A DRAM memory cell and process sequence for fabricating a dense (20 or 18 square) layout is fabricated with silicon-on-insulator (SOI) CMOS technology. Specifically, the present invention provides a dense, high-performance SRAM cell replacement that is compatible with existing SOI CMOS technologies. Various gain cell layouts are known in the art. The present invention improves on the state of the art by providing a dense layout that is fabricated with SOI CMOS. In general terms, the memory cell includes a first transistor provided with a gate, a source, and a drain respectively; a second transistor having a first gate, a second gate, a source, and a drain respectively; and a capacitor having a first terminal, wherein the first terminal of said capacitor and the second gate of said second transistor comprise a single entity.
|
14. A memory cell comprising:
a first transistor having a gate, a first source, and a first drain;
a second transistor having a top gate, a side gate, a second source, and a second drain;
a trench located in a semiconductor-on-insulator (SOI) substrate including a stack of, from top to bottom, a semiconductor-on-insulator (SOI) layer, a buried insulator layer, and a bottom substrate layer; and
a capacitor having a first terminal and a storage node dielectric, wherein the first terminal of said capacitor and said side gate of said second transistor comprise a single entity and located in said trench, and wherein said storage node dielectric laterally abuts said SOI layer, said buried insulator layer, and said bottom substrate layer at sidewalls of said trench.
1. A memory cell comprising:
a first transistor having a gate, a first source, and a first drain;
a second transistor having a first gate, a second gate, a second source, and a second drain;
a trench located in a semiconductor-on-insulator (SOI) substrate including a stack of, from top to bottom, a semiconductor-on-insulator (SOI) layer, a buried insulator layer, and a bottom substrate layer; and
a capacitor having a first terminal and a storage node dielectric, wherein said first terminal of said capacitor and said second gate of said second transistor comprise a single entity and located in said trench, and wherein said storage node dielectric laterally abuts said SOI layer, said buried insulator layer, and said bottom substrate layer at sidewalls of said trench.
2. The memory cell of
3. The memory cell of
4. The memory cell of
5. The memory cell of
6. The memory cell of
8. The memory cell of
9. The memory cell of
10. The memory cell of
11. The memory cell of
12. The memory cell of
15. The memory cell of
16. The memory cell of
17. The memory cell of
18. The memory cell of
19. The memory cell of
20. The memory cell of
|
The present invention relates to a semiconductor memory cell and a method of fabricating the same. More particularly, the present invention relates to a dense, high-performance dynamic random access memory (DRAM) cell that is compatible with existing complementary metal oxide semiconductor (CMOS) technologies.
Current advances in performance of microprocessors have outpaced the performance of DRAM. Because of this speed disparity, it is increasingly important to provide increasingly large amounts of cache memory on the microprocessor chip in order to meet the memory bandwidth requirements of contemporary applications. Static random access memory (SRAM) has historically been used for cache memory on processor chips because of its relative ease of process integration. However, because of the need for larger amounts of on-chip memory, the size of the SRAM cell has made its use less attractive. As SRAM memory occupies an increasingly larger percentage of chip area, it becomes a principal determinant of chip size, yield and cost per chip. Therefore, interest in using dynamic random access memory (DRAM) for on-chip cache memory is increasing, because of its high density, and low cost. However the integration of DRAM with CMOS logic involves increased process complexity because of the competing needs of high-performance low-threshold voltage (Vt) logic devices and low-leakage DRAM array devices. Additionally, DRAM cells require large storage capacitors, which are not provided by standard CMOS logic processes. Furthermore, the cost of providing these large DRAM storage capacitors in a CMOS logic process may be prohibitive for certain applications. As minimum feature size is reduced from generation to generation, it becomes increasingly difficult and costly to obtain the high storage capacitance for DRAM cells.
In view of the above, there is a need in the semiconductor industry to provide a dense, cost effective, replacement for SRAM caches integrated with high-performance logic.
The present invention provides a DRAM memory cell and process sequence for fabricating a dense (20 or 18 square) layout fabricated with semiconductor-on-insulator (SOI) CMOS technology. Specifically, the present invention provides a dense, high-performance DRAM cell replacement that is compatible with existing SOI CMOS technologies. Various gain cell layouts are known in the art. The present invention improves on the state of the art by providing a dense layout that is fabricated with SOI CMOS.
In broad terms, the present invention provides a memory cell that includes:
a first transistor having a gate, a source, and a drain respectively;
a second transistor having a first gate, a second gate, a source, and a drain respectively; and
A capacitor having a first terminal, wherein the first terminal of said capacitor and the second gate of said second transistor comprise a single entity.
In a first embodiment of the present invention, a dense (20 square) single ported memory cell layout is provided. In a second embodiment of the present invention, a dense (18 square) dual port memory cell layout is provided.
As with all gain cells, storage capacitor requirements are greatly relaxed relative to conventional DRAM cells. In the first embodiment of the present invention, a single ported cell layout is provided in which the read metal oxide semiconductor field effect transistor (MOSFET) is doubly gated with a read wordline gate on a top surface and a side-gate which is the node of the storage capacitor. The side-gating by the storage capacitor modulates the threshold voltage (Vt) of the read MOSFET.
When a “1” is stored, the Vt of the read transistor is low. When a “0” is stored, the Vt of the read transistor is high. A “1” is distinguished from a “0” by the resistance of the read MOSFET when the read wordline (RWL) is raised. Thus, low-voltage sensing is feasible, as no transfer of charge between the cell and the bitline is required. The inventive cell of the first embodiment employs three address lines, a write wordline (WWL), a read wordline (RWL) and a bitline (BL). The inventive structure of the first embodiment allows the bitline to be shared for both read and write operations. This represents advancement over prior gain cells which need four address lines: WWL, RWL, a write bitline (WBL) and a read bitline (RBL).
Specifically, and in general terms, the memory cell of the first embodiment of the present invention includes:
a first transistor having a gate, a source, and a drain respectively coupled to a write wordline of a memory array, a first node, and a bitline of said memory array;
a second transistor having a first gate, a second gate, a source, and a drain respectively coupled to a read wordline, to said first node, to a voltage source and said bitline; and
a capacitor having a first terminal connected to said first node and a second terminal connected to a voltage source, wherein the first terminal of said capacitor and the second gate of said second transistor comprise a single entity.
In a second embodiment of the present invention, a cell layout is provided in which the read MOSFET is also doubly gated having a read wordline gate on a top surface and a side-gate which is the actual node conductor of the storage capacitor and is directly coupled to the read MOSFET. The side-gating by the storage capacitor in this embodiment also modulates the threshold voltage (Vt) of the read MOSFET.
When a “1” is stored, the Vt of the read transistor is low. When a “0” is stored, the Vt of the read transistor is high. A “1” is distinguished from a “0” by the resistance of the read MOSFET when the read wordline (RWL) is raised. Thus, low-voltage sensing is feasible, as no transfer of charge between the cell and the bitline is required. The inventive cell in the second embodiment is a dual port design, allowing simultaneous write and read of the data from a cell. It is observed that the inventive cell of the second embodiment is distinguished from the cell described in the first embodiment where only a single ported gain cell is employed.
Specifically, and in general terms, the memory cell of the second embodiment of the present invention includes:
a first transistor having a gate, a source, and a drain respectively coupled to a write wordline of a memory array, a first node, and a write bitline of said memory array;
a second transistor having a first gate, a second gate, a source, and a drain respectively coupled to a read wordline, to said first node, to a voltage source and a read bitline; and
a capacitor having a first terminal connected to said first node and a second terminal connected to a voltage source, wherein the first terminal of said capacitor and the second gate of said second transistor comprise a single entity.
In accordance with the present invention and in either of the above embodiments, the second transistor contains a first surface and a second surface, wherein the first surface of the second transistor is horizontally oriented, and the second surface of the second transistor is vertically oriented. Moreover, and in accordance with the present invention, the first surface includes a proximal end that is adjacent to a proximal end of the second surface, and a distal end of the first surface is adjacent to a distal end of the second surface. The second transistor of the memory cell of the present invention further includes a source that is located on one of a proximal end or a distal end, and a drain that is located on the other of the proximal end or the distal end.
In further accordance to the present invention, the first gate of the second transistor is disposed on the first surface, and the second gate of the second transistor is disposed on the second surface. It is noted that in the memory cell of the present invention the single entity is a capacitor electrode of a storage node capacitor that is located within an SOI substrate.
The present invention is also directed to a double-gated transistor for use as a read element of a DRAM cell that includes:
a read wordline gate located atop a surface of a storage capacitor, said storage capacitor is located within a semiconductor-on-insulator substrate; and
a side-gate located within said semiconductor-on-insulator substrate, said side-gate comprising a node conductor of the storage capacitor.
The present invention also relates to methods of fabricating each of the aforementioned semiconductor structures of the first and second embodiments as well as fabricating the double-gated read wordline transistor.
In broad terms, the method of the present invention includes:
providing a semiconductor-on-insulator substrate that comprises at least one via contact extending through an SOI layer and a buried insulating layer of said semiconductor-on-insulator substrate and at least one storage capacitor including a node conductor;
providing an oxide cap atop a portion of said node conductor, while leaving another portion of said node conductor exposed;
recessing the exposed portion of the node conductor and forming a conductive strap in said recess;
removing the oxide cap and forming a top trench oxide atop a portion of said node conductor and said conductive strap; and
forming a read wordline atop the top trench oxide and forming a write wordline atop an exposed surface of said SOI layer, wherein said read wordline includes side-gating and a top gate.
The present invention will now be described in greater detail by referring to the following discussion with reference to the drawings that accompany the present application. It is observed that the drawings of the present application are provided for illustrative purposes and thus they are not drawn to scale.
Reference is first made to
In the cell shown in
The cell shown in
Specifically,
The elements shown in
Each memory cell within the first embodiment of the present invention includes a first transistor T1 provided with a gate, a source, and a drain respectively coupled to a write wordline (WWL) of a memory array, a first node, and a bitline (BL) of said memory array; a second transistor T2 having a first gate, a second gate, a source, and a drain respectively coupled to a read wordline (RWL), to said first node, to a voltage source and said bitline (BL); and a capacitor (STG CAP) having a first terminal connected to said first node and a second terminal connected to a voltage source, wherein the first terminal of said capacitor and the second gate of said second transistor comprise a single entity.
The process flow for fabricating the layout illustrated in
The structure shown in
The SOI substrate, which includes the bottom substrate layer 10, the buried insulating layer 12 and the SOI layer 14, is formed utilizing conventional techniques that are well known to those skilled in the art. For example, the SOI substrate can be formed by utilizing a layer transfer process that includes at least a wafer bonding process. Alternatively, the SOI substrate can be formed by a process referred to as SIMOX (separation by implantation of oxygen) where oxygen ions are first implanted into a Si substrate and thereafter an annealing step is used to precipitate the implanted oxygen ions into a buried oxide region.
Notwithstanding the technique that can be used in forming the SOI substrate, the SOI layer 14 typically has a thickness from about 20 to about 200 nm, with a thickness from about 40 to about 120 nm being more typical. The thickness of the SOI layer 14 can be obtained directly from the technique used in forming the same, or alternatively, a thinning process such as, for example, chemical mechanical polishing, grinding or oxidation and etching, can be used to provide the SOI layer 14 with a thickness within the ranges recited above. The buried insulating layer 12 typically has a thickness from about 20 to about 400 nm, with a thickness from about 40 to about 150 nm being even more typical. The thickness of the substrate layer 10 is inconsequential to the process of the present invention.
After providing the SOI substrate, a hardmask such as an oxide or nitride (not shown) is formed on an upper surface of the SOI layer 14 using techniques that are well known to those skilled in the art. For example, the hardmask can be formed by a conventional deposition process including, but not limited to: chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PCVD), evaporation, chemical solution deposition, sputtering or atomic layer deposition. Alternatively, the hardmask can be formed by a conventional oxidation or nitridation process.
Next, a photoresist (not shown) is applied to an upper surface of the hardmask and then the photoresist is patterned using conventional photolithographic. The photolithographic process includes the steps of exposing the photoresist to a pattern of radiation (in this case a via pattern) and developing the exposed resist using a conventional resist developer. The pattern in the photoresist is first transferred into the hardmask using an etching process and thereafter the patterned photoresist is stripped using a conventional stripping process. The etching step used to transfer the via pattern into the hardmask includes a dry etching process such as, for example, reactive ion etching, ion beam etching or plasma etching. Via contacts 16 are then formed by etching through exposed portions of the SOI layer 14 and the underlying buried insulating layer 12, stopping atop a surface of the substrate layer 10. The etching process used in this step of the present invention may include one of the above mentioned dry etching processes as well as a chemical wet etching process. Combinations of dry etching, wet etching or mixtures of these two types of etching processes are also contemplated in the present invention.
Following the formation of the vias, the vias are then optionally lined with a conductive barrier (not shown) utilizing techniques, such as CVD or PECVD, that are well known in the art. Illustrative examples of some conductive barriers that can be used for lining the vias include, but are not limited to: titanium nitride, tantalum nitride, tantalum silicon nitride or other like materials that can prevent outdiffusion of conductive material from the via into the substrate from occurring. The conductive barrier is used to inhibit propagation of crystal defects from the via into the single crystal substrate.
The via, with or without the optional diffusion barrier, is then filled with polysilicon having a first conductivity type, i.e., n-doped polysi or p-doped polysi. Preferably, n-doped polysilicon is used to fill the vias. The filling of the vias with doped polysilicon may comprise an in-situ doping deposition process or deposition followed by ion implantation may be used. After the fill step, the doped polysilicon is planarized by a conventional planarization process such as chemical mechanical polishing (CMP) and recessed by a timed etching process such as reactive ion etching such that an upper surface of the doped polysilicon is substantially coplanar with an upper surface of the SOI layer 14. In addition to doped polysilicon, the present invention also contemplates using a conductive metal, conductive metal alloy, conductive metal silicide or conductive metal nitride in place of, or in conjunction with, doped polysilicon.
After forming the via contacts 16 into the SOI substrate, a layer of photoresist is applied and patterned by block mask 18 as is also shown in
Next, the structure shown in
The lower oxide layer of the pad stack 20 is typically a thin layer, relative to the upper nitride layer, whose thickness is typically from about 1 to about 10 nm, with a thickness from about 3 to about 7 nm being even more typical. The lower oxide layer of the pad stack 20 can be formed by a deposition process such as, for example, CVD or PECVD. Alternatively, the lower oxide layer of the pad stack 20 can be formed by a thermal oxidation process. The upper nitride layer, which is generally thicker than the lower oxide layer, has a typically thickness from about 50 to about 500 nm, with a thickness from about 100 to about 300 nm being even more typical. The upper nitride layer of the pad stack 20 can be formed by a conventional deposition process such as, for example, CVD or PECVD. It is observed that the pad stack 20 is subsequently used in the present invention for delineation of storage trenches and isolation regions. An additional pad layer of deposited silicon oxide may optionally be formed on top of the pad nitride layer. The optional silicon oxide pad layer serves to protect the pad nitride during etching of the storage trenches.
Storage trenches 22 are then formed using standard well-known processes including, for example, etching through the SOI layer 14, the buried insulating 12 and a portion of the substrate layer 10 to a desired depth. The desired depth of each of the storage trenches 22 is determined by a number of factors including, for example, the depth of the SOI layer and the buried insulating layer as well as the modest storage capacitance requirements of the gain cell. A typical depth for the storages trenches 22 formed at this point of the present invention is from about 0.50 to about 8.0 μm, with a depth from about 1.0 to about 3.0 μm being even more typical. It is noted that the depth of the storage trenches 22 is much less than what is usually used in a conventional trench storage DRAM.
A first dielectric, e.g., the storage dielectric, 24 is then formed on the interior surfaces of the storage trenches 22 utilizing techniques well known in the art. For example, first dielectric 24 can be formed by CVD, PECVD or another like deposition process. Alternatively, the first dielectric 24 can be formed by thermal growth. The first dielectric 24 can be an oxide such as, for example, SiO2, Al2O3, Ta2O3, TiO2 or any other metal oxide or mixed metal oxide. Examples of mixed metal oxides that can be used as the first dielectric 24 include perovskite-type oxides. Multilayers of the aforementioned dielectric materials can be used as the first dielectric 24 as well. In a preferred embodiment, the first dielectric 24 is SiO2.
The thickness of the first dielectric 24 may vary depending on the process used in forming the same, the material and number of layers of the first dielectric 24. Typically, the first dielectric 24 has a thickness from about 0.5 to about 3 nm, with a thickness from about 1 to about 2 nm being even more typical. The first dielectric 24 is used as storage node dielectric. It may also serve as the sidewall dielectric of the side-gated MOSFET, i.e., T2. The first dielectric 24 may also comprise other insulators, such as silicon nitride, or layers of above-mentioned insulators.
Next, the storage trenches 22 including the first dielectric 24 are filled with a node conductor 26 which is typically doped polysilicon. Other types of node conductors, such as metallic conductors and silicides, may also be used in place of polysilicon or in conjunction with polysilicon in the present invention. The node conductor 26 is formed into the storage trenches using a conventional deposition process such as, for example, CVD or PECVD. When doped polysilicon is used, an in-situ doping deposition process can be used. Alternatively, and when doped polysilicon is used as the node conductor 26, the doped polysilicon can be formed by deposition and ion implantation.
Following the deposition step, the node conductor 26 is planarized by conventional means and recessed to a depth approximately level with the upper surface of the SOI layer 14.
An oxide cap 28 is formed atop the storage node conductor 26 using techniques that are well known in the art. Typically, a TEOS (tetraethylorthosilicate) or a high density plasma (HPD) oxide is deposited and planarized to the top of the upper nitride layer of the pad stack 20.
Isolation regions 30 are now formed into the structure shown in
After forming the trench isolation regions 30, a conductive strap 34, which serves to connect the storage node conductor 26 to the write MOSFET T1 (to be subsequently formed), is formed. Specifically, the conductive strap 34 is formed by first forming a window in the oxide cap 28 of the storage trench 22 in an area adjacent to which the write MOSFET T1 will be formed using a strap mask 36 and etching. The etching is typically performed by a dry etching process such as RIE. This etching step exposes a portion of the underlying node conductor 26. The portion of the node conductor 26 now exposed by the window in the oxide cap 28 is recessed by etching to a depth that is approximately at the back interface of the SOI layer 14. The exposed portion of the first dielectric 24 within the storage trench 22 is removed utilizing an etching process that is selective for removing the first dielectric 24. This etching step exposes sidewalls of the SOI substrate, particularly, sidewalls that are comprised of the SOI layer 14. A conductive plug typically comprising polysi or another conductive material is formed in the recessed area utilizing a conventional deposition process. Following deposition of the conductive plug, a planarization process is typically performed that provides a structure in which the conductive plug has an upper surface that is substantially coplanar to an upper surface of the upper nitride layer of the pad stack 20. Next, the planarized conductive plug is recessed by etching to approximately the top surface of the SOI layer 14. This conductive plug forms the conductive strap 34 between the storage node conductor 26 and the write MOSFET T1. The structure including the conductive strap 34 is also shown in
In one embodiment (not shown), the recess at the top of the storage trench 22 is then refilled with oxide, planarized and recessed using processing techniques well known to those skilled in the art. These processing steps form a top trench oxide 38 in each of the storage trenches 22. The top trench oxide 38 is typically formed utilizing a conventional deposition process and the top trench oxide 38 typically has a thickness from about 20 to about 50 nm. Note that the top trench oxide 38 provides isolation between the node conductor and an overlying wordline conductor of the read transistor T2.
Optionally, the remaining portion of the oxide plug may be entirely removed and a thin nitride layer (having a thickness of about 20 nm or less) may be formed by a conventional deposition process atop the storage node conductor 26. The optional step, which is preferred in the present invention, is shown in
In a standard manner, the upper nitride layer of the pad stack 20 is removed and the upper surface of the SOI layer 14 is cleaned using one of the many conventional cleaning techniques that are well known in the art. During this cleaning process, the lower oxide layer of the pad stack 20 is typically removed. A transfer gate oxide is then formed on the cleaned surface of the SOI layer 14 utilizing a conventional thermal growing process such as oxidation. The transfer gate oxide is typically SiO2. The thickness of the transfer gate oxide may vary, but typically the transfer gate oxide has a thickness from about 1.5 to about 7 nm, with a thickness from about 2 to about 5 nm being even more typical. The structure including the transfer gate oxide is shown in
Next, a wordline conductor 44 is formed atop the surface of the transfer gate oxide 42 and the top trench oxide 38 using a conventional deposition process such as CVD or PECVD. The wordline conductor is comprised of a conductive material such as doped polysilicon, a conductive metal, a conductive metal alloy, a conductive metal silicide, a conductive metal nitride or multilayers thereof. Typically, the wordline conductor 44 is comprised of n-doped polysilicon. In the embodiments where a polysilicon gate conductor is employed, a silicide layer (not specifically shown) can be formed atop the polysilicon gate conductor utilizing a conventional silicidation process which includes, for example, deposition of a silicide metal (e.g., Ti, W, or Ni), annealing at a first temperature to form a metal silicide, removing excess metal that does not react with the polysilicon by a selective etching process, and optionally performing a second anneal at a second temperature.
A wordline cap 46 comprised of SiN or another like dielectric material is then typically deposited atop the wordline conductor 44. The wordline cap 46 serves as a protective cap over the wordlines for the formation of borderless diffusion contacts. The gate stack including layers 44 and 46 is then patterned and etched using processing techniques well known in the art. These steps form the write wordlines (WWLs) and the read wordlines (RWLs) of the inventive structure. Note that the RWLs are located over the storage trenches 22 and the WWLs are located atop the SOI layer 14. This is shown, for example, in
A gate spacer 48 comprised of at least one insulator, preferably a nitride, is formed utilizing a conformal deposition process, followed by reactive ion etching or another like etching process. An optional gate sidewall oxide (not shown) can be formed by a thermal oxidation process prior to gate spacer 48 formation. The gate spacer 48 may comprise a single insulator material or a combination of more than one insulator material. The gate spacer 48 has a width, as measured at the bottom surface that lies above the SOI layer or the storage trenches, from about 1 to about 20 nm, with a width from about 4 to about 10 nm being more typical.
Source/drain regions 50 are then formed into the SOI layer 14 at the footprint of the write wordlines using conventional ion implantation and annealing. The source/drain regions 50 are preferably n-type when the wordline conductor is n-type, and p-type when the wordline conductor is p-type. The resultant structure that is formed after wordline formation, gate spacer formation and source/drain formation is shown, for example, in
An interlayer dielectric 52 such as an oxide is then deposited over the structure and planarized by conventional techniques well known in the art. Bitline (BL) contact openings are then formed through the interlayer dielectric 52 and any transfer gate oxide 42 remaining over the source/drain regions 50. The BL contact openings are formed via lithography and etching.
A cut through section B-B is shown in
Bitlines 56, which comprises W or another like conductor, are then formed as is shown in
The above description which makes references to
The side-gating by the storage capacitor modulates the threshold voltage of the read MOSFET. When a “1” is stored, the Vt of the read transistor is low. When a “0” is stored, the Vt of the read transistor is high. A “1” is distinguished from a “0” by the resistance of the read MOSFET when the read wordline is raised. Thus, low-voltage sensing is feasible, as no transfer of charge between the storage capacitor and the write bitline is required.
The inventive cell of the second embodiment is a dual ported design, allowing simultaneous write and read of data from a cell. The cell of the first embodiment described above is single ported.
T1 is the write transistor and is a conventional MOSFET. A “1” or “0” is written to the storage capacitor by raising the write wordline (WWL) and transferring charge between the write bitline (WBL) and the storage capacitor. The node of the storage capacitor serves as one of the two gates of the read MOSFET T2. In this embodiment of the present invention, the node N5 gating the sidewall of T2 is integrated with the storage capacitor (STG CAP) and forms a compact structure by itself. This enables the dense cell layout disclosed in the second embodiment of the present invention. It is again observed that the cell shown in
Each memory cell of the second embodiment of the present invention includes a first transistor T1 provided with a gate, a source, and a drain respectively coupled to a write wordline (WWL) of a memory array, a first node, and a write bitline of said memory array; a second transistor (T2) having a first gate, a second gate, a source, and a drain respectively coupled to a read wordline, to said first node, to a voltage source and a read bitline; and a capacitor (STG CAP) having a first terminal connected to said first node and a second terminal connected to a voltage source, wherein first terminal of said capacitor and the second gate of said second transistor comprise a single entity.
The process flow used in forming the layout shown in
The structure shown in
Next, a layer of photoresist is patterned by the block mask and dopants, preferably n-type dopants, are implanted into the open window regions forming dopant regions 100. The photoresist is stripped and the hardmask is removed.
The storage capacitor is then formed utilizing the processing steps described above in the first embodiment of the present invention. Processing continues as described above in
While the present invention has been particularly shown and described with respect to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in forms and details may be made without departing from the spirit and scope of the present invention. It is therefore intended that the present invention not be limited to the exact forms and details described and illustrated, but fall within the scope of the appended claims.
Mandelman, Jack A., Radens, Carl J., Cheng, Kangguo, Wang, Geng, Divakaruni, Ramachandra
Patent | Priority | Assignee | Title |
10037808, | May 20 2010 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for driving semiconductor device |
10510757, | Oct 30 2009 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device including storage element |
10797054, | Dec 28 2009 | Semiconductor Energy Laboratory Co., Ltd. | Memory device and semiconductor device |
10811417, | Oct 30 2009 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
11322498, | Oct 30 2009 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
11424246, | Dec 28 2009 | Semiconductor Energy Laboratory Co., Ltd. | Memory device and semiconductor device |
11917838, | Oct 30 2009 | Semiconductor device | |
11963374, | Oct 30 2009 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
8896042, | Oct 30 2009 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device comprising oxide semiconductor |
9105511, | Oct 30 2009 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device comprising oxide semiconductor |
9111634, | Jul 13 2012 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Methods and structures for multiport memory devices |
9263473, | Aug 06 2010 | Semiconductor Energy Laboratory Co., Ltd. | Oxide semiconductor memory device |
9305630, | Jul 17 2013 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for driving the same |
9343138, | Dec 16 2013 | Samsung Electronics Co., Ltd. | Sense amplifier, semiconductor memory device using thereof and read method thereof |
9373640, | Oct 30 2009 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
9455260, | Jul 13 2012 | NXP USA, INC | Methods and structures for multiport memory devices |
9472559, | Dec 28 2009 | Semiconductor Energy Laboratory Co., Ltd. | Memory device and semiconductor device |
9496016, | Jan 16 2013 | Samsung Electronics Co., Ltd. | Memory cell and memory device having the same |
9646972, | Sep 25 2013 | Intel Corporation | Methods of forming buried vertical capacitors and structures formed thereby |
9672895, | Dec 16 2013 | Samsung Electronics Co., Ltd. | Sense amplifier, semiconductor memory device using thereof and read method thereof |
9685447, | Oct 30 2009 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device comprising transistor including oxide semiconductor |
9734914, | May 20 2010 | Semiconductor Energy Laboratory Co., Ltd. | Method for driving a semiconductor device having a reading transistor coupled to an oxide semiconductor writing transistor |
Patent | Priority | Assignee | Title |
4763181, | Dec 08 1986 | Freescale Semiconductor, Inc | High density non-charge-sensing DRAM cell |
5220530, | Aug 07 1990 | OKI SEMICONDUCTOR CO , LTD | Semiconductor memory element and method of fabricating the same |
5675160, | Mar 15 1995 | NEC Electronics Corporation | Semiconductor memory device having an internal amplification function |
5732014, | Feb 21 1997 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Merged transistor structure for gain memory cell |
6314017, | Jul 22 1999 | Sony Corporation | Semiconductor memory device |
6804142, | Nov 12 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | 6F2 3-transistor DRAM gain cell |
JP2001230329, | |||
JP7045716, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 12 2005 | RADENS, CARL J | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016441 | /0537 | |
Jul 13 2005 | MANDELMAN, JACK A | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016441 | /0537 | |
Jul 21 2005 | WANG, GENG | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016441 | /0537 | |
Jul 21 2005 | CHENG, KANGGUO | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016441 | /0537 | |
Aug 19 2005 | DIVAKARUNI, RAMACHANDRA | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016441 | /0537 | |
Aug 24 2005 | International Business Machines Corporation | (assignment on the face of the patent) | / | |||
Jun 29 2015 | International Business Machines Corporation | GLOBALFOUNDRIES U S 2 LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036550 | /0001 | |
Sep 10 2015 | GLOBALFOUNDRIES U S INC | GLOBALFOUNDRIES Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036779 | /0001 | |
Sep 10 2015 | GLOBALFOUNDRIES U S 2 LLC | GLOBALFOUNDRIES Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036779 | /0001 | |
Nov 27 2018 | GLOBALFOUNDRIES Inc | WILMINGTON TRUST, NATIONAL ASSOCIATION | SECURITY AGREEMENT | 049490 | /0001 | |
Oct 22 2020 | GLOBALFOUNDRIES Inc | GLOBALFOUNDRIES U S INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054633 | /0001 | |
Nov 17 2020 | WILMINGTON TRUST, NATIONAL ASSOCIATION | GLOBALFOUNDRIES Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 054636 | /0001 | |
Nov 17 2020 | WILMINGTON TRUST, NATIONAL ASSOCIATION | GLOBALFOUNDRIES U S INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 056987 | /0001 |
Date | Maintenance Fee Events |
Dec 11 2008 | ASPN: Payor Number Assigned. |
Jul 16 2012 | REM: Maintenance Fee Reminder Mailed. |
Oct 04 2012 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 04 2012 | M1554: Surcharge for Late Payment, Large Entity. |
May 19 2016 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 21 2020 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 02 2011 | 4 years fee payment window open |
Jun 02 2012 | 6 months grace period start (w surcharge) |
Dec 02 2012 | patent expiry (for year 4) |
Dec 02 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 02 2015 | 8 years fee payment window open |
Jun 02 2016 | 6 months grace period start (w surcharge) |
Dec 02 2016 | patent expiry (for year 8) |
Dec 02 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 02 2019 | 12 years fee payment window open |
Jun 02 2020 | 6 months grace period start (w surcharge) |
Dec 02 2020 | patent expiry (for year 12) |
Dec 02 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |