A vestigial sideband (VSB) modulation transmission system and a method for encoding an input signal in the system are disclosed. According to the present invention, the VSB transmission system includes a convolutional encoder for encoding an input signal, a trellis-coded modulation (TCM) encoder for encoding the convolutionally encoded signal, and a signal mapper mapping the trellis-coded signal to generate a corresponding output signal. Different types of the convolutional encoders are explored, and the experimental results showing the performances of the VSB systems incorporating each type of encoders reveals that a reliable data transmission can be achieved even at a lower input signal to noise ratio when a convolutional encoder is used as an error-correcting encoder in a VSB system.
|
2. A method for encoding an input signal in a vestigial sideband (VSB) modulation transmission system having a 1/2 rate convolutional encoder and a 2/3 rate trellis-coded modulation (TCM) encoder, the method comprising:
generating first and second output signals by encoding the input signal using the 1/2 rate convolutional encoder;
generating third, fourth, and fifth output signals by encoding the first and second output signals using the 2/3 rate TCM encoder; and
generating a final output signal by mapping the third, fourth, and fifth output signals,
wherein the first output signal is generated by bypassing the input signal and a current value of the second output signal is generated based on the input signal and a previous value of the second output signal,
wherein the current value of the second output signal is generated by:
multiplying the input signal by a constant ki to generate an ith multiplier value for i=1, 2, 3 . . . n, wherein the constant Ki is greater than 1 for at least one value i;
storing the previous value of the second output signal as a first memory value; and
storing an i+1th memory value obtained by adding an ith memory value and the ith multiplier value for i=1, 2, 3 . . . n,
wherein the current value of the second output signal is the n+1th memory value obtained.
1. A vestigial sideband (VSB) modulation transmission system, comprising:
a 1/2 rate convolutional encoder encoding an input signal to generate first and second output signals, the convolutional encoder generating the first output signal by bypassing the input signal and generating a current value of the second output signal based on the input signal and a previous value of the second output signal;
a 2/3 rate trellis-coded modulation (TCM) encoder encoding the first and second output signals to generate third, fourth, and fifth output signals; and
a signal mapper mapping the third, fourth, and fifth output signals,
wherein the 1/2 rate convolutional encoder comprises:
a plurality of multipliers, each ith multiplier multiplying said input signal by a constant ki to generate an ith multiplier value, wherein the constant Ki is greater than 1 for at least one value i;
a plurality of memories, a first memory storing the previous value of the second output signal as a first memory value and each i+1th memory storing an i+1th memory value obtained by adding an ith memory value stored in an ith memory and said ith multiplier value; and
a plurality of adders, each ith adder adding the ith memory value and the ith multiplier value,
wherein i=1, 2, 3, . . . , n, and the n+1th memory value stored in the n+1th memory is the current value of the second output signal.
|
1. Field of the Invention
The present invention relates to a digital communication system, and more particularly, to a vestigial sideband (VSB) modulation transmission system including a TCM (Trellis-Coded Modulation) encoder and an additional 1/2 rate convolutional encoder having a superior state transition property when connected to the TCM encoder in the system.
2. Background of the Related Art
The TCM coded 8-VSB modulation transmission system has been selected as a standard in 1995 for the U.S. digital terrestrial television broadcasting, and the actual broadcasting incorporating the system has started since the second half of the year 1998.
In general, a digital communication system performs error correcting processes to correct the errors occurred at the communication channels. The total amount of the transmitting data is increased by such error correcting coding processes since it creates additional redundancy bits added to the information bits. Therefore, the required bandwidth is usually increased when using an identical modulation technique. Trellis-coded modulation (TCM) combines multilevel modulation and coding to achieve coding gain without bandwidth expansion. Also an improved signal to noise ratio can be achieved by using the trellis-coded modulation (TCM) technique.
Accordingly, the present invention is directed to a VSB transmission system and a method for encoding an input signal in the VSB transmission system that substantially obviates one or more problems due to limitations and disadvantages of the related art.
An object of the present invention is to provide a VSB transmission system that can transmit data reliably even at a lower signal to noise ratio and can have an optimal state transition property when connected to the TCM encoder by using a 1/2 rate convolutional encoder as an additional error correcting encoder in the system.
Another object of the present invention is to provide a method for encoding an input signal in a VSB modulation transmission system enabling a data sender to achieve more reliable data transmission at a lower signal to noise ratio and to have an optimal state transition property of a 1/2 convolutional encoder, which is concatenated to the TCM encoder for error correcting in the system.
Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a vestigial sideband (VSB) modulation transmission system includes a convolutional encoder encoding an input signal; a trellis-coded modulation (TCM) encoder encoding the convolutionally encoded input signal; and a signal mapper mapping the trellis-coded input signal to generate a corresponding output signal.
In another aspect of the present invention, a vestigial sideband (VSB) modulation transmission system includes a 1/2 rate convolutional encoder encoding an input signal to generate first and second output signals; a 2/3 rate trellis-coded modulation (TCM) encoder encoding the first and second output signals to generate third, forth and fifth output signals; and a signal mapper mapping the third, forth, and fifth output signals.
There are three different types of 1/2 rate convolutional encoders that can be used in this aspect of the present invention. The first type includes a plurality of multipliers, each i th multiplier multiplying the input signal by a constant ki to generate an i th multiplier value; a plurality of memories, a first memory storing the previous second output value as a first memory value and each i+1 th memory storing an i+1 th memory value obtained by adding an i th memory value stored in a i th memory and the i th multiplier value; and a plurality of adders, each i th adder adding the I th memory value and the i th multiplier value, where i=1, 2, 3, . . . , n, and a n+1 th memory value stored in a n+1th memory is the second output signal.
The second type of the 1/2 rate convolutional encoder includes a first memory storing the input signal as a first memory value; a second memory storing the first memory value as a second memory value; a first adder adding the input signal and the second memory value to generate the first output signal; and a second adder adding the input signal and the first and second memory values to generate the second output signal.
Finally, the third type of the 1/2 rate convolutional encoder includes a first memory storing the previous second output value as a first memory value; an adder adding the input signal and the first memory value; and a second memory storing a result from the adder as a second memory value, the second memory value being the second output signal.
In another aspect of the present invention, a method for encoding an input signal in a vestigial sideband (VSB) modulation transmission system includes the steps of encoding the input signal by the convolutional encoder; encoding the convolutionally encoded input signal by the TCM encoder; and generating a final output signal my mapping the trellis-coded input signal.
In a further aspect of the present invention, a method for encoding an input signal in a vestigial sideband (VSB) modulation transmission system includes the steps of generating first and second output signals by encoding the input signal using the 1/2 convolutional encoder; generating a third, forth, and fifth output signals by encoding the first and second output signals using the 2/3 rate TCM encoder; and generating a final output signal by mapping the third, forth, and fifth output signals.
The second output signal can be generated using three different methods in the last aspect of the present invention described above. The first method for generating the second output signal includes the steps of multiplying the input signal by a constant ki to generate an i th multiplier value for i=1, 2, 3 . . . n; storing the previous second output value as a first memory value; and storing an i+1 th memory value obtained by adding an i th memory value and the i th multiplier value for i=1, 2, 3 . . . n, where the second output signal is an n+1th memory value.
The second method for generating the second output signal includes the steps of storing the input signal as a first memory value; storing the first memory value as a second memory value; generating the first output signal by adding the input signal and the second memory value; and generating the second output signal by adding the input signal and the first and second memory values.
Finally, the third method for generating the second output signal includes the steps of storing the previous second output value as a first memory value; adding the input signal and the first memory value; storing the value resulted from the adding step as a second memory value; and outputting the second memory value as the second output signal.
It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention. In the drawings;
where z represents a branch output. A branch metric is a probability measure of receiving r when the branch output z is sent from the encoder. It is an Euclidean distance between r and z, and can be obtained by the following equation:
Branch Metric∝Log(p(r/z))=|r−z|2. [Equation 2]
A metric corresponding to a path including S0, S1, S2, . . . , Sk can be calculated by the equation:
The path metric is an accumulated value of the branch metrics of the branches included in a path and represents a probability of the path.
As shown in the state transition diagram of
When selecting a path between two paths merging into one state, the probability of the path selection becomes higher as the difference between the metrics of the two paths is larger. Since a path metric represents the sum of metrics of the branches included in a path, it is desired to have the largest difference between the branch metrics in order to maximize the performance of the encoder.
The 1/2 rate convolutional encoder shown in
According to
In conclusion, data can be transmitted at a lower signal to noise ratio by concatenating a 1/2 rate convolutional encoder to the TCM encoder in a VSB transmission system according the present invention.
The forgoing embodiments are merely exemplary and are not to be construed as limiting the present invention. The present teachings can be readily applied to other types of apparatuses. The description of the present invention is intended to be illustrative, and not to limit the scope of the claims. Many alternatives, modifications, and variations will be apparent to those skilled in the art.
Choi, In Hwan, Gu, Young Mo, Kang, Kyung Won, Kwak, Kook Yeon
Patent | Priority | Assignee | Title |
10057009, | May 23 2006 | LG Electronics Inc. | Digital television transmitting system and receiving system and method of processing broadcast data |
10070160, | Mar 26 2007 | LG Electronics Inc. | DTV receiving system and method of processing DTV signal |
10097312, | Jun 26 2007 | LG Electronics Inc. | Digital broadcast system for transmitting/receiving digital broadcast data, and data processing method for use in the same |
10244274, | Mar 26 2007 | LG Electronics Inc. | DTV receiving system and method of processing DTV signal |
10277255, | Feb 10 2006 | LG Electronics Inc. | Channel equalizer and method of processing broadcast signal in DTV receiving system |
10454616, | Oct 12 2006 | LG Electronics Inc. | Digital television transmitting system and receiving system and method of processing broadcasting data |
7646828, | Aug 24 2007 | LG Electronics Inc | Digital broadcasting system and method of processing data in digital broadcasting system |
7739581, | Apr 29 2006 | LG Electronics Inc | DTV transmitting system and method of processing broadcast data |
7804860, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
7822134, | Mar 30 2007 | LG Electronics Inc | Digital broadcasting system and method of processing data |
7831885, | Jul 04 2007 | LG Electronics Inc | Digital broadcast receiver and method of processing data in digital broadcast receiver |
7840868, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
7873104, | Oct 12 2006 | LG Electronics Inc | Digital television transmitting system and receiving system and method of processing broadcasting data |
7876835, | Feb 10 2006 | LG Electronics Inc | Channel equalizer and method of processing broadcast signal in DTV receiving system |
7881408, | Mar 26 2007 | LG Electronics Inc | Digital broadcasting system and method of processing data |
7940855, | Mar 26 2007 | LG Electronics Inc | DTV receiving system and method of processing DTV signal |
7953157, | Jun 26 2007 | LG Electronics Inc | Digital broadcasting system and data processing method |
7965778, | Aug 24 2007 | LG Electronics Inc | Digital broadcasting system and method of processing data in digital broadcasting system |
8005167, | Aug 24 2007 | LG Electronics Inc | Digital broadcasting system and method of processing data in digital broadcasting system |
8018976, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
8018977, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
8018978, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
8023047, | Mar 26 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data |
8042019, | Jul 04 2007 | LG Electronics Inc. | Broadcast transmitting/receiving system and method of processing broadcast data in a broadcast transmitting/receiving system |
8054891, | Feb 10 2006 | LG Electronics Inc. | Channel equalizer and method of processing broadcast signal in DTV receiving system |
8068561, | Mar 26 2007 | LG Electronics Inc. | DTV receiving system and method of processing DTV signal |
8098694, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
8099654, | Aug 25 2008 | LG Electronics Inc | Digital broadcasting system and method of processing data in the digital broadcasting system |
8135034, | Jun 26 2007 | LG Electronics Inc | Digital broadcast system for transmitting/receiving digital broadcast data, and data processing method for use in the same |
8135038, | Jun 26 2007 | LG Electronics Inc. | Digital broadcast system for transmitting/receiving digital broadcast data, and data processing method for use in the same |
8165244, | Aug 24 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data in digital broadcasting system |
8201050, | Jul 04 2007 | LG Electronics Inc. | Broadcast transmitting system and method of processing broadcast data in the broadcast transmitting system |
8204137, | Feb 10 2006 | LG Electronics Inc. | Channel equalizer and method of processing broadcast signal in DTV receiving system |
8213544, | Mar 30 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data |
8218675, | Mar 26 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing |
8223884, | Mar 26 2007 | LG Electronics Inc. | DTV transmitting system and method of processing DTV signal |
8276177, | Apr 06 2007 | LG Electronics Inc | Method for controlling electronic program information and apparatus for receiving the electronic program information |
8335280, | Aug 24 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data in digital broadcasting system |
8351497, | May 23 2006 | LG Electronics Inc | Digital television transmitting system and receiving system and method of processing broadcast data |
8355451, | Feb 10 2006 | LG Electronics Inc. | Channel equalizer and method of processing broadcast signal in DTV receiving system |
8370707, | Aug 24 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data in the digital broadcasting system |
8370728, | Jul 28 2007 | LG Electronics Inc | Digital broadcasting system and method of processing data in digital broadcasting system |
8374252, | Jun 26 2007 | LG Electronics Inc. | Digital broadcasting system and data processing method |
8391404, | Aug 24 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data in digital broadcasting system |
8429504, | Apr 29 2006 | LG Electronics Inc. | DTV transmitting system and method of processing broadcast data |
8433973, | Jul 04 2007 | LG Electronics Inc | Digital broadcasting system and method of processing data |
8473807, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
8488717, | Mar 26 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data |
8526508, | Feb 10 2006 | LG Electronics Inc. | Channel equalizer and method of processing broadcast signal in DTV receiving system |
8532222, | Mar 30 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data |
8542709, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
8611731, | Oct 12 2006 | LG Electronics Inc. | Digital television transmitting system and receiving system and method of processing broadcast data |
8670463, | Jun 26 2007 | LG Electronics Inc. | Digital broadcast system for transmitting/receiving digital broadcast data, and data processing method for use in the same |
8689086, | Apr 29 2006 | LG Electronics Inc. | DTV transmitting system and method of processing broadcast data |
8731100, | Mar 26 2007 | LG Electronics Inc. | DTV receiving system and method of processing DTV signal |
8804817, | May 23 2006 | LG Electronics Inc. | Digital television transmitting system and receiving system and method of processing broadcast data |
8954829, | Jul 04 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data |
8964856, | Aug 24 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data in digital broadcasting system |
8984381, | Apr 29 2006 | LG Electronics Inc. LLP | DTV transmitting system and method of processing broadcast data |
9094159, | Jul 04 2007 | LG Electronics Inc. | Broadcasting transmitting system and method of processing broadcast data in the broadcast transmitting system |
9178536, | Apr 29 2006 | LG Electronics Inc. | DTV transmitting system and method of processing broadcast data |
9184770, | Jul 04 2007 | LG Electronics Inc. | Broadcast transmitter and method of processing broadcast service data for transmission |
9185413, | Feb 10 2006 | LG Electronics Inc. | Channel equalizer and method of processing broadcast signal in DTV receiving system |
9198005, | Mar 26 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data |
9369154, | Aug 24 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data in digital broadcasting system |
9392281, | Oct 12 2006 | LG Electronics Inc. | Digital television transmitting system and receiving system and method of processing broadcasting data |
9425827, | Apr 29 2006 | LG Electronics Inc. | DTV transmitting system and method of processing broadcast data |
9444579, | Jul 04 2007 | LG Electronics Inc. | Broadcast transmitter and method of processing broadcast service data for transmission |
9490936, | Jun 26 2007 | LG Electronics Inc. | Digital broadcast system for transmitting/receiving digital broadcast data, and data processing method for use in the same |
9521441, | Mar 30 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data |
9564989, | May 23 2006 | LG Electronics Inc. | Digital television transmitting system and receiving system and method of processing broadcast data |
9660764, | Jul 04 2007 | LG Electronics Inc. | Broadcast transmitter and method of processing broadcast service data for transmission |
9680506, | Apr 29 2006 | LG Electronics Inc. | DTV transmitting system and method of processing broadcast data |
9736508, | Mar 26 2007 | LG Electronics Inc. | DTV receiving system and method of processing DTV signal |
9755849, | Aug 24 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data in digital broadcasting system |
9831986, | Oct 12 2006 | LG Electronics Inc. | Digital television transmitting system and receiving system and method of processing broadcasting data |
9860016, | Jun 26 2007 | LG Electronics Inc. | Digital broadcast system for transmitting/receiving digital broadcast data, and data processing method for use in the same |
9912354, | Mar 26 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data |
9924206, | Mar 26 2007 | LG Electronics Inc. | DTV receiving system and method of processing DTV signal |
RE46728, | Jun 26 2007 | LG Electronics Inc. | Digital broadcasting system and data processing method |
RE46891, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
RE47183, | Aug 24 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data in digital broadcasting system |
RE47294, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
RE48627, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
RE49757, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
Patent | Priority | Assignee | Title |
5087975, | Nov 09 1990 | Zenith Electronics Corporation | VSB HDTV transmission system with reduced NTSC co-channel interference |
5233630, | May 03 1991 | QUALCOMM INCORPORATED A CORPORATION OF DELAWARE | Method and apparatus for resolving phase ambiguities in trellis coded modulated data |
5488691, | Nov 17 1993 | International Business Machines Corporation | Memory card, computer system and method of operation for differentiating the use of read-modify-write cycles in operating and initializaiton modes |
5555024, | Dec 23 1994 | Samsung Electronics Co., Ltd. | Transmitters for burying digital signals within the trace and retrace intervals of NTSC television signals |
5563884, | Mar 27 1995 | Zenith Electronics Corporation; ZENITH ELECTRONICS CORP | Reducing multiplex jitter in an ATM/MPEG system |
5583889, | Jul 08 1994 | Zenith Electronics Corporation | Trellis coded modulation system for HDTV |
5600677, | Jul 08 1994 | Zenith Electronics Corporation | Trellis coded modulation system for digital television signal |
5602595, | Apr 06 1995 | ZENITH ELECTRONICS CORP | ATV/MPEG sync system |
5629958, | Jul 08 1994 | Zenith Electronics Corporation | Data frame structure and synchronization system for digital television signal |
5636251, | Jul 08 1994 | Zenith Electronics Corporation | Receiver for a trellis coded digital television signal |
5636252, | May 04 1994 | SAMSUNG ELECTRONICS CO , LTD | Automatic gain control of radio receiver for receiving digital high-definition television signals |
5706312, | Oct 11 1994 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Trellis coded modulation employing lower dimensionality convolutional encoder |
5831690, | Dec 06 1996 | RCA Thomson Licensing Corporation | Apparatus for formatting a packetized digital datastream suitable for conveying television information |
5923711, | Apr 02 1996 | LG Electronics Inc | Slice predictor for a signal receiver |
5946047, | Mar 12 1997 | Hybrid Patents Incorporated | Network system for handling digital data over a TV channel |
5953376, | Sep 26 1996 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Probabilistic trellis coded modulation with PCM-derived constellations |
6075569, | Jul 09 1996 | SAMSUNG ELECTRONICS CO , LTD | Method and apparatus for switching an operation mode of an HDTV system |
6118825, | Aug 11 1997 | SONY CORPORATION, A CORP OF JAPAN | Digital data transmission device and method, digital data demodulation device and method, and transmission medium |
6141384, | Feb 14 1997 | FUNAI ELECTRIC CO , LTD | Decoder for trellis encoded interleaved data stream and HDTV receiver including such a decoder |
6208643, | Oct 11 1996 | Sarnoff Corporation | Apparatus and method for analyzing bitstreams |
6490002, | Feb 03 1999 | Sony Corporation; Sony Electronics | Supplemental data path for supporting on-screen displays from external sources in a monitor/TV receiver using a secondary analog signal path |
6519298, | Dec 16 1998 | SAMSUNG ELECTRONICS CO , LTD | Circuit for discriminating between received signals and method therefor |
6690738, | Oct 20 2000 | Lockheed Martin Corp. | Trellis coded modulation system employing a flexible trellis coded modulation decoder |
6697098, | Aug 26 1998 | THOMSON LICENSING S A | Co-channel interference detection network for an HDTV receiver |
6708149, | Oct 30 1998 | Nuance Communications, Inc | Vector fixed-lag algorithm for decoding input symbols |
6724832, | Jan 29 1999 | ADC BROADBAND WIRELESS GROUP, INC | Vestigial sideband generator particularly for digital television |
6738949, | May 13 1998 | InterDigital Patent Holdings, Inc | Error correction circuit and error correction method |
6744822, | Aug 14 2000 | Koninklijke Philips Electronics N V | FEC scheme for encoding two bit-streams |
6760077, | Jan 19 2001 | LG Electronics, Inc. | VSB reception system with enhanced signal detection for processing supplemental data |
6763025, | Mar 12 2001 | Inceptia LLC | Time division multiplexing over broadband modulation method and apparatus |
6788710, | Mar 19 1998 | Thomson Licensing S.A. | Auxiliary data insertion in a transport datastream |
20020085632, | |||
20040028076, | |||
20040207757, | |||
20040240590, | |||
KR20000018531, | |||
KR20000028757, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 14 2001 | CHOI, IN HWAN | LG Electronics Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012218 | /0974 | |
Sep 14 2001 | GU, YOUNG MO | LG Electronics Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012218 | /0974 | |
Sep 14 2001 | KANG, KYUNG WON | LG Electronics Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012218 | /0974 | |
Sep 14 2001 | KWAK, KOOK YEON | LG Electronics Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012218 | /0974 | |
Oct 01 2001 | LG Electronics, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 04 2009 | ASPN: Payor Number Assigned. |
Sep 04 2009 | RMPN: Payer Number De-assigned. |
Jul 14 2010 | RMPN: Payer Number De-assigned. |
Jul 15 2010 | ASPN: Payor Number Assigned. |
May 22 2012 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 24 2016 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 13 2020 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 02 2011 | 4 years fee payment window open |
Jun 02 2012 | 6 months grace period start (w surcharge) |
Dec 02 2012 | patent expiry (for year 4) |
Dec 02 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 02 2015 | 8 years fee payment window open |
Jun 02 2016 | 6 months grace period start (w surcharge) |
Dec 02 2016 | patent expiry (for year 8) |
Dec 02 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 02 2019 | 12 years fee payment window open |
Jun 02 2020 | 6 months grace period start (w surcharge) |
Dec 02 2020 | patent expiry (for year 12) |
Dec 02 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |