A reciprocating saw includes a locking mechanism for a shoe of the reciprocating saw. The mechanism includes a lever mounted on the saw body movable to a first position where the saw blade is clamped in place. It also includes a lock pin with a body, a reduced circumference section, and a pin shoulder adjacent the reduced circumference section. The pin has a locked position where the pin shoulder abuts the shoe shoulder whereby the pin locks the shoe in place and an unlocked position where the shoe shoulder may translate through the clearance defined by the reduced circumference section. The lever urges the pin toward the locked position when the lever is in the first position.
|
1. A shoe locking mechanism in combination with a reciprocating saw including a saw blade, the shoe locking mechanism comprising:
a housing having a body adapted to accept the blade;
a shoe selectively adjustable in position relative to the blade, the shoe defining a shoe shoulder;
a lock pin including a pin body having a first cylindrical portion at a reduced circumference section of the pin body that defines a first diameter and defines a clearance thereat, and a pin shoulder adjacent the reduced circumference section, the pin shoulder defining a second cylindrical portion defining a second diameter, wherein the first diameter is less than the second diameter, the lock pin further defining a first groove and a second groove; and
wherein the lock pin is moveable between a locked position wherein the pin shoulder engages the shoe shoulder whereby the shoe is locked relative to the body, and an unlocked position whereby the shoe shoulder may translate through the clearance, wherein structure fixed with the housing selectively engages and positively locates one of the first and second grooves in the locked position and the other of the first and second grooves in the unlocked position.
9. A reciprocating saw having a blade and comprising:
a housing;
a drive shaft mounted to the housing for reciprocating motion;
a body adapted to accept the blade;
a shoe selectively adjustable in position relative to the blade, the shoe defining a shoe engaging portion;
a lock pin including a pin body having a first cylindrical portion at a reduced circumference section of the pin body that defines a first diameter and defines a clearance thereat, and a pin engaging portion adjacent the reduced circumference section that defines a first pin shoulder, the first pin shoulder defining a second cylindrical portion defining a second diameter, wherein the first diameter is less than the second diameter, the lock pin further defining a first groove and a second groove; and
wherein the lock pin is moveable between a locked position whereat the pin engaging portion engages the shoe engaging portion whereby the shoe is locked relative to the body, and an unlocked position whereat the shoe engaging portion may translate through the clearance, wherein structure fixed with the housing selectively engages and positively locates one of the first and second grooves in the locked position and the other of the first and second grooves in the unlocked position.
2. The shoe locking mechanism of
3. The shoe locking mechanism of
4. The shoe locking mechanism of
5. The shoe locking mechanism of
a button disposed on an exterior of the housing for urging the lock pin toward the unlocked position.
6. The shoe locking mechanism of
7. The shoe locking mechanism of
8. The reciprocating saw of
10. The reciprocating saw of
11. The reciprocating saw of
12. The reciprocating saw of
13. The reciprocating saw of
14. The reciprocating saw of
15. The reciprocating saw of
16. The reciprocating saw of
17. The reciprocating saw of
|
The present invention relates in general to power tools. In particular, the present invention relates to shoe assemblies for reciprocating power tools. More specifically, but without restriction to the particular exemplary embodiments and/or use which are shown and described for purposes of illustration, the present invention relates to a reciprocating saw with a locking mechanism for an adjustable shoe assembly.
Power reciprocating saws include jigsaws and other reciprocating saws generally referred to in the trade as “recip” saws. These saws incorporate reciprocating shafts for driving generally linear saw blades along a predetermined path so as to provide one of a rectilinear or orbital cutting action.
In a conventional manner, the saw blades used with such power tools are attached to the reciprocating drive shafts through a blade holder having a slot for receiving the saw blade and a set screw which is received in a hole in the blade. The blade is clamped in place relative to the reciprocating drive shaft through tightening of the set screw. A particularly useful alternative to the set screw includes a clamping lever and a biasing member. The lever cooperates with the biasing member to clamp the blade in place. More particularly, when the lever is placed in its unclamping position it overcomes the biasing member that otherwise maintains the blade against a reciprocating drive shaft.
In addition, reciprocating saws typically include a shoe. The shoe is placed against the workpiece to assist in controlled cutting. The shoe also determines the depth the saw blade will extend through and beyond the work piece. In many known arrangements, the shoe can be adjusted in a direction parallel to the blade. When cutting a piece of plywood the operator may wish to prevent damage to other objects lying below the plywood. Thus, the operator may adjust the shoe to such a position that the blade penetrates and cuts the plywood without damaging the object therebelow.
To be useful an adjustable shoe must be clamped or locked in place. Known adjustment and lock mechanisms sometimes include a post with the following features: a plurality of locking slots; a positioning slot on a face perpendicular to the locking slots; a stop plate; a channel; and a removal slot. An equally complicated plate mechanism cooperates with the post to adjust and lock the shoe in place. Typically the mechanism includes a locking plate, a locking portion, and a positioning portion. A spring biases the lock mechanism in a position wherein the lock mechanism prevents the plate mechanism to lock the shoe in a position selected by the operator. Additionally, a separate mechanism clamps the saw blade in place.
The various slots, plates, channels, and portions each require separate machining, which increases the cost of the tool. Moreover, not only must the operator clamp the blade in place, the operator must also lock the shoe in place, and if removal of the shoe is required the operator must also rotate the post. Accordingly, work with the tool stops while the steps of clamping the blade and locking and removing the shoe take place. Thus, the pace of work slows down thereby imposing further operating costs on the operator. Moreover, as the complexity of the work increases (i.e., the number and frequency of shoe adjustments increases) the greater the work slow down.
Accordingly, a reciprocating saw shoe locking mechanism that is easy and inexpensive to manufacture and convenient to use is desirable.
The present invention provides a mechanism to lock a shoe of a reciprocating saw in place. More particularly, the present invention provides a shoe locking arrangement for a power reciprocating saw including a common lever to both clamp the saw blade in place and to lock the shoe in place. In one aspect, the lever is pivotally mounted for movement between three stable positions. In the first stable position the lever allows the saw blade to be removed and the shoe height to be adjusted. In the second stable position the lever clamps the saw blade in place yet allows adjustment of the shoe height. In the third stable position the lever clamps the saw blade in place and locks the shoe in place.
In one aspect, the present invention provides a reciprocating saw with a shaft projecting from a front end of an elongated housing. The blade is fixed to the reciprocating shaft by a clamping mechanism at the end of the shaft. Furthermore, the blade projects through a shoe located beyond the end of the shaft. The shoe provides a surface that the tool operator can rest or push against the work piece. In order to adjust the depth of cut, the shoe is mounted in a manner such that its axial position is adjustable. In this manner, the amount of blade projecting beyond the shoe is adjustable. Most commonly, the shoe is mounted at the end of a support rod or other elongated member that is slidably mounted in a track in the tool housing. The track is axially parallel to, but vertically displaced from the reciprocating shaft to which the blade is attached.
Moreover, adjustable shoe assemblies in accordance with the present invention include an elongated support bar that translates in a suitably shaped channel located in the tool housing parallel to but displaced from the reciprocating shaft. The support bar is formed to include a plurality of arcuate grooves that define positive adjustment positions. A locking pin is also mounted in the saw housing perpendicular to the support rod and vertically offset from the axis of the support bar. One end of the pin connects to a button projecting outside the side of the tool housing. The other end similarly extends to the lever on the outside of the tool housing.
The locking pin is transversely movable in the housing between a first position or locked position where it engages the support bar and a second position or unlocked position where it disengages from the support bar. The pin is machined to include a reduced diameter portion that is positioned over the support bar when the pin is in the unlocked position. The reduced diameter portion provides clearance between the pin and the support bar to allow movement of the support bar between the positive positions defined by the arcuate grooves. When the pin is in the locked position, a larger diameter portion of the pin is received into one of the arcuate grooves. Engagement of the pin with one of the arcuate grooves prevents translation of the support bar relative to the tool housing.
Additionally, adjustable shoe assemblies in accordance with the present invention may include a detent ring that remains fixed within the tool housing. The detent ring cooperates with a pair of grooves provided in the pin to positively locate the pin in either the locked position or unlocked position.
In another aspect, the present invention provides a shoe locking arrangement for a power tool of the type including a housing, a saw blade inserted into the housing, and an adjustable shoe for adjusting the height of the saw blade. One lever clamps the saw blade and locks the shoe in place via a pin having a groove and a shoulder. The groove and shoulder define a locked position where the pin shoulder abuts a shoulder on the shoe support. In contrast, in an unlocked position the shoe shoulder may translate through the pin groove thereby allowing adjustment of the shoe height. The single, or common, lever urges the pin toward the locked position while a button urges the pin toward the unlocked position. Moreover, the housing of the tool may have a detent to engage a first smaller groove in the pin when the pin is in the locked position. A second smaller groove may be included on the pin to positively locate the pin in the unlocked position.
In yet another aspect, the present invention provides a shoe locking pin for a power reciprocating saw. The pin includes a body and has an unlocked and a locked position relative to the tool housing. A groove in the pin body allows a shoe shoulder to translate when the pin is in the unlocked position. In the locked position though, a pin shoulder abuts the shoe shoulder thereby locking the shoe in place. Moreover, a first detent in the tool housing engages a first small groove in the pin when the pin is in the locked position, thereby positively locating the pin in the locked position.
Also, the detent may engage a second smaller groove in the pin when the pin is in the unlocked position. Like the first smaller groove, the second smaller groove positively locates the pin in the unlocked position. Moreover, the tool may also have a lever for both clamping the saw blade in place and locking the shoe in place via the pin. A button may also be provided to urge the pin from the locked position.
In another aspect the present invention provides a reciprocating saw including a housing, a drive shaft mounted to the housing for reciprocating motion, and a blade clamping arrangement. The clamping arrangement is secured to the drive shaft for releasably interconnecting a saw blade to the drive shaft. Moreover, the clamping arrangement includes an element movable between a clamped position and an unclamped position.
In one, aspect, the saw also includes an adjustable shoe assembly including an elongated member defining an axis. A shoe is mounted to a first end of the elongated member while a second end of the elongated member is adjustably interconnected to the housing for movement of the shoe along the axis. The adjustable shoe assembly also includes a locking member for selectively securing the elongated member in one of a plurality of predefined positions. For securing the elongated member a lever mounted to the housing moves the locking member from the locked position to the unlocked position. The lever also moves the element from the clamped position to the unclamped position.
In still another aspect, the present invention provides a reciprocating saw including a saw blade, a housing into which the blade is inserted, and a shoe with an aperture for the blade to extend therethrough. Additionally, the shoe moves between a plurality of positions relative to the bit. A pin connected to the housing moves between an unlocked position, and a locked position, to selectively secure the shoe in one of the plurality of positions. A detent in the housing engages a groove in the pin when the pin is in the locked position, whereby the detent positively locates the pin in the locked position.
In another aspect, the invention provides a reciprocating saw including a saw blade, a housing wherein the blade is inserted. The saw further includes a support plate having a key extending therefrom, a support post moveable relative to the housing and including a longitudinal keyway configured for receiving the key, an adjustable shoe mounted on the support post, and a locking member for selectively securing the support post relative to the housing. The locking member is movable between a locked position and an unlocked position.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating various embodiments of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The present invention provides an improved shoe locking arrangement for a power tool. While shown throughout the drawings in a shoe locking arrangement specifically adapted for a reciprocating saw, those skilled in the art will appreciate that the invention is not so limited in scope. In this regard, the teachings of the present invention will be understood to be readily adaptable for use with other power tools.
Turning generally to the drawings in which identical or equivalent elements have been denoted with like reference numerals, and specifically to the perspective views of
The reciprocating saw 10 is shown to include a blade clamping arrangement for removably securing the saw blade 12 to a reciprocating shaft. The blade clamping arrangement is controlled by a lever 22. In the exemplary embodiment illustrated, the blade clamping arrangement is carried by the shaft and the lever 22 is mounted to the housing. Insofar as the present invention is concerned, it will be understood that the blade clamping arrangement is conventional in construction. One suitable blade clamping arrangement is shown and described in commonly assigned U.S. Pat. No. 6,502,317 issued to Dassoulas et al which is hereby incorporated herein by reference in its entirety.
Also shown in
With reference now to
Approximately perpendicular to the support bar 26, and offset therefrom, the locking pin 24 lies between the button 20 and the clamping lever 22. The locking pin 24 includes at least one groove 32 (or reduced circumference section) and shoulder 34. In
In contrast,
In addition to clamping and unclamping the blade 12 as discussed in the '317 patent, the lever 22 also serves to lock and unlock the shoe 14. Herein, the term “clamped” will be used when reference is made to securing the blade 12 in place; whereas the term “locked” will be used when reference is made to securing the shoe in place. While the effect of clamping and locking are similar (securing a component in place) it is believed that the distinction will aid the reader in an understanding of the invention.
With reference to
In contrast,
In
With reference to
Further in the exemplary embodiment illustrated, a detent 48 is provided in the housing 18 to positively locate the pin 24. An alignment channel 53 within the tool housing 18 may include the detent 48 as shown. Along with the detent 48, the tool 10 includes a small groove 54 on the pin 24 for engaging the detent 48 when the groove 54 and detent 48 are aligned. More particularly, the detent 48 may be positioned so that when the locking pin 24 is in the locked position (barring movement of the support bar 26) the detent 48 engages the groove 54 as shown in
Note that in one exemplary embodiment the locked and the unlocked positions of the locking pin 24 are about 4 millimeters apart. It should also be noted that the alignment channel 53 also defines a track 55 for the support bar 26 to translate along. Moreover, the detent 48 may be configured in a conventional manner to retain the locking pin 24 in either position until a predetermined force acts in either direction on the locking pin 24. Moreover, the detent 48 may be configured in a conventional manner to audibly click when it engages a groove. Thus, the operator may listen for an audible click to confirm a change in position of the locking pin 24. Note should also be made that including the track 55 (for the support bar 26) and the grooves 54 and 56 on the alignment channel 53 minimizes tolerance stack that might otherwise interfere with the ability of the detent 48 to positively locate the locking pin 24.
In the alternative, or additionally, a pair of hard stops may be provided to prevent over travel of the locking pin 24. In particular, face 58 of the housing 18 may abut an opposing face 60 on the button 20 when the locking pin 24 is in the unlocked position. Note that button 20 may be affixed to the distal end 46 of the locking pin 24. Likewise, opposing faces 62 and 64 (on the locking pin 24 and housing 18 respectively) may abut each other when the locking pin is in the locked position to prevent travel beyond the locked position.
When an operator wishes to use the reciprocating saw 10, he may first place a blade 12 in the housing 18 and adjust the height of the shoe 14 as may be desired. The operator then moves the lever 22 from the unclamped and unlocked position, discussed in U.S. Pat. No. 6,502,317, to the clamped and unlocked position shown in
As the lever 22 moves toward the proximal end 40 of the locking pin 24, the recess 45 engages the proximal end 40 of the locking pin 24. Accordingly, the lever 22 urges the pin 24 to move so that the locking pin shoulder 34 engages the support bar shoulders 30 via one of the grooves 28 thereby locking the shoe 14 at a pre-selected height. In the meantime, the detent 48 disengages from the groove 56 as the locking pin 24 begins to move. It then engages the groove 54 to positively locate the locking pin 24 in the locked position. The operator may then use the saw 10 to cut a work piece to a desired shape.
When the operator desires to change the height of the shoe 14 the operator presses on the button 20. In turn, the button 20 urges the distal end 46 of the locking pin 24 back to the left as shown in
In the alternative, the operator may wish to remove or replace the saw blade 12 without altering the shoe height. In these cases the operator may pull up on the lever 22 thereby disengaging the recess 45 from the proximal end 40 of the locking pin 24. Because the detent 48 positively locates the locking pin 24 in the locked position, the locking pin 24 remains motionless when the lever 22 moves up and away from the locking pin 24. Accordingly, the shoe 14 remains locked and will not move. Thus, the operator simply lifts the lever 22 all the way to the unclamped and unlocked position to unclamp the saw blade 12 without disturbing the shoe 14 height. Therefore, the operator may unclamp the saw blade 12 with one hand (via the lever 22) without disturbing the shoe height.
Where both unlocking and unclamping is desired (as shown in phantom in
In the exemplary embodiment illustrated, the lever 22 is movable between the three stable positions. Those skilled in the art, however, will realize that the subject invention is not so limited. In certain applications, the lever position for releasing the blade may be an unstable position, for example.
Thus, one skilled in the art will recognize that the present invention provides many advantages over the prior art. For instance, an operator may both (un)clamp the saw blade and (un)lock the shoe with one hand. Therefore, reciprocating saws in accordance with the present invention are convenient to use. For similar reasons, the invention reduces the downtime associated with adjusting the height of the shoe thereby representing a labor and cost savings over the prior art. Additionally, the present invention provides positive indication of the state (locked or unlocked) of the shoe. Accordingly, scrapped work pieces that arise from attempting to saw with an unlocked shoe are reduced by the present invention. Thus, a superior reciprocating saw has been provided. Moreover, because the components (pins and bars with easily machined grooves) provided by the present invention are relatively simple, the locking mechanisms provided are correspondingly easy and inexpensive to manufacture.
Referring to
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
Mealy, Bradley J., Chreene, David
Patent | Priority | Assignee | Title |
10183349, | Jul 25 2008 | Milwaukee Electric Tool Corporation | Adjustable shoe for a power tool |
10632551, | Jul 25 2008 | Milwaukee Electric Tool Corporation | Adjustable shoe for a power tool |
7721450, | Oct 28 2005 | Black & Decker, Inc | Blade clamp for reciprocating saw |
7963043, | Oct 16 2006 | CHERVON HK LIMITED | Support shoe for a reciprocating saw |
8006392, | Jan 31 2008 | Robert Bosch GmbH; Credo Technology Corporation | Reciprocating tool foot locking arrangement |
8549759, | Jul 25 2008 | Milwaukee Electric Tool Corporation | Adjustable shoe for a power tool |
8549760, | Jul 25 2008 | Milwaukee Electric Tool Corporation | Adjustable locking shoe |
9421625, | Jun 14 2012 | Milwaukee Electric Tool Corporation | Reciprocating saw with adjustable shoe |
9701035, | Jul 25 2008 | Milwaukee Electric Tool Corporation | Adjustable locking shoe |
Patent | Priority | Assignee | Title |
3360021, | |||
3496972, | |||
5007172, | Jun 13 1990 | MILWAUKEE ELECTRIC TOOL CORPORATION A CORP OF DELAWARE | Quick change guide shoe |
5421091, | Feb 23 1994 | Credo Technology Corporation | Adjustable guide shoe for reciprocating saw |
5724741, | Mar 12 1996 | Milwaukee Electric Tool Corporation | Reciprocating saw with pivoting shoe |
5855070, | Jun 06 1997 | Black & Decker Inc.; Black & Decker Inc | Reciprocating saw with pivoted shoe and method for attaching shoe |
6272757, | Jul 22 1999 | Credo Technology Corporation | Adjustable guide shoe for reciprocating saw |
6308423, | Jul 15 1998 | Makita Corporation | Cutting tool with an improved guide repositioning structure |
6317988, | Aug 11 1999 | KOKI HOLDINGS CO , LTD | Saber saw having shoe to be pressed against workpiece |
6502317, | Jun 09 1995 | Black & Decker Inc. | Blade ejection mechanism for a saw blade clamping arrangement of a power tool |
6810589, | Jun 04 1999 | Black & Decker Inc | Bearing structure for a reciprocating shaft in a reciprocating saw |
6851193, | Aug 13 1998 | Reciprocating saw | |
7082689, | Oct 11 2002 | Black & Decker Inc | Keyless shoe lock for reciprocating saw |
7188425, | Aug 13 1998 | Milwaukee Electric Tool Corporation | Reciprocating saw |
20010034941, | |||
20020014014, | |||
20040049928, | |||
20040187321, | |||
20050183271, | |||
20050246905, | |||
20070251104, | |||
D524132, | Jul 28 2005 | Black & Decker, Inc | Power tool |
EP1738851, | |||
EP1852204, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 27 2005 | Black & Decker Inc. | (assignment on the face of the patent) | / | |||
Oct 03 2005 | CHREENE, DAVID | Black & Decker Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017059 | /0545 | |
Oct 03 2005 | MEALY, BRADLEY J | Black & Decker Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017059 | /0545 |
Date | Maintenance Fee Events |
Oct 14 2008 | ASPN: Payor Number Assigned. |
Jun 04 2012 | REM: Maintenance Fee Reminder Mailed. |
Oct 21 2012 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 21 2011 | 4 years fee payment window open |
Apr 21 2012 | 6 months grace period start (w surcharge) |
Oct 21 2012 | patent expiry (for year 4) |
Oct 21 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 21 2015 | 8 years fee payment window open |
Apr 21 2016 | 6 months grace period start (w surcharge) |
Oct 21 2016 | patent expiry (for year 8) |
Oct 21 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 21 2019 | 12 years fee payment window open |
Apr 21 2020 | 6 months grace period start (w surcharge) |
Oct 21 2020 | patent expiry (for year 12) |
Oct 21 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |