and application to built-in type video capture cards for personal users can be expected, since the algorism requires less calculation volume and is capable of frame-by-frame calculation for moving images coded by video coding schemes such as Motion-JPEG and Motion JPEG2000 coding schemes.
Patent | Priority | Assignee | Title |
7773823, | Jul 04 2005 | FUJIFILM Corporation | Image processing method, apparatus, and program |
8306355, | Jul 13 2009 | Sharp Kabushiki Kaisha | Methods and systems for reducing compression artifacts |
8571347, | Sep 09 2008 | Synaptics Incorporated | Reducing digital image noise |
8831375, | Jan 15 2008 | SAMSUNG ELECTRONICS CO , LTD | Method of obtaining variance data or standard deviation data for reducing noise, and digital photographing apparatus including recording medium storing variance data or standard deviation data for reducing noise |
8953880, | Jan 31 2012 | NORITSU PRECISION CO , LTD | Image processing apparatus, recording medium storing image processing program, and method of image processing |
9077990, | Jul 28 2010 | Synaptics Incorporated | Block noise detection in digital video |
9092855, | Sep 09 2008 | Synaptics Incorporated | Method and apparatus for reducing noise introduced into a digital image by a video compression encoder |
9436996, | Jul 12 2012 | NORITSU PRECISION CO , LTD | Recording medium storing image processing program and image processing apparatus |
Patent | Priority | Assignee | Title |
5850259, | Feb 28 1994 | Victor Company of Japan, Ltd. | Predictive coding apparatus |
7046862, | Nov 07 2001 | FUJIFILM Business Innovation Corp | Image processing apparatus and program |
7076113, | Jun 12 2001 | MIRANDA TECHNOLOGIES PARTNERSHIP | Apparatus and method for adaptive spatial segmentation-based noise reducing for encoded image signal |
20040126033, | |||
20040257455, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 15 2004 | SHOHDOHJI, TSUTOMU | School Foundation of Nippon Institute of Technology | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015446 | /0251 | |
Jun 07 2004 | School Foundation of Nippon Institute of Technology | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 15 2012 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Mar 12 2012 | LTOS: Pat Holder Claims Small Entity Status. |
Mar 12 2012 | R1551: Refund - Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 29 2016 | REM: Maintenance Fee Reminder Mailed. |
Sep 16 2016 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Sep 16 2011 | 4 years fee payment window open |
Mar 16 2012 | 6 months grace period start (w surcharge) |
Sep 16 2012 | patent expiry (for year 4) |
Sep 16 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 16 2015 | 8 years fee payment window open |
Mar 16 2016 | 6 months grace period start (w surcharge) |
Sep 16 2016 | patent expiry (for year 8) |
Sep 16 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 16 2019 | 12 years fee payment window open |
Mar 16 2020 | 6 months grace period start (w surcharge) |
Sep 16 2020 | patent expiry (for year 12) |
Sep 16 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |