A high elongation cable and a tire having a tread belt with an extensible reinforcing cable are provided. The high elongation cable has a 3×7×m or a 4×7×m construction, wherein m is comprised of at least two layers, wherein the outermost layer is comprised of a plurality of twisted filaments, said filaments having a diameter d, wherein the spacing between said twisted filaments is less than the diameter d.
|
3. A high elongation cable having a 4×7×m construction, wherein m is comprised of two or more layers, wherein the outermost layer is comprised of a plurality of twisted filaments, said filaments having a diameter d, wherein the spacing between said twisted filaments is less than the diameter d, wherein m is selected from the group consisting essentially of: [1+6+12×0.22], [3×0.20+7×0.23], [3+9×0.25], and [1+6×0.35], and wherein the cable has a tensile strength of at least 27,500 N and 3% elongation.
1. A high elongation cable having a 3×7×m construction, wherein m is comprised of two or more layers, wherein the outermost layer is comprised of a plurality of twisted filaments, said filaments having a diameter d, wherein the spacing between said twisted filaments is less than the diameter d, wherein m is comprised of at least two layers, wherein m is selected from the group consisting essentially of: [1+6+12×0.22], [3×0.20+7×0.23], [3+9×0.25], and [1+6×0.35], and wherein the cable has a tensile strength of at least 27,500 N and 3% elongation.
2. The cable of
4. The cable of
This listing of claims will replace all prior versions and listings of claims in the application.
|
The disclosed invention is directed towards a steel cable construction, and the use of the steel cable as a reinforcement means in the tread belt of a tire.
The tread belt and pneumatic tires of the present invention are generally designed for use on large earthmover vehicles and are subjected to high stress and loads under harsh environmental conditions such as in rock quarries, mines, foundries, and other areas where tires are subjected to puncture-producing and wear-inducing conditions.
The large pneumatic tires, which are typically used for earthmoving vehicles, sometimes fail due to the high stress and loads caused by the harsh environmental conditions in which they are operated. With the continual drive to improve earthmover performance, there is a continuing need to provide novel methods and tire designs for improving earthmover tire durability.
The invention provides in a first aspect a high elongation cable having a 3×7×m construction or a 4×7×m construction. M is comprised of at least two layers, wherein the outermost layer is comprised of a plurality of twisted filaments, said filaments having a diameter d, wherein the spacing between said twisted filaments is less than the diameter d.
The invention provides in a second aspect a high elongation cable having a 3×7×m or a 4×7×m construction, wherein m is selected from the group consisting essentially of: [1+6+12×0.22], [3×0.20+7×0.23], [3+9×0.25], and [1+6×0.35].
For ease of understanding this disclosure, the following terms are disclosed:
The invention will be described by way of example and with reference to the accompanying drawings in which:
A first embodiment of a large diameter high elongation cable 44 is shown in
A second embodiment of a large diameter high elongation cable 60 is shown in
M is defined as having two or more layers, wherein the first layer is comprised of at least one filament, preferably a centered filament. The outermost layer is comprised of a plurality of twisted filaments wherein the spacing between filaments in the outermost layer is less than one diameter of the filaments in that layer.
It is preferred that the strands described above are twisted. The above cable constructions have utility in applications where high extension (greater than 3%) is needed and the cord diameter is greater than 2.0 mm. The above cable constructions may be used in a two piece tire as described in more detail, below. How the above cable constructions are not limited to a two piece tire, and may be used in belts of conventional tires such as truck tires.
The center voids in the above described configurations could be optionally filled with a filler cord. The filler cord is preferably non-metallic and can be comprised of, for example, nylon, polyester or fiberglass. The filler cord could also be a metal cord such as steel.
With reference to
The ground engaging, circumferentially extending tread belt 12 is manufactured, i.e. built or assembled and cured, separately from the tire carcass 14 and is removably mounted onto the tire carcass 14. The underside or inner circumference surface of tread belt 12 may optionally comprise one or more annular lands 26 and grooves 28 that mate with grooves 30 and lands 32 of tire carcass 14 to restrain tread belt 12 from lateral or axial movement with respect to the carcass 14. The tire tread belt 12 includes a tread portion 34 and a plurality of belts layers 36, 38, 40.
The radially inner belt layers 36, 38 are reinforced with cables. Each tread belt layer 36, 38 has the cables oriented at an angle in the range of about 15° to about 60° relative to the circumferential direction. Preferably, the cables in these adjacent layers 36, 38 are inclined at relatively equal angles but oppositely oriented. The radially outermost third layer 40 has strands oriented at an angle greater than 80° relative to the circumferential direction.
The reinforcing means in the three layers 36, 38, 40 may be constructed from any conventional reinforcing strands or any strands that may be developed that are useful for reinforcing elastomeric articles. Known materials include, but are not limited to, aramid, polyester including PET and PEN, all types of nylon, carbon fiber, steel, and fiberglass. Alternatively, the reinforcing means in the three layers 36, 38, 40 may be a high elongation cable such as described in the examples above or a commercially available high elongation cable. The strands in the third layer 40 may the same or have a different strand construction as the strands in the two layers 36, 38.
Radially inward of these belt layers 36, 38, 40 is a reinforcement layer 42 which is also a strength and load carrying layer. The layer is reinforced with cables 44 oriented at 0°, plus or minus 1-3°, relative to the circumferential direction. The belt layer 42 encircles the tire tread belt 12 and restricts the radially outward growth of the tread belt 12 that can be caused by serious deflection in the tire carcass 14. By keeping the tire tread belt 12 from expanding radially outward, the tread 34 will maintain a more flat tread profile thereby improving tread life and durability. The zero degree oriented layer 42 also eliminates the need for a larger number of belt layers than specified herein.
The reinforcing means in the zero degree layer 42 may be constructed from any conventional reinforcing strands or any strands that may be developed that are useful for reinforcing elastomeric articles. Known materials include, but are not limited to, aramid, polyester including PET and PEN, all types of nylon, carbon fiber, steel, and fiberglass. Alternatively, the reinforcing means in layer 42 may be a high elongation cable such as described in the examples above or a commercially available high elongation cable.
While one lay-up order of the belts 36, 38, 40, 42 is illustrated, the lay-up order may be modified to vary the tread belt characteristics. The zero-degree layer 42 may be located between the inclined belt layers 36, 38, see
While three tread belts, in combination with a single zero degree belt, are illustrated, it is within the scope of the invention to use other numbers of tread belt layers as needed. The combination of a removable tire tread belt 12 with a tire carcass 14 for use with large earthmoving vehicles is important in that it enables a portion of a tire 10 to be replaced instead of the entire tire in the event that one portion of the tire, i.e., the tire belt 12 or the tire carcass 14, wears out before the other part. Also, it may be desirable to have different types of tread designs such as, for example, driving or steering tread designs. This feature allows for a less expensive means of changing the tire tread to construct the appropriate style of desired tire. This feature would greatly reduce the cost of storing spare tires and could even extend the operating time of the tires.
Patent | Priority | Assignee | Title |
8601782, | Nov 14 2008 | Bridgestone Corporation | Steel cord for reinforcing rubber article and pneumatic tire |
8857146, | Jul 03 2009 | COMPAGNIE GÉNÉRALE DES ETABLISSEMENTS MICHELIN | Multi-strand cord in which the basic strands are dual layer cords, rubberized in situ |
8863490, | Jul 03 2009 | COMPAGNIE GÉNÉRALE DES ETABLISSEMENTS MICHELIN | Multi-strand cord in which the basic strands are dual layer cords, rubberized in situ |
8899007, | Nov 27 2009 | NV Bekaert SA | Open multi-strand cord |
Patent | Priority | Assignee | Title |
2133071, | |||
2971321, | |||
3016682, | |||
3395529, | |||
4102118, | Mar 16 1977 | Wire Rope Corporation of America, Inc. | Multi-part wire rope fabric assembly |
6619357, | Apr 24 2002 | GOODYEAR TIRE & RUBBER COMPANY, THE | Belt package for super single truck tires |
6863103, | Nov 11 1999 | Bridgestone Corporation | Steel cord for the reinforcement of a rubber article and tire |
20030106300, | |||
20030226347, | |||
20050126674, | |||
20070131331, | |||
EP1386757, | |||
EP1479535, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 06 2005 | KISH, JAMES CHRISTOPHER | The Goodyear Tire & Rubber Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021718 | /0663 | |
Dec 08 2005 | The Goodyear Tire & Rubber Co. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 06 2012 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 15 2016 | REM: Maintenance Fee Reminder Mailed. |
Dec 02 2016 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Dec 02 2011 | 4 years fee payment window open |
Jun 02 2012 | 6 months grace period start (w surcharge) |
Dec 02 2012 | patent expiry (for year 4) |
Dec 02 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 02 2015 | 8 years fee payment window open |
Jun 02 2016 | 6 months grace period start (w surcharge) |
Dec 02 2016 | patent expiry (for year 8) |
Dec 02 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 02 2019 | 12 years fee payment window open |
Jun 02 2020 | 6 months grace period start (w surcharge) |
Dec 02 2020 | patent expiry (for year 12) |
Dec 02 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |