The present invention relates to a device and method to 1) facilitate disk fusing, 2) perform an artificial replacement of the nucleus, 3) perform an artificial replacement of the annulus, or 4, perform an artificial replacement of both the nucleus and annulus. The device is designed to be placed into the inter-vertebral space following diskectomy. The invention includes a delivery catheter and an expandable continuous mesh loop that has a torus configuration with a lumen within the mesh loop and a center hole. The mesh loop can be diametrically increased or contracted in diameter by the control element acting on the mesh loop. The mesh loop may be formed of a woven or braided material from a polymer such as PEEK (polyetheretherketone), nylon, polyurethane, polyester polyethylene, polypropylene or any other biocompatible polymers, or formed from a metallic braid of stainless steel, elgiloy, Nitinol, or any other biocompatible metals.
|
19. The method for artificial disc replacement comprising the step of dispensing a solution having a biocompatible solvent and a biocompatible polymer within a mechanically expandable continuous mesh loop having an internal chamber that is substantially circumferentially positioned within an intervertebral space, whereby expanding or contracting said mesh loop is accomplished by use of a control element acting on the mesh without pressurization whereby body fluids replace the solvent and a non-biodegradable semi-solid or solid media is formed within the inter-vertebral space to replace the annulus, nucleus, or annulus and nucleus.
26. A method for artificial disc replacement comprising the steps of first delivering a mechanically expandable continuous mesh loop having an internal chamber and a central area circumferentially within an intervertebral space, a second step of expanding said mesh loop without pressurization, whereby said mesh loop is accomplished by use of a control element acting on the mesh, a third step of introducing a first solution having a biocompatible solvent and a biocompatible polymer into the central area whereby a semi-solid or solid media is formed within the inter-vertebral space to replace the annulus, nucleus, or annulus and nucleus.
13. A method for artificial disc replacement comprising the steps of dispensing a first solution having a biocompatible solvent and a biocompatible polymer within a mechanically expandable continuous mesh loop having an internal chamber and substantially circumferentially positioned within an intervertebral space, whereby expanding or contracting of said mesh loop is accomplished by the use of a control element acting on the mesh without pressurization and a second step of introducing an second solution into the inter-vertebral space whereby a semi-solid or solid media is formed within the inter-vertebral space to replace the annulus, nucleus, or annulus and nucleus.
7. The method for artificial disc replacement comprising the steps of first delivering a mechanically expandable continuous mesh loop, having an internal chamber, within an intervertebral space, a second step of expanding said mesh loop, without pressurization, in a substantially circumferential manner against the inner annular wall by the use of a control element acting directly on said mesh, a second step of introducing a solution having a biocompatible solvent and a biocompatible polymer into said mesh loop whereby body fluids replace the solvent and a semi-solid or solid media is formed within the inter-vertebral space to replace the annulus, nucleus, or annulus and nucleus.
1. A method for artificial disc replacement comprising the steps of first delivering a mechanically expandable continuous mesh loop, having an internal chamber, within an intervertebral space, a second step of expanding said mesh loop, without pressurization, in a substantially circumferential manner against the inner annular wall by the use of a control element acting directly on said mesh loop, a third step of introducing a first solution having a biocompatible solvent and a biocompatible polymer into the internal chamber and a fourth step of introducing a second solution into the internal chamber whereby a semi-solid or solid media is formed within the inter-vertebral space to replace the annulus, nucleus, or annulus and nucleus.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
8. The method of
9. The method of
10. The method of
11. The method of
12. The method of
14. The method of
15. The method of
16. The method of
17. The method of
18. The method of
20. The method of
21. The method of
22. The method of
23. The method of
24. The method of
25. The method of
27. The method of
28. The method of
29. The method of
30. The method of
31. The method of
32. The method of
|
The present application is a continuation-in-part of patent application Ser. No. 11/153,776 filed on Jun. 15, 2005. This application is incorporated herein by this reference.
The present invention generally relates to devices and methods for the repair of inter-vertebral discs. More, specifically, the present invention relates to devices and methods for the treatment of spinal disorders associated with the nucleus, annulus and inter-vertebral disc.
Inter-vertebral disc disease is a major worldwide health problem. In the United States alone almost 700,000 spine procedures are performed each year and the total cost of treatment of back pain exceeds $30 billion. Age related changes in the disc include diminished water content in the nucleus and increased collagen content by the 4th decade of life. Loss of water binding by the nucleus results in more compressive loading of the annulus. This renders the annulus more susceptible to delamination and damage. Damage to the annulus, in turn, accelerates disc degeneration and degeneration of surrounding tissues such as the facet joints.
The two most common spinal surgical procedures performed are discectomy and spinal fusion. These procedures only address the symptom of lower back pain. Both procedures actually worsen the overall condition of the affected disc and the adjacent discs. A better solution would be implantation of an artificial disc for treatment of the lower back pain and to restore the normal anatomy and function of the diseased disc.
The concept of a disc prosthesis dates back to a French patent by van Steenbrugghe in 1956. 17 years later, Urbaniak reported the first disc prosthesis implanted in animals. Since this time, numerous prior art devises for disc replacement have been proposed and tested. These are generally divided into devices for artificial total disc replacement or artificial nucleus replacement. The devises proposed for artificial total disc replacement, such as those developed by Kostuik, that generally involve some flexible central component attached to metallic endplates which may be affixed to the adjacent vertebrae. The flexible component may be in the form of a spring or alternatively a polyethylene core (Marnay). The most widely implanted total artificial disc to date is the Link SB Charite disc which is composed of a biconvex ultra high molecular weight polyethylene spacer interfaced with two endplates made of cobalt-chromium-molybdenum alloy. Over 2000 of these have been implanted with good results. However device failure has been reported along with dislocation and migration. The Charite disc also requires an extensive surgical dissection via an anterior approach.
The approach of artificial nucleus replacement has several obvious advantages over artificial total disc replacement. By replacing only the nucleus, it preserves the remaining disc structures such as the annulus and endplates and preserves their function. Because the annulus and endplates are left intact, the surgical procedure is much simpler and operative time is less. Several nuclear prostheses can be place via a minimally invasive endoscopic approach. The nucleus implant in widest use today is the one developed by Raymedica (Bloomington, Minn.) which consists of a hydrogel core constrained in a woven polyethylene jacket. The pellet shaped hydrogel core is compressed and dehydrated to minimize size prior to placement. Upon implantation the hydrogel begins to absorb fluid and expand. The flexible but inelastic jacket permits the hydrogel to deform and reform in response to compressive forces yet constrain the horizontal and vertical expansion (see U.S. Pat. Nos. 4,904,260 and 4,772,287 to Ray). Other types of nuclear replacement have been described which include either an expansive hydrogel or polymer to provide for disc separation and relieve compressive load on the other disc components (see U.S. Pat. No. 5,192,326 to Boa). Major limitations of nuclear prostheses are that they can only be used in patients in whom disc degeneration is at an early stage because they require the presence of a competent natural annulus. In discs at later stages of degeneration the annulus is often torn, flattened and/or delaminated and may not be strong enough to provide the needed constraint. Additionally, placement of the artificial nucleus often requires access through the annulus. This leaves behind a defect in the annulus through which the artificial nucleus may eventually extrude compressing adjacent structures. What is clearly needed is a replacement or reinforcement for the natural annulus which may be used in conjunction with these various nuclear replacement devices.
Several annular repair or reinforcement devices have been previously described. These include the annulus reinforcing band described by U.S. Pat. No. 6,712,853 to Kuslich, which describes an expansile band pressurized with bone graft material or like, expanding the band. U.S. Pat. No. 6,883,520 B2 to Lambrecht et al, describes a device and method for constraining a disc herniation utilizing an anchor and membrane to close the annular defect. U.S. patent application Ser. No. 10/676,868 to Slivka et al. describes a spinal disc defect repair method. U.S. Pat. No. 6,806,595 B2 to Keith et al. describes disc reinforcement by implantation of reinforcement members around the annulus of the disc. U.S. Pat. No. 6,592,625 B2 to Cauthen describes a collapsible patch put through an aperture in the sub-annular space. U.S. patent application Ser. No. 10/873,899 to Milbocker et al. describes injection of in situ polymerizing fluid for repair of a weakened annulus fibrosis or replacement or augmentation of the disc nucleus.
Each of these prior art references describes devices or methods utilized for repair of at least a portion of the diseased annulus. What is clearly needed is an improved spinal disc device and method capable of reinforcing the entire annulus circumferentially. In addition what is clearly needed is a spinal disc device and method which may be easily placed into the inter-vertebral space and made to conform to this space. What is clearly needed is an improved spinal disc device and method capable of reinforcing the entire annulus that may be utilized either in conjunction with an artificial nucleus pulposis or may be used as a reinforcement for the annulus fibrosis and as an artificial nucleus pulposis.
The present invention addresses this need by providing improved spinal disc device and methods for the treatment of inter-vertebral disc disease. The improved device and methods of the present invention specifically address disc related pain but may have other significant applications not specifically mentioned herein. For purposes of illustration only, and without limitation, the present invention is discussed in detail with reference to the treatment of damaged discs of the adult human spinal column.
As will become apparent from the following detailed description, the improved spinal disc device and methods of the present invention may reduce if not eliminate back pain while maintaining near normal anatomical motion. The present invention relates to devices and methods which may be used to reinforce or replace the native annulus, replace the native nucleus, replace both the annulus and nucleus or facilitate fusion of adjacent vertebrae. The devices of the present invention are particularly well suited for minimally invasive methods of implantation.
The spinal disc device is a catheter based device which is placed into the inter-vertebral space following discectomy performed by either traditional surgical or endoscopic approaches. The distal end of the catheter is comprised of an expansile loop or mesh which may be increased in diameter by either advancement or retraction of a control element comprising a flexible portion of the catheter which may be manipulated by its proximal end, such proximal end remaining external to the body. The expansile loop or mesh may be formed of a woven, knitted or braided material and may be made of Nylon, Dacron, synthetic polyamide, polyetheretherketone (PEEK), expanded polytetrafluroethylene (e-PTFE), polyethylene and ultra-high molecular weight fibers of polyethylene (UHMWPE) commercially available as Spectra™ or Dyneema™, as well as other high tensile strength materials such as Vectran™, Kevlar™, natural or artificially produced silk and commercially available suture materials used in a variety of surgical procedures. Alternatively the expansile loop or mesh portion of the catheter may be made of a biodegradable or bioabsorbable material such as resorbable collagen, LPLA (poly(l-lactide)), DLPLA (poly(dl-lactide)), LPLA-DLPLA, PGA (polyglycolide), PGA-LPLA or PGA-DLPLA, polylactic acid and polyglycolic acid which is broken down and bioabsorbed by the patient over a period of time. Alternatively the expansile portion of the catheter may be formed from metallic materials, for example, stainless steel, elgiloy, Nitinol, or other biocompatible metals. Further, it is anticipated that the expansile loop portion of the device could be made from a flattened tubular knit, weave, mesh or foam structure.
The expansile loop may be formed such that when the loop is diametrically contracted one end of the loop feeds into its other end, similar to a snake eating its own tail. Alternatively, the expansile loop may be formed such that when it is diametrically contracted it is in the shape of a toroid invaginating into itself. Stabilization of the outer portion of the loop and pulling out the inner portion will thereby increase the overall diameter of the loop while maintaining it as a substantially closed loop or toroid.
In one embodiment, the present invention consists of a device and method, whereby the present invention is first delivered and expanded within the vertebral space to the limits of the inner portion of the native annulus to reinforce or artificially replace the native annulus.
In another embodiment, the present invention consists of a device and method, whereby the present invention is first delivered and expanded within the vertebral space to the limits of the inner portion of the native annulus and then an injection of polymeric or hydrogel or like material is conducted to reinforce or artificially replace the native annulus.
In another embodiment, the present invention consists of a device and method, whereby the present invention is first delivered and expanded within the vertebral space to the limits of the inner portion of the native annulus and then the inner portion of the present invention is centrally expanded to the limits of an artificial nucleus concurrently or previously placed within the inter-vertebral space.
In another embodiment, the present invention consists of a device and method, whereby the present invention is first delivered within the vertebral space and into the area of the nucleus, which may have been previously removed, and expanded to the limits of the outer portion of the area of the native nucleus and then injected with a polymer or hydrogel or like material conducted to reinforce or artificially replace the native nucleus.
In another embodiment, the present invention consists of a device and method, whereby the present invention is first delivered within the vertebral space and expanded within the vertebral space to the limits of the outer portion of the native annulus and then an injection of polymeric or hydrogel material is conducted to reinforce or artificially replace the native annulus. Then the present invention is delivered into the nucleus area and expanded to the limits of the outer portion of the native nucleus or an artificial nucleus concurrently placed and then an injection of polymeric or hydrogel material is conducted to reinforce or artificially replace or reinforce the nucleus.
In another embodiment, the present invention consists of a device and method, whereby the present invention is first delivered and expanded within the vertebral space and expanded inward from the outer limits of the annulus to the point where essentially no central hole remains in the toroid and a polymeric or hydrogel or like material is injected into the expanded mesh.
In another embodiment, the present invention consists of a device and method, whereby the present invention is delivered and expanded within the vertebral space and then an injection of a bone graft material, polymeric bone graft compound, or material inducing or promoting the growth of bone such as, but not limited to growth factors, BMP or like is conducted in order to facilitate the fusion of an adjacent vertebrae.
The present invention and variations of its embodiments is summarized herein. Additional details of the present invention and embodiments of the present invention may be found in the Detailed Description of the Preferred Embodiments and Claims below. These and other features, aspects and advantages of the present invention will become better understood with reference to the following descriptions and claims.
One embodiment 10, 11 of the spinal disc device, as shown in
The inner catheter control element can be made of a flexible yet longitudinally incompressible material such as, but not limited to, a stainless steel or Nitinol wire of 0.010″-0.040″ diameter. Slidably advancing the inner catheter element 19 through the outer catheter element 12 while holding the proximal portion of the outer section of the expansile loop 23, 27 in place will result in the inner section of the expansile loop 24, 25 pulling out of the outer section of the expansile loop 24, 25. This will result in the overall diametric expansion of the expansile loop 24, 25. As shown in
The outer catheter element 12 used for delivery of the expansile loop 24 should be sufficiently stiff to allow retraction of the inner catheter control element 19 without collapse or kinking. The inner catheter control element 19 must be sufficiently flexible to circle around the expansile loop 24 and attain a relatively small radii without kinking yet have sufficient tensile strength to resist breakage when pulled from its proximal sections. The outer catheter element 12 can be fabricated from polymeric materials including, but not limited to, Nylon, Dacron, synthetic polyamide, polyetheretherketone (PEEK), expanded polytetrafluro-ethylene (e-PTFE), polyethylene and ultra-high molecular weight fibers of polyethylene (UHMWPE), or metallic materials, including but not limited to, stainless steel, cobalt-chrome alloy, titanium, titanium alloy, or nickel-titanium shape memory alloys, among others that have sufficient kink resistance and tensile strength. The inner catheter control element 19 can be manufactured from Nylon, Dacron, synthetic polyamide, polyetheretherketone (PEEK), expanded polytetrafluro-ethylene (e-PTFE), polyethylene and ultra-high molecular weight fibers of polyethylene (UHMWPE) or from metallic materials including, but not limited to, stainless steel, cobalt-chrome alloy, titanium, titanium alloy, or nickel-titanium shape memory alloys, among others. The elements manufactured from metallic materials have a diameter from 0.001″ to 0.020″ and preferably from 0.004″ to 0.010″. The elements manufactured from polymeric materials have a diameter from 0.005″ to 0.040″ and a preferred diameter from 0.010″ to 0.020″.
The expansile loop 24, 25 is fabricated as a knit, weave or braid and can be constructed from non-degradable materials. Suitable non-degradable materials for the expansile loop 24, 25, include, but are not limited to, Nylon, Dacron, synthetic polyamide, polyetheretherketone (PEEK), expanded polytetrafluroethylene (e-PTFE), polyethylene and ultra-high molecular weight fibers of polyethylene (UHMWPE) commercially available as Spectra™ or Dyneema™, as well as other high tensile strength materials such as Vectran™, Kevlar™, natural or artificially produced silk and commercially available suture materials used in a variety of surgical procedures. The expansile loop 24, 25 fabricated as a weave or braid and can be constructed from biodegradable or bioabsorbable materials. Suitable biodegradable and bioabsorbable materials for the expansile loop 24, 25 include, but are not limited to, resorbable collagen, LPLA (poly(l-lactide)), DLPLA (poly(dl-lactide)), LPLA-DLPLA, PGA (polyglycolide), PGA-LPLA or PGA-DLPLA, and biodegradable sutures made from polylactic acid and polyglycolic acid.
In addition, for some embodiments, suitable metallic materials for the expansile loop 24, 25 may be used that include, but are not limited to, stainless steel, cobalt-chrome alloy, titanium, titanium alloy, or nickel-titanium shape memory alloys, among others. It is further contemplated that the metallic mesh can be interwoven with non-resorbable polymers such as nylon fibers, carbon fibers and polyethylene fibers, among others, to form a metal-polymer composite weave. Further examples of suitable non-resorbable materials include DACRON and GORE-TEX. One feature of the expansile loop 24, 25 is that it needs to have pore sizes or openings that are small enough to hold the filling material or nucleus from extruding out and large enough to maintain flexibility and expansion characteristics.
In another embodiment the distal end 13 of the outer catheter element 12 resides around the inner catheter control element 19. The outer catheter element 12 is held in a constant relationship or releaseably affixed to the proximal end 23 of the outer section of the expansile loop 24. In this embodiment the inner catheter control element 19 is in the form of a very flexible element which enters the proximal opening in the outside section of the expansile loop 23, loops one, less than one or more than one time around the inside of the outside section of the expansile loop 24 and terminates attaching at the distal end 22 of the inside section of the expansile loop 24. The direction of rotation of the flexible control element 19 (measured from distal end of the control element 20 to the proximal end 21 is in the opposite rotational direction as the direction of rotation of the inside section of the expansile loop 24,as it enters and loops around the outside section of the expansile loop 24. Upon retraction of the proximal end 21 of the inner catheter control element 19, back out of the outer catheter element 12, the distal end 13 of the outer catheter element 12 stabilizes and holds the outer section 23 of the expansile loop 24 in place while the inner section 22 of the expansile loop 24 is pulled out of the outer section, resulting in an increase in the diameter of the expansile loop 24. Once the expanded expansile loop 25 has reached its maximum diameter, determined either by the confines of the space into which it is expanding or by the exit point of the control filament through the proximal end 27 of the expanded expansile loop 25, continued retraction of the inner catheter control element 19 will result in the inner catheter control element 19 producing tension on the inner circumference of the expanded expansile loop 25. The inner circumference of the expanded expansile loop 25 will contract towards the middle of the expanded expansile loop 25 and the expanded expansile loop's 25 height will increase. Due to the woven or braided nature of the tubular expansile loop 24, 25, the expanded expansile loop 25, will remain generally in the shape of a toroid both upon its circumferential expansion and its central contraction.
An additional embodiment 39, 40 of the expansile loop device used for repair or replacement of the annulus fiborosis of the spine can be understood by referring to
In an alternative embodiment of the present invention for annular repair or replacement, the inner catheter control element 19 is run inside of the expansile loop 24, 25 which is looped and exits first the distal end of the inner section of the braided loop 22, 26 and then exits through the wall of the outer portion of the braided loop 23, 27 prior to its attachment to outer catheter element 12. The inner catheter control element or filament 19 may make one, less than one or more than one loop inside of the expansile loop 24, 25 prior to exiting and attaching to catheter element 12. In this manner the inner catheter control element 19 forms a “snare” or loop of one or multiple turns. If the inner catheter control element 19 is of sufficient stiffness, for example but not limited to, a metallic guidewire of 0.010″-0.040″ diameter, the snare may be opened by advancing the proximal portion of the inner catheter control element 21 while holding the outer catheter element 12 and proximal end of the expansile loop 23, 27 in place. This opening of the circumference of one or more loops of the snare formed by the inner catheter control element 19 will result in an expansion of the circumference of the expansile loop 24, 25 as the inner portion of the expansile loop 24, 25 pulls out of its outer portion. Once the limits of expansion of the expansile loop 24, 25 have been reached, the inner catheter control element 19 may be pulled back into the catheter element 12 by pulling on its proximal portion 21. This causes one or more loops of the snare becoming smaller pulling on the inner circumference of the expanded expansile loop 25 resulting in a contraction of the central space in the middle of the expanded expansile loop 25. Due to the woven or braided nature of the expansile loop 24, 25, the expansile loop 24, 25, will remain generally in the shape of a toroid both upon its circumferential expansion and its central contraction.
As shown in
In another embodiment 59, 60 as represented in
The entire expansile loop assembly 10 including the circumferentially contracted braided expansile loop 24, and inner catheter control element 19, may now be compressed into the distal outer catheter element, a sheath 18 or alternatively into an access tube 38 of approximately 3-20 mm diameter for ease of placement. The access tube 38 may be formed from any suitable material, as the present invention is not limited in this respect. Thus, the access tube 38 may be formed from a plastic material, such as a polycarbonate, or a metal material, such as stainless steel, or any suitable combination of materials. In addition, the posterolateral access tube 38 may be formed of a material that can be readily sterilized. Further, the elongated probe 15 may be formed as a single use device such that resterilization is not required after use. The posterlateral access tube 38 gains access to the vertebrae generally using a posterior approach (
As shown in
Now referring the
Now referring to
As represented in
In one method of clinical use, the nucleus of the damaged disc has been previously removed by discectomy techniques either through an anterior, posterior or posterolateral surgical approach. The expansile loop annular repair or replacement device 10 in its compressed configuration within the outer catheter element 12 or sheath 18 is advanced through an access tube or cannula previously placed into the inter-vertebral space. This cannula may access the inter-vertebral space from a posterior, posterolateral or anterior approach that is well know to physicians skilled in the art. The present invention 10 is then advanced into the inter-vertebral space through the access tube 38. Once the distal expansile loop 24 is advanced through the access tube 38 into the vertebral space it is diametrically expanded by either retraction or advancement of the inner catheter control element 19 in the manner previously described. The distal expansile loop 25 expands to the limits of the inner portion of the remains of the native annulus and remains diametrically expanded and transversely contracted as illustrated in
Once the nuclear replacement is in place, any remaining space between the nuclear replacement and the expansile loop annular replacement device may be reduced or eliminated by centrally contracting the inner circumference of the toroid formed by the expansile loop device. This is accomplished in the manner previously described by pulling back the inner catheter control element resulting in contraction of the inner circumference of the device until it abuts the nuclear replacement. The braided design of the expansile braided loop 48 will also allow it to flex and bend to conform to the inter-vertebral space. By properly selecting the material from which the expansile braided loop is constructed and by properly selecting the design of braid for its manufacture as previously described, the expansile braided loop will now function as a complete circumferential support for the artificial nucleus. The expansile braided loop will prevent extrusion of the artificial nucleus through any defects in the remaining native annulus and act to stabilize the artificial nucleus during both bending and motion of the spine and throughout the healing process. The braided design of the expansile loop will also permit it to flexibly bend as the central nucleus replacement expands and swells to its final size. The braided design of the expansile loop will also permit tissue in growth to occur as healing occurs. This will result in stabilization of the artificial nucleus.
In an alternative method, once the expansile braided loop 48 has been expanded to fill the inter-vertebral space between the artificial nucleus and the native vertebrae and remaining native annulus fibrosis, the expansile loop 48 may be filled with a suitable biologically compatible material. Such suitable materials that can be directly injected through the inner catheter control element 19 if it includes a central lumen and openings connecting with the interior chamber of the expansile braided loop as illustrated in
In some cases, a multiphase system may be employed, for example, a combination of solids, fluids or gels may be used. Such materials may create primary and secondary levels of flexibility within the braided expansile loop and within the vertebral disc space.
For example, the hydrogel materials (e.g. polyacrliamide, polyacrylonitrile, polyvinyl alcohol or other biocompatible hydrogels or combinations can be dissolved in a solvent, such as dimethylsulfoxide, analogues/homologues of dimethylsulfoxide, ethanol, ethyl lactate, acetone, glycerin or combinations thereof. Small amounts of water could also be added to the solvent/hydrogel combination to adjust the solutions viscosity. This solvent/hydrogel combination can be injected into the inter-vertebral space to replace the nucleus, the annulus, or both the nucleus and annulus. The expansile loop 48 will assist in containing and supporting the solvent/hydrogel combination. After delivery, the solvent is replaced by bodily fluids and the hydrogel precipitates out of solution into a hydrated solid. The solvent is adsorbed into the body tissues. Introducing an aqueous solvent, such as water or saline, into the inter-vertebral space containing the solvent/hydrogel combination can be performed to increase the precipitation speed of the hydrogel. This second step facilitates the precipitation or solidification of the hydrogel material which swells and fills the desired inter-vertebral space.
Once the expansile loop 48 is filled with a suitable material and the material has cured or partially polymerized, the inner catheter control element or filament 19 can be withdrawn by removing its distal connection to the junction point with the outer catheter element 12 or at its termination within the braided expansile loop and pulling the inner catheter control element out of the expansile loop. Alternatively, the inner catheter control element 19 may be cut off or disconnected at its entry point into the expansile loop. This leaves a complete toroid without defect, formed of the expansile loop in place to act as an annular reinforcement or replacement which may or may not surround an artificial nucleus device.
In another method of clinical use, after the braided expansile loop 48 has been expanded to its maximum diametric dimension, acting as a reinforcement or replacement for the damaged native annulus, the device may be centrally circumferentially contracted, as previously described, to fill any remaining space previously occupied by the native nucleus prior to nuclectomy. The braided expansile loop 48 expands to the limits of the remains of disc space and the remains of the native nucleus and annulus and remains diametrically expanded and centrally circumferentially contracted. Now the braided expansile loop area may be filled with a biomaterial or any suitable material (as described above), as the present invention is not limited in this respect. In addition to the materials disclosed for annulus replacement, additional suitable fluid materials for nucleus and annular replacement include, but are not limited to, various pharmaceuticals (steroids, antibiotics, tissue necrosis factor alpha or its antagonists, analgesics); growth factors, genes or gene vectors in solution; biologic materials (hyaluronic acid, non-crosslinked collagen, fibrin, liquid fat or oils); synthetic polymers (polyethylene glycol, liquid silicones, synthetic oils); and saline.
Once the expansile loop is filled with a suitable material in the central and circumferentially contracted nuclear area and the annular area, the inner catheter control element 19 can be withdrawn by removing its distal connection to the junction point with the outer catheter element 12 and pulling the inner catheter control element out of the expansile loop. Alternatively the inner catheter control element or filament 19 may be disconnected from its attachment to the distal inner braided expansile loop prior to its removal. Alternatively, the inner catheter control element or filament 19 may be cut off at its entry point into the outer section of expansile loop using a surgical tool. This leaves a complete toroid, without defect, formed of the expansile loop in place to act as an annular and nucleus reinforcement or replacement.
In another method of clinical use, the present invention can be advanced into the vertebral space once a nuclectomy has been performed. Once the braided expansile loop 24 is advanced into the vertebral space, it is diametrically expanded in the manner previously described. The braided expansile loop 25 expands to the limits of the out portion of the remains of the native nucleus and remains diametrically expanded and transversely contracted. Now the braided expansile loop 48 may be filled with a biomaterial of any suitable material, such as those previously noted, as the present invention is not limited in this respect. This injected material is allowed to cure or polymerize to some extent, and then the central portion of the expansile loop is circumferentially contracted in the manner previously described. At this point the central nuclear area of the vertebral space is filled with the expanded mesh. This central portion can then be filled with biomaterial or any suitable material, such as those previously noted, as the present invention is not limited in this respect. In addition to the materials disclosed for annulus repair or replacement, additional suitable fluid materials for nucleus replacement include, but are not limited to, various pharmaceuticals (steroids, antibiotics, tissue necrosis factor alpha or its antagonists, analgesics); growth factors, genes or gene vectors in solution; biologic materials (hyaluronic acid, non-crosslinked collagen, fibrin, liquid fat or oils); synthetic polymers (polyethylene glycol, liquid silicones, synthetic oils); and saline.
Once the braided expansile loop is filled with a suitable material in the nucleus area, the inner catheter control element 19 can be withdrawn by removing its distal connection to the junction point with the outer catheter element 12 or its distal connection with the distal inner expansile loop, and pulling the inner catheter control element 19 out of the expansile loop. Alternatively, the inner catheter control element or filament 19 may be cut off at its entry point into the expansile loop using a surgical tool. This leaves a complete toroid, without defect, formed of the expansile loop in place to act as an annular reinforcement or replacement and/or nucleus reinforcement or replacement. It also allows the annular area of the device on the periphery and the nucleus portion of the device in the central region to have different physical properties dependent on the differential biocompatible materials injected into each region.
In an additional method of clinical use, once the nucleus of the disc has been removed, the present invention 10 is advanced into the inter-vertebral space. The braided expansile loop 24 is diametrically expanded in the manner previously described. The distal interior braided expansile loop 25 is pulled out of the outer expansile loop and the overall expansile loop diametrically expands to the limits of the inner portion of the native annulus. Next the inner catheter control element 19 is pulled back out of the expanded expansile loop and the inner potion of the inner catheter or filament loop 19 pulls in the inner circumference of the expansile loop, making the central hole smaller and the braided expansile loop 48 transversely wider to better fill the central defect in the vertebral space. This expanded braided expansile loop 48 may be used to contact a central prosthetic nucleus previously placed in the middle of the braided expansile loop. In the case where no additional nucleus prosthesis is desired, the central portion of the braided expansile loop can be been expanded to the point where essentially no central hole 37 remains in the toroid. The fully expanded braided expansile loop can now be injected with a suitable biocompatible material (as described above) which will expand or cure in situ as previously described. In this case the present invention will function as both a prosthetic annulus and a prosthetic nucleus and its load bearing properties will be dependent on the properties of the polymer chosen to fill the expansile loop.
Additionally, a hydrogel, polymer or biocompatible material may be injected into the interior chamber of the expansile loop such that the biocompatible material has the capacity to swell or increase in size as the result of absorbing water or liquid. This would result in further expansion of the expansile braided loop and an increase in the inter-vertebral disc height.
In another method of clinical use, the intended treatment is to fuse two adjacent vertebrae using the present invention 10. Again using the illustration in
Once the bone fusing material has been injected the inner catheter control element 19 may be removed by retracting it from the braided expansile loop. Alternatively, the inner catheter control element 19 may be cut off at its entrance point into the toroid. In another embodiment (not illustrated) the expansile loop may be expanded in diameter using an inner filament of sufficient stiffness such as the metal wire described and the central hole may be made smaller by pulling on a separate flexible filament such as a thread attached to the inner radius of the expansile braided.
In this embodiment of fusing two adjacent vertebrae together, it may be desirable to stimulate growth of bone through the fill material. To facilitate bone integration and growth, the expansile loop should have openings that are more porous. The pores or openings of the expansile loop will have a diameter of about 0.25 mm to about 5.0 mm. The size is selected to allow tissue in-growth while containing the material packed into the expansile loop. It is also contemplated that the expansile loop can be seeded in vitro with bone forming cells, such as osteoblasts, and/or with growth factors. Multiple layers of osteoblast-seeded applications may be stacked on top of one another and further allowed to or encouraged to proliferate. In addition to in vitro seeding of osteoblasts, other treatments for the braided expansile loop are contemplated that also provide an implant that allows for bone in-growth and regeneration of bony tissue. For example, the expansile loop can be coated with a demineralized bone matrix or smeared or coated with an osteoinductive bone paste, such as OSTEOFIL™. In addition, the expansile loop can be coated with collagen, and subsequently soaked in a pharmacological agent such as recombinant human bone morphogenic protein, antibiotic agents, or other similar material.
It should be understood that the foregoing description of the present invention is intended merely to be illustrative thereof and that other embodiments, modifications, and equivalents of the invention are within the scope of the invention recited in the claims appended hereto. Further, although each embodiment described above includes certain features, the invention is not limited in this respect. Thus, one or more of the above-described or other features of the invention, method of delivery, or injection of biomaterial may be employed singularly or in any suitable combination, as the present invention is not limited to a specific embodiment.
Segal, Jerome, Yurek, Matthew Thomas
Patent | Priority | Assignee | Title |
10004489, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10004493, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
10004588, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for fixation of an ACL graft |
10022118, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10039543, | Aug 22 2014 | Biomet Sports Medicine, LLC | Non-sliding soft anchor |
10052094, | Mar 11 2013 | MEDOS INTERANTIONAL SÀRL | Implant having adjustable filament coils |
10092288, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10098629, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10136886, | Dec 20 2013 | Biomet Sports Medicine, LLC | Knotless soft tissue devices and techniques |
10149767, | May 28 2009 | Biomet Manufacturing, LLC | Method of implanting knee prosthesis assembly with ligament link |
10154837, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10251637, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
10265064, | Nov 05 2004 | Biomet Sports Medicine, LLC | Soft tissue repair device and method |
10265159, | Nov 03 2011 | Biomet Sports Medicine, LLC | Method and apparatus for stitching tendons |
10321906, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for tissue fixation |
10349931, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
10350084, | Oct 22 2012 | NuVasive, Inc. | Expandable spinal fusion implant, related instruments and methods |
10363028, | Nov 10 2011 | Biomet Sports Medicine, LLC | Method for coupling soft tissue to a bone |
10368856, | Nov 10 2011 | Biomet Sports Medicine, LLC | Apparatus for coupling soft tissue to a bone |
10398428, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
10398430, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
10405968, | Dec 11 2013 | MEDOS INTERNATIONAL SÀRL | Implant having filament limbs of an adjustable loop disposed in a shuttle suture |
10441264, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
10441265, | Jul 31 2013 | MEDOS INTERNATIONAL SÀRL | Adjustable graft fixation device |
10517587, | Nov 03 2011 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
10517714, | Sep 29 2006 | Biomet Sports Medicine, LLC | Ligament system for knee joint |
10542967, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10595851, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10603029, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
10610217, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
10675073, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for sternal closure |
10687803, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10695045, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for attaching soft tissue to bone |
10695052, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10702259, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
10716557, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
10729421, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for soft tissue fixation |
10729423, | Apr 10 2007 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
10729430, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10743856, | Aug 22 2014 | Biomet Sports Medicine, LLC | Non-sliding soft anchor |
10743925, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
10758221, | Mar 14 2013 | Biomet Sports Medicine, LLC | Scaffold for spring ligament repair |
10806443, | Dec 20 2013 | Biomet Sports Medicine, LLC | Knotless soft tissue devices and techniques |
10835232, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
10856967, | Mar 11 2013 | MEDOS INTERNATIONAL SÀRL | Implant having adjustable filament coils |
10881520, | Dec 23 2005 | DePuy Synthes Products, Inc. | Flexible elongated chain implant and method of supporting body tissue with same |
10881522, | Feb 09 2017 | Spica Medical Technologies, LLC | Radially expandable annulus reinforcement prosthesis |
10898178, | Mar 11 2013 | MEDOS INTERNATIONAL SÀRL | Implant having adjustable filament coils |
10912551, | Mar 31 2015 | Biomet Sports Medicine, LLC | Suture anchor with soft anchor of electrospun fibers |
10932770, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
10973507, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10987099, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for tissue fixation |
11039826, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
11065103, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for fixation of an ACL graft |
11096684, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
11109857, | Nov 05 2004 | Biomet Sports Medicine, LLC | Soft tissue repair device and method |
11116495, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
11185320, | Apr 10 2007 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
11219443, | Aug 22 2014 | Biomet Sports Medicine, LLC | Non-sliding soft anchor |
11241305, | Nov 03 2011 | Biomet Sports Medicine, LLC | Method and apparatus for stitching tendons |
11259792, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
11259794, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
11284884, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
11311287, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for tissue fixation |
11317907, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
11376115, | Sep 29 2006 | Biomet Sports Medicine, LLC | Prosthetic ligament system for knee joint |
11399954, | Oct 22 2012 | NuVasive, Inc. | Expandable spinal fusion implant, related instruments and methods |
11406508, | Dec 23 2005 | DePuy Synthes Products, Inc. | Flexible elongated chain implant and method of supporting body tissue with same |
11446019, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
11471147, | May 29 2009 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
11534157, | Nov 10 2011 | Biomet Sports Medicine, LLC | Method for coupling soft tissue to a bone |
11534159, | Aug 22 2008 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
11534288, | Dec 11 2013 | MEDOS INTERNATIONAL SARL | Implant having filament limbs of an adjustable loop disposed in a shuttle suture |
11589859, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
11612391, | Jan 15 2008 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
11617572, | Jan 16 2007 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
11648004, | Dec 20 2013 | Biomet Sports Medicine, LLC | Knotless soft tissue devices and techniques |
11672527, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
11701233, | Dec 23 2005 | DePuy Synthes Products, Inc. | Flexible elongated chain implant and method of supporting body tissue with same |
11723648, | Feb 03 2003 | Biomet Sports Medicine, LLC | Method and apparatus for soft tissue fixation |
11730464, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
11786236, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
11819205, | Jan 16 2007 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
11896210, | Jan 15 2008 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
11896475, | Mar 11 2013 | MEDOS INTERNATIONAL SARL | Implant having adjustable filament coils |
7988735, | Jun 15 2005 | OUROBOROS MEDICAL, INC | Mechanical apparatus and method for delivering materials into the inter-vertebral body space for nucleus replacement |
8034109, | Feb 24 2005 | Morphogeny, LLC | Linked slideable and interlockable rotatable components |
8048118, | Apr 28 2006 | Warsaw Orthopedic, Inc | Adjustable interspinous process brace |
8080061, | Jun 20 2005 | Synthes USA, LLC | Apparatus and methods for treating bone |
8114136, | Mar 18 2008 | COMPANION SPINE, LLC | Implants and methods for inter-spinous process dynamic stabilization of a spinal motion segment |
8118836, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
8118844, | Apr 24 2006 | Warsaw Orthopedic, Inc | Expandable device for insertion between anatomical structures and a procedure utilizing same |
8128658, | Nov 05 2004 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
8137382, | Nov 05 2004 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
8142507, | Nov 16 2006 | REX MEDICAL, L P | Spinal implant and method of use |
8147526, | Feb 26 2010 | MEDTRONIC EUROPE SARL | Interspinous process spacer diagnostic parallel balloon catheter and methods of use |
8221454, | Feb 20 2004 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Apparatus for performing meniscus repair |
8221465, | Apr 28 2006 | Warsaw Orthopedic, Inc. | Multi-chamber expandable interspinous process spacer |
8231654, | Sep 29 2006 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
8251998, | Aug 16 2006 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Chondral defect repair |
8252031, | Apr 28 2006 | Warsaw Orthopedic, Inc.; Warsaw Orthopedic, Inc | Molding device for an expandable interspinous process implant |
8273106, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair and conduit device |
8287599, | Nov 16 2006 | Rex Medical, L.P. | Spinal implant and method of use |
8292921, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
8298262, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for tissue fixation |
8303604, | Nov 05 2004 | Biomet Sports Medicine, LLC | Soft tissue repair device and method |
8317825, | Nov 09 2004 | Biomet Sports Medicine, LLC | Soft tissue conduit device and method |
8317831, | Jan 13 2010 | MEDTRONIC EUROPE SARL | Interspinous process spacer diagnostic balloon catheter and methods of use |
8337525, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
8343227, | May 28 2009 | Biomet Manufacturing, LLC | Knee prosthesis assembly with ligament link |
8349013, | Jan 02 1997 | MEDTRONIC EUROPE SARL | Spine distraction implant |
8361113, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
8409253, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
8500818, | Sep 29 2006 | Biomet Manufacturing, LLC | Knee prosthesis assembly with ligament link |
8506597, | Oct 25 2011 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Method and apparatus for interosseous membrane reconstruction |
8551140, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
8562645, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
8562647, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for securing soft tissue to bone |
8574235, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for trochanteric reattachment |
8597327, | Feb 03 2006 | Biomet Manufacturing, LLC | Method and apparatus for sternal closure |
8608777, | Feb 03 2006 | Biomet Sports Medicine | Method and apparatus for coupling soft tissue to a bone |
8632569, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
8652171, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for soft tissue fixation |
8652172, | Feb 03 2006 | Biomet Sports Medicine, LLC | Flexible anchors for tissue fixation |
8672968, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
8672969, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
8721684, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
8771316, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
8771352, | May 17 2011 | Biomet Sports Medicine, LLC | Method and apparatus for tibial fixation of an ACL graft |
8777956, | Aug 16 2006 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Chondral defect repair |
8801783, | Sep 29 2006 | Biomet Sports Medicine, LLC | Prosthetic ligament system for knee joint |
8840617, | Feb 26 2010 | Warsaw Orthopedic, Inc. | Interspinous process spacer diagnostic parallel balloon catheter and methods of use |
8840645, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
8900314, | May 28 2009 | Biomet Manufacturing, LLC | Method of implanting a prosthetic knee joint assembly |
8920506, | Nov 16 2006 | Rex Medical, L.P. | Spinal implant and method of use |
8932331, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
8936621, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
8968364, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for fixation of an ACL graft |
8998949, | Nov 09 2004 | Biomet Sports Medicine, LLC | Soft tissue conduit device |
9005287, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for bone reattachment |
9017381, | Apr 10 2007 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
9078644, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
9095449, | Oct 02 2001 | Rex Medical, L. P. | Method of inserting a spinal implant |
9149267, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
9173651, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
9198765, | Oct 31 2011 | NuVasive, Inc | Expandable spinal fusion implants and related methods |
9216078, | May 17 2011 | Biomet Sports Medicine, LLC | Method and apparatus for tibial fixation of an ACL graft |
9259324, | Nov 16 2006 | Rex Medical, L.P. | Spinal implant and method of use |
9271713, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for tensioning a suture |
9289240, | Dec 23 2005 | Depuy Synthes Products, LLC | Flexible elongated chain implant and method of supporting body tissue with same |
9314241, | Nov 10 2011 | Biomet Sports Medicine, LLC | Apparatus for coupling soft tissue to a bone |
9357991, | Nov 03 2011 | Biomet Sports Medicine, LLC | Method and apparatus for stitching tendons |
9357992, | Nov 10 2011 | Biomet Sports Medicine, LLC | Method for coupling soft tissue to a bone |
9358122, | Jan 07 2011 | SOO, TEK | Interbody spacer |
9370350, | Nov 10 2011 | Biomet Sports Medicine, LLC | Apparatus for coupling soft tissue to a bone |
9381013, | Nov 10 2011 | Biomet Sports Medicine, LLC | Method for coupling soft tissue to a bone |
9402621, | Feb 03 2006 | Biomet Sports Medicine, LLC. | Method for tissue fixation |
9414833, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
9414925, | Sep 29 2006 | Biomet Manufacturing, LLC | Method of implanting a knee prosthesis assembly with a ligament link |
9445827, | Oct 25 2011 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Method and apparatus for intraosseous membrane reconstruction |
9445918, | Oct 22 2012 | NuVasive, Inc | Expandable spinal fusion implants and related instruments and methods |
9468433, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
9486211, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
9492158, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
9498204, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
9504460, | Nov 05 2004 | Biomet Sports Medicine, LLC. | Soft tissue repair device and method |
9510819, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
9510821, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
9532777, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
9538998, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for fracture fixation |
9539003, | Sep 29 2006 | Biomet Sports Medicine, LLC. | Method and apparatus for forming a self-locking adjustable loop |
9561025, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
9572655, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
9603591, | Feb 03 2006 | Biomet Sports Medicine, LLC | Flexible anchors for tissue fixation |
9615822, | May 30 2014 | Biomet Sports Medicine, LLC | Insertion tools and method for soft anchor |
9622736, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
9642661, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and Apparatus for Sternal Closure |
9655744, | Oct 31 2011 | NuVasive, Inc. | Expandable spinal fusion implants and related methods |
9681940, | Sep 29 2006 | Biomet Sports Medicine, LLC | Ligament system for knee joint |
9700291, | Jun 03 2014 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Capsule retractor |
9724090, | Sep 29 2006 | Biomet Manufacturing, LLC | Method and apparatus for attaching soft tissue to bone |
9757113, | Jul 31 2013 | MEDOS INTERNATIONAL SÀRL | Adjustable graft fixation device |
9757119, | Mar 08 2013 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Visual aid for identifying suture limbs arthroscopically |
9763656, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for soft tissue fixation |
9788876, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
9801620, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
9801708, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
9833230, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
9861351, | Apr 10 2007 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
9918826, | Sep 29 2006 | Biomet Sports Medicine, LLC | Scaffold for spring ligament repair |
9918827, | Mar 14 2013 | Biomet Sports Medicine, LLC | Scaffold for spring ligament repair |
9955980, | Feb 24 2015 | Biomet Sports Medicine, LLC | Anatomic soft tissue repair |
9956085, | Dec 23 2005 | DePuy Synthes Products, Inc. | Flexible elongated chain implant and method of supporting body tissue with same |
9974643, | Mar 11 2013 | MEDOS INTERNATIONAL SÀRL | Implant having adjustable filament coils |
9993241, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
Patent | Priority | Assignee | Title |
5064435, | Jun 28 1990 | SciMed Life Systems, INC; Boston Scientific Scimed, Inc | Self-expanding prosthesis having stable axial length |
5192326, | Dec 21 1990 | HOWMEDICA OSTEONICS CORP | Hydrogel bead intervertebral disc nucleus |
5549679, | May 20 1994 | SPINEOLOGY, INC | Expandable fabric implant for stabilizing the spinal motion segment |
5562736, | Oct 17 1994 | RAYMEDICA, LLC | Method for surgical implantation of a prosthetic spinal disc nucleus |
5571189, | May 20 1994 | SPINEOLOGY, INC | Expandable fabric implant for stabilizing the spinal motion segment |
5989252, | Feb 28 1997 | Surgical device for anchoring in bone, and ancillary for inserting it | |
6224630, | May 29 1998 | DISC DYNAMICS, INC | Implantable tissue repair device |
6332894, | Mar 07 2000 | ZIMMER TECHNOLOGY, INC | Polymer filled spinal fusion cage |
6371990, | Oct 08 1999 | ANOVA CORP | Annulus fibrosis augmentation methods and apparatus |
6419704, | Oct 08 1999 | ANOVA CORP | Artificial intervertebral disc replacement methods and apparatus |
6425919, | Aug 18 1999 | INTRINSIC THERAPEUTICS, INC | Devices and methods of vertebral disc augmentation |
6508839, | Aug 18 1999 | INTRINSIC THERAPEUTICS, INC | Devices and methods of vertebral disc augmentation |
6511498, | Feb 06 1998 | HOWMEDICA OSTEONICS CORP | Surgical bone anchoring device |
6592625, | Oct 20 1999 | KRT INVESTORS, INC | Spinal disc annulus reconstruction method and spinal disc annulus stent |
6685695, | Aug 13 1999 | ANOVA CORP | Method and apparatus for providing nutrition to intervertebral disc tissue |
6712853, | Dec 15 2000 | Spineology, Inc.; SPINEOLOGY, INC | Annulus-reinforcing band |
6726685, | Jun 06 2001 | NEUROTHERM, INC | Intervertebral disc device employing looped probe |
6733496, | Jun 06 2001 | NEUROTHERM, INC | Intervertebral disc device employing flexible probe |
6733533, | Nov 19 2002 | ZIMMER TECHNOLOGY, INC | Artificial spinal disc |
6821276, | Aug 18 2000 | INTRINSIC THERAPEUTICS, INC | Intervertebral diagnostic and manipulation device |
6827743, | Feb 28 2001 | Warsaw Orthopedic, Inc | Woven orthopedic implants |
6830589, | Jun 23 1999 | ZIMMER SPINE, INC | Expandable fusion device and method |
6835205, | Apr 04 2000 | KRT INVESTORS, INC | Devices and methods for the treatment of spinal disorders |
6883520, | Aug 18 1999 | INTRINSIC THERAPEUTICS INC | Methods and apparatus for dynamically stable spinal implant |
6969404, | Oct 08 1999 | ANOVA CORP | Annulus fibrosis augmentation methods and apparatus |
7300449, | Dec 09 1999 | Methods and devices for the treatment of neurological and physiological disorders | |
7318840, | Dec 06 1999 | SDGI Holdings, Inc. | Intervertebral disc treatment devices and methods |
20020049498, | |||
20020077701, | |||
20020189622, | |||
20030040796, | |||
20030074075, | |||
20030093155, | |||
20030120345, | |||
20030153976, | |||
20030158604, | |||
20030163200, | |||
20030187507, | |||
20030187508, | |||
20030199979, | |||
20030220690, | |||
20030220693, | |||
20030220694, | |||
20040010317, | |||
20040073308, | |||
20040097924, | |||
20040097980, | |||
20040127992, | |||
20040143333, | |||
20040186471, | |||
20040230309, | |||
20040260397, | |||
20040267368, | |||
20050049592, | |||
20050069571, | |||
20050070913, | |||
20050149191, | |||
20050149197, | |||
20050154463, | |||
20050283246, | |||
20060200245, | |||
20070055265, | |||
20070055272, | |||
20070055273, | |||
20070055275, | |||
20070123986, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 27 2005 | YUREK, MATTHEW | OUROBOROS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022460 | /0573 | |
Sep 27 2005 | SEGAL, JEROME, MD | OUROBOROS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022460 | /0573 | |
Nov 21 2007 | OUROBOROS, INC A CALIFORNIA CORPORATION | OUROBOROS, INC A DELAWARE CORPORATION | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022584 | /0770 | |
Mar 12 2009 | OUROBOROS, INC , A DELAWARE CORPORATION | OUROBOROS MEDICAL, INC , A DELAWARE CORPORATION | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 022584 | /0824 |
Date | Maintenance Fee Events |
Jun 11 2012 | REM: Maintenance Fee Reminder Mailed. |
Oct 26 2012 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Oct 26 2012 | M2554: Surcharge for late Payment, Small Entity. |
Jun 10 2016 | REM: Maintenance Fee Reminder Mailed. |
Oct 28 2016 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 28 2011 | 4 years fee payment window open |
Apr 28 2012 | 6 months grace period start (w surcharge) |
Oct 28 2012 | patent expiry (for year 4) |
Oct 28 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 28 2015 | 8 years fee payment window open |
Apr 28 2016 | 6 months grace period start (w surcharge) |
Oct 28 2016 | patent expiry (for year 8) |
Oct 28 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 28 2019 | 12 years fee payment window open |
Apr 28 2020 | 6 months grace period start (w surcharge) |
Oct 28 2020 | patent expiry (for year 12) |
Oct 28 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |