A chemical analysis method for detecting, identifying and reporting contraband, illegal drugs, explosives, toxic chemicals, decaying animal and vegetable matter, and concealed human beings located in secure spaces such as cargo shipping containers. chemical analysis results are accumulated and added to effect definitive analyses over extended periods of time while the containers are in transit. Individual containers are equipped with a device employing the method. The analysis method consists of accumulation and addition of analytical chemical instrumentation, measurements of trace quantities of target chemical vapors inside of shipping containers while the containers are in transit. Cumulative and additive spectrometric analyses coupled with increased target chemical concentrations, due to chemical vapor build up over the long periods of time that containers are in transit, result in significantly increased electronic signal-to-noise in spectrometric measurements and increased spectrometric signal strengths that are indicative of the presence of target chemicals.
|
13. A method for detection and identification of predetermined target chemicals in confined spaces of refrigerated shipping containers, storage containers and other cargo containers in secure spaces, the method comprising the steps of:
disposing a small, low-powered ion mobility spectrometer in the refrigerated container, the spectrometer having a library of spectra of the predetermined target chemicals,
pre-concentrating vapors of the target chemicals by collecting the vapors on an adsorbing media,
desorbing the collected vapors of the target chemicals into the ion mobility spectrometer during a period when the containers are in transit and awaiting distribution.
comparing the analysis spectrum with the spectra in the library of the spectrometer, and providing a report of detection and identification when the spectrum of the sampled confined space corresponds with a spectrum in the library.
12. A method for detection and identification of predetermined target chemicals in confined spaces of shipping containers, storage containers, and other cargo containers and secure spaces, the method comprising the steps of:
disposing a small, low-powered ion mobility spectrometer in the container, the spectrometer having a library of spectra of the predetermined target chemicals,
obtaining an analysis spectrum of the confined spaces of the container,
deconvolving the analysis spectrum and storing it in the memory of the ion mobility spectrometer during a period when the containers are in transit and awaiting distribution,
comparing the deconvolved analysis spectrum with the library of the spectrometer, and
providing a report of detection and identification when the deconvolved spectrum of the sampled confined spaces correspond with a spectrum in the library, the report being stored in memory and available upon request.
1. A method for detection and identification of illegal drugs, explosives, toxic chemicals, decaying animal and vegetable matter, and concealed human beings located in confined spaces of shipping containers, storage containers and other cargo containers and secure spaces, the method comprising the steps of:
providing an analytical chemical detector which has low power requirements and is powered by a battery to operate the detector and to sample the atmosphere within the confined spaces,
disposing the analytical chemical detector in said confined spaces for a period of time wherein there is an accumulation of target chemicals associated with the illegal drugs, explosives, toxic chemicals, decaying animal and vegetable matter, and human effluvia, the analytical chemical detector being sensitive to minute concentrations of the target chemicals,
providing a means for accumulating, adding and processing chemical analysis measurements periodically over said period of time as the target chemicals accumulate to significant concentrations in said confined spaces,
providing digital signal processing algorithms to identify the target chemicals,
providing a means for reporting the presence of the target chemicals to a device located outside of the confined spaces.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
9. The method of
10. The method of
11. The method of
14. The method of
15. The method of
|
1. Field of the Invention
The invention is a method of chemical analysis for detecting and reporting contraband such as illicit and illegal drugs, explosives, toxic chemicals, decaying animal and vegetable matter, and concealed human beings located in confined spaces of shipping containers and other cargo containers and secure spaces. The chemical analyses take place periodically while the containers are in transit from the time that the containers are stuffed and sealed, to the time when the containers move through inspection chokepoints, through the shipping time of the containers, and to the time that the containers are inspected at national border crossing points. During the transit time concentrations of chemical vapors of the materials to be detected, i.e., the target chemicals, increase by diffusing out of packaging into and throughout the container. The periodic chemical analyses are added together which has the effect of emphasizing responses of the analysis to chemicals that are increasing in concentration or that have reached a steady-state concentration while averaging out or de-emphasizing responses to chemicals that fluctuate in concentration. In addition, signal processing enhancement of spectra, for example, spectral deconvolution, can be employed during the extensive analysis time available while the containers are in transit. Total analysis time ranges from a few hours to several days.
2. Description of Related Art
At the present time, there are no methods or procedures for monitoring the contents of shipping containers, storage containers or other cargo containers by having a detector within the container. When such a container arrives at its destination, a statistical number of containers are randomly tested by sampling the exhaust vent of the container for a selected type of target chemical. The test does not include all types of potential contaminants. Further, due to time and cost constraints, the sampling time is relatively short and may not be a representative sample of the contents of the container.
Ion mobility spectrometry (IMS) devices for detection of contraband, drugs and explosives, are commonly used by inspection personnel at security chokepoints in airports, seaports, and border crossings throughout the world. IMS devices for detection of chemical warfare agents are used worldwide by military, law enforcement, and security personnel to detect and prevent exposure to lethal and incapacitating chemicals. However, current applications of IMS detection devices, or other analytical chemical instruments, require high speed of response to prevent bottlenecks at security chokepoints and to detect toxic chemicals before the chemicals are ingested by people in sufficient quantities to be physiologically dangerous. In every previous method and application of analytical chemical instrumentation, analyses of atmospheres for contraband or dangerous materials, minimization of response time has been emphasized. Many of the detection systems require human operators who acquire samples, introduce samples into the detector, and monitor detector results.
There are no known methods or applications of analytical chemical detection instrumentation, for example IMS devices, for accumulation and addition of chemical detection data inside of shipping containers while the containers are in transit for the purpose of detecting and reporting decaying animal and vegetable matter. There are no known methods or applications of analytical chemical detection instrumentation, for example IMS devices, for accumulation and addition of chemical detection data inside of shipping containers while the containers are in transit for the purpose of detecting body effluvia from concealed human beings although it is common knowledge in the analytical chemistry field that human effluvia such as ammonia, carbon dioxide, sulfides, volatile organic acids, amines and diamines are readily detectable by IMS.
IMS technology and devices based on IMS technology have been developed for detection of drugs and explosives. One example of detection systems for drugs and explosives is the detectors at airport security check-in locations. The operator of one of these devices must rub a swab over a piece of luggage and then place the swab in an instrument to determine whether there are certain chemicals on the bag, i.e., chemicals that have been transferred to the bag due to previous handling of the contraband. Emphasis is on speed of response but this process requires a few minutes and operator intervention and is impractical for use on every passenger passing through an airport. Similar instruments have been proposed for use by Customs inspectors who attach them to vents of shipping container, a process requiring several tens of minutes to an hour making it impractical to examine every container passing through seaports. These detection instruments are designed to detect either drugs or explosives but not both at the same time—the instruments must be reprogrammed from detection of one form of contraband to detection of another form of contraband.
There are millions of shipping containers and cargo carriers in use in the world and many more millions of container and carrier uses per year. Inspection of cargo containers and carriers is time consuming and results in delays in timely movement of containers across national border crossing, through seaports, and through airports. A detailed inspection of a single cargo container for contraband substances can take hours to accomplish. Speeding of the inspection capability is a prime interest of governments around the world to provide timely and efficient interdiction. The method described in the present patent application will facilitate the inspection process by indications of containers that are likely to contain contraband or to indicate containers that need not be inspected.
The present invention pertains to a method of chemical analysis for detecting and reporting contraband and not the detection device. A small, unobtrusive, low power consumption device is pertinent from a practical point of view because of limited space available in packed shipping containers and because of the need to perform chemical analyses over periods of several hours to several days. The present invention is for chemical analysis to take place while cargo containers are in transit from the time that the containers are stuffed, to the time when the containers move through inspection chokepoints, through the shipping time of the containers, and on to the time that the containers are inspected at national border crossing points. This is in contrast to requirements for rapid response of detection instrumentation that is currently employed for inspecting cargo containers at transportation chokepoints. The present invention relies on the fact that the total time available for employing the method of analysis ranges from a few hours to several days.
In Publication US 2005/0022581, Sunshine discloses a chemical sensing system having an interrogation unit to wirelessly transmit an interrogation signal and to wirelessly receive a response. Various sensors are disclosed, none of which are IMS. Also, a sample is introduced into a container, the sample having a relationship with an analyte in the container which is detected by the sensor.
The use of a gas chromatograph—IMS device to analyze high volume vapor samples from cargo containers is reported by La Fontaine in the 9th International Conference on Ion Mobility Spectrometry, Aug. 13-16, 2000.
Thus, there is a need for a method which can detect the presence of target chemicals in confined spaces such as cargo shipping containers as the containers are in transit and concentrations of the target materials accumulate over a period of time. There is a further need to move the shipping containers rapidly through the transportation choke points.
In the present invention, rapid chemical analysis is neither required nor is rapid chemical analysis desirable. The present invention makes use of the advantage of long term analysis times being available for chemical analyses during transit of containers, analysis times of a few hours to several days. The long term transit times of cargo containers are utilized 1) to allow accumulation of concentrations of contraband vapors in the enclosed spaces to concentrations that are more reliably detectable and 2) to improve sensitivity and specificity of the analysis process by continuously adding sequential responses to analyses instruments, i.e., signal averaging, at intervals, throughout the in-transit analysis time. Preferably, the fact that the concentrations of contraband are building up will be used in the detection algorithm as a part of the contraband vapor identification process. Utilization of the significant amounts of time that containers are in transit to allow build up of contraband vapors and to allow for cumulative and additive analytical instrument analyses is the uniqueness of the present invention for detection of contraband, decaying animal and vegetable matter, and concealed humans. Longer times for processing chemical samples and analyzing chemical detector data will result in more effective detections and repressions of false detections.
In accordance with the teachings of the present invention, there is disclosed a method for detection and identification of illegal drugs, explosives, toxic chemicals, decaying animal and vegetable matter, and concealed human beings located in confined spaces of shipping containers, storage containers and other cargo containers and secure spaces. The method provides an analytical chemical detector which has low power requirements and is powered by a battery to operate a detector and to sample the atmosphere within the confined spaces. The analytical chemical detector is disposed in said confined spaces for a period of time wherein there is an accumulation of target chemicals associated with the illegal drugs, explosives, toxic chemicals, decaying animal and vegetable matter, and/or human effluvia. The analytical chemical detector is sensitive to minute concentrations of the target chemicals. A means is provided for accumulating, adding and processing chemical analysis measurements periodically over said period of time as the target chemicals accumulate to significant concentration in said confined spaces. Digital signal processing algorithms are provided to identify the target chemicals. A means is provided for reporting the presence of the target chemicals to a device located outside of the confined spaces.
These and other objects of the present invention will become apparent from a reading of the following specification taken in conjunction with the enclosed drawings.
Chemical contraband materials 34 packaged inside a shipping container 30 exude small amounts of the actual contraband chemical or chemicals associated with the contraband such as precursor chemicals, decomposition products or taggants. From a practical point of view, it is not possible to completely seal a package so that none of the chemicals escape the package. In actuality, minute amounts of the chemicals escape into the atmosphere of the container. Over time, the chemicals will diffuse throughout the container and concentrations of the chemicals will build up.
Technology exists in the form of small, low-power-consumption, hand-held chemical detectors that have been developed for detection of and protection of war fighters from weapons of mass destruction (WMD). The technology, Ion Mobility Spectrometry (IMS), has been in use by worldwide military services for at least 20 years. The technology is routinely used by law enforcement and security personnel in searching for concealed contraband (drugs and explosives). Small, unobtrusive, low electrical power consumption devices have been developed and are commercially available. One such device is being manufactured and distributed and is based on previous inventions (Taylor et al, U.S. Pat. No. 6,512,470). This device relies on analyses of ions in uniform and linear electric fields, the ions indicating presence of target chemicals contain electrically charged species, for example protons, protonated molecules, oxygen ions, and molecules of the target chemicals. A second device is based on technology that was initially reported in 1993 (Buryakov et al). In typical devices based on this method of ion separation, an air circulation pump (4) moves air through a scrubber to provide for clean air to be mixed with incoming sample laden air (
In order to better understand the IMS,
The following five paragraphs contain partial listings of chemicals that are readily detected by IMS and other analytical chemical instrumentation. The partial listing is of chemicals that increase in concentration over extended periods of time in confined spaces and chemicals for which extended analysis times result in improved and more reliable detection and identification. The lists are intended to demonstrate the kinds of chemicals that are detectable within the scope of the present invention. The fact that a chemical may not be listed does not mean that analysis and detection of the omitted chemical is outside of the scope of the present invention.
(1) Illegal drugs and chemicals related to illegal drugs detected by IMS and related analytical chemical instrumentation include but are not limited to illegal drugs such as cocaine, heroin, methamphetamine, marijuana. Chemicals related to manufacture of illegal drugs detected by IMS include but are not limited to anthranilic acid, its esters and salts; ephedrine, its salts, optical isomers, and salts of optical isomers; phenylacetic acid, its esters, and its salts; phenylpropanol amine, its salts, optical isomers; methyl amine; ethyl amine; propionic anhydride; hydriodic acid; benzaldehyde; nitroethane; gamma butyroacetone. Additional chemicals related to manufacture of illegal drugs that are detected by IMS and related analytical chemical instrumentation include but are not limited to acetic anhydride; acetone; ethyl ether; methyl ethyl ketone; toluene; iodine, hydrochloric gas.
(2) Explosives detected by IMS and related analytical chemical instrumentation include but are not limited to explosives such as: 2,4,6-trinitrotoluene (TNT); 2,4,6-trinitroamine (RDX), pentaerythritol tetranitrate (PETN), ethylene glycol dinitrate (EGDN). Since 1996 explosives manufactured or imported into the United States must contain detection agents or taggants—taggants include 2,4-dinitrotoluene (DNT); ethylene glycol dinitrate (EGDN); 2,3-dimethyl-2,3-dinitrobutane (DMDB); para-mononitrotoluene (p-MNT); ortho-mononitrotoluene (o-MNT).
(3) Chemical weapons of mass destruction and precursors used in synthesis of such compounds detected by IMS and related analytical chemical instrumentation include but are not limited to nerve agents such as ethyl N,N-dimethylphosphoroamidocyanidate (Tabun or GA), isopropyl methyl phosphonofluoridate (Sarin or GB), pinacolyl methyl phosphonofluoridate (Soman or GD), cyclohexyl methyl phosphonofluoridate (GF), O-ethyl-S-(2-isopropylaminoethyl)methyl phosphonothiolate (VX); Blister agents: bis-2-chloroethyl sulfide (Mustard Gas or HD), tris-2-chloroethyl amine (Nitrogen Mustard, HN3), dichloro-(2-chlorovinyl)arsine (Lewisite or L); Blood agents: hydrogen cyanide (AC), cyanogen chloride (CK); Choking agents: carbonyl chloride (CK). Precursors detected by IMS include di-isopropyl methyl phosphonate (DIMP); methyl phosphonic difluoride (DF), methyl phosphonic dichloride (DICL), bis-hydroxyethyl sulfide.
(4) Chemicals detected by IMS and related analytical chemical instrumentation and chemical that are related to decaying animal and vegetable matter include but are not limited to primary, secondary and tertiary aliphatic amines; α-ω-alkyl diamines, particularly cadaverine and putricine.
(5) Human effluvia detected by IMS and related analytical chemical instrumentation include but are not limited to: ammonia, carbon dioxide, alkyl sulfides, volatile organic acids, α-ω-alkyl diamines.
The basis for the present invention is to perform periodic, cumulative and additive chemical analyses of the inside air of containers and to perform the analyses for extended periods of time during the time in which the containers are in transit (
Airborne concentrations of contraband 34 in containers 30 will almost always be very small. In chemical analysis terms this translates to a requirement for extensive amounts of sample processing time for an analysis or employment of a method to concentrate the sample before analysis. Time consuming analyses at transportation chokepoints precludes rapid and effective inspection of cargo containers and result in slow movement of cargo across national borders. During the time that a shipping container is in transit, there is sufficient time to perform the analytical chemical analyses of the present invention with or without resorting to use of pre-concentration techniques. The present invention performs the analyses while the container is in transit and to perform the analyses automatically, cheaply, and reliably without expenditure of extensive amounts of electrical power.
The target chemicals can be detected at nanogram to microgram quantities. Successive analysis measurements or analysis spectra are added to allow peaks of chemical species entrained in sample air to grow. The electrical output signals of some chemical detection instruments, including ion mobility spectrometers, are in the form of a series of peaks that are representative of chemical or physical properties measured by that instrument. When instrument signals result in two or more overlapping peaks the widely used signal processing technique of deconvolution may be employed to mathematically treat the instrument output data to produce peaks that are separate individual peaks. This process significantly aids the chemical analysis for identification of contraband and related chemicals.
There are at least two methods of manipulating the analysis spectra to test for presence of target chemicals—both methods lead to the same result. A description of these two methods is given below with the understanding that the present invention is not limited to either of the methods but may be a method known to persons skilled in the art. A flow diagram of the methods is shown in
When the analysis measurements or analysis spectra reveal the presence of target chemicals the identification information will be stored in memory along with date and time of the acquisition of the spectra, a report or alarm will be generated and stored in memory, and the alarm information will be transmitted to appropriate government authorities at the next inspection point in the transportation of the container. Location of the container at the time of the alarm report will be stored with the acquisition measurements or spectra and the report can be generated via satellite communications when the containers are in positions to allow such communications.
A typical sequence of events is shown in the flow diagram of
Many shipping containers are refrigerated for the purpose of preserving perishable goods. Such containers could be used for shipment of contraband. The internal temperature of a refrigerated container is usually much lower than the temperature of an ordinary shipping container. At lower temperatures evolution of chemical vapors from the contraband would be at a lower rate than at higher temperatures. Consequently, the concentrations of chemical vapors associated with the contraband would be at a lower concentration. In order to facilitate the chemical analysis procedure the technique known as pre-concentration could be coupled with the chemical detector. Pre-concentration involves passing a gaseous sample over or through an adsorbing media known in the art for use in adsorbing the desired molecules of interest for a period of time, typically several minutes. Alternatively, adsorption of gaseous samples on cryogenically cooled surfaces could be employed. The adsorbent material or cryogenic surface is then rapidly heated and the adsorbed chemicals are released into a chemical analysis device in a shorter period of time, typically a fraction of a second. This process has the effect of providing a sample at a significantly increased concentration to the chemical analysis device for a short period of time. Pre-concentration could be used to provide samples to a gas chromatograph coupled to an ion mobility spectrometer or other chemical detection device that would be located in the air ducts of the refrigerated container. As examples of such chemical analysis devices, combinations of adsorption and desorption air sampling systems coupled to a gas chromatograph which is coupled to an ion mobility spectrometer have been described by Genovese et al, U.S. Pat. No. 5,811,059, by Haley et al, U.S. Pat. No. 6,481,263, and by Cohen et al, U.S. Pat. No. 5,457,316. Gas chromatography—ion mobility spectrometer systems suitable for chemical analysis are commercially available but such systems that are suitable for installation and unattended operation in confined spaces of a stuffed shipping container are not known.
A device consisting of a pre-concentrator and a gas chromatograph coupled to an ion mobility spectrometer would consume electrical power at a greater rate than could be conveniently provided by normal batteries for the period of time that the container is in transit. For this reason, the chemical analysis device used to detect contraband in a refrigerated container would likely be powered from the power supply used to power the refrigeration unit of the refrigerated container.
The present invention provides a means for interfacing the analytical chemical detector to other electronic security systems such as those programmed for determinations of container breach, tracking the container and communicating contraband detection data to appropriate authorities and databases.
Using the present invention, a record of chemical detection information can be made available to aid government agencies in effecting rapid and secure flow of goods across national borders.
Obviously, many modifications may be made without departing from the basic spirit of the present invention. Accordingly, it will be appreciated by those skilled in the art that within the scope of the appended claims, the invention may be practiced other than has been specifically described herein.
Harden, Charles S., Harden, Joseph C.
Patent | Priority | Assignee | Title |
10677689, | Aug 29 2008 | Research International, Inc. | Concentrator |
8220312, | Jun 22 2009 | ANIKA STERILIS PRIVATE LIMITED | Non-invasive method and system for screening the content of containers for the presence of threat substances |
8881574, | Aug 29 2008 | Research International, Inc | Shipping container interrogation apparatus and methods |
9121844, | Sep 09 2008 | Sociedad Europea de Analisis Diferencial de Movilidad | Method to analyze and classify persons and organisms based on odor patterns from released vapors |
9404899, | Mar 14 2011 | Raytheon Company | Methods and apparatus for acoustic inspection of containers |
9423388, | Feb 27 2013 | Hitachi, LTD | Particle analyzing device |
9459238, | Mar 14 2011 | Raytheon Company | Methods and apparatus for using acoustic inspection of containers to image objects |
9482506, | Mar 14 2011 | Raytheon Company | Methods and apparatus for non-contact inspection of containers using multiple sensors |
9726655, | Sep 22 2014 | MD US TRACE HOLDING, LLC; Rapiscan Systems, Inc | Selective ion chemistry for nitrate detection |
9791353, | Aug 29 2008 | Research International, Inc.; Research International, Inc | Concentrator |
Patent | Priority | Assignee | Title |
4987767, | Jun 09 1989 | Research Corporation Technologies, Inc. | Exposive detection screening system |
5162652, | Aug 07 1991 | PCP, Inc. | Method and apparatus for rapid detection of contraband and toxic materials by trace vapor detection using ion mobility spectrometry |
5345809, | Jun 09 1989 | Research Corporation Technologies, Inc. | Explosive detection screening system |
6252510, | Oct 14 1998 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Apparatus and method for wireless gas monitoring |
6502470, | Jul 12 1991 | SMITHS DETECTION-WATFORD LIMITED | Fluid sampling system |
6773674, | Jan 25 1999 | University of Massachusetts | Thermal analysis for detection and identification of explosives and other controlled substances |
6794645, | Nov 30 2001 | California Institute of Technology | Proton-transfer-reaction/ion-mobility-spectrometer and method of using the same |
6823714, | Oct 26 2001 | Lockheed Martin Corporation | System and method for detecting hazardous materials inside containers |
6837096, | Jan 23 2003 | Midwest Research Institute, Inc. | Low-power gas chromatograph |
7062385, | Nov 25 2002 | Tufts University | Intelligent electro-optical nucleic acid-based sensor array and method for detecting volatile compounds in ambient air |
7100424, | Jul 22 2004 | WILSON, LAURA W | Apparatus for accessing container security threats and method of use |
7158028, | May 12 1998 | Intelligent multi purpose early warning system for shipping containers, components therefor and methods of making the same | |
7229821, | Feb 16 2006 | P J EDMONSON LTD | Acoustic wave RFID/biosensor assemblies |
20050022581, | |||
20060156792, | |||
20060266102, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 31 2006 | Charles S., Harden | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 06 2012 | REM: Maintenance Fee Reminder Mailed. |
Dec 19 2012 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Dec 19 2012 | M2554: Surcharge for late Payment, Small Entity. |
May 27 2016 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Aug 10 2020 | REM: Maintenance Fee Reminder Mailed. |
Jan 25 2021 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Dec 23 2011 | 4 years fee payment window open |
Jun 23 2012 | 6 months grace period start (w surcharge) |
Dec 23 2012 | patent expiry (for year 4) |
Dec 23 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 23 2015 | 8 years fee payment window open |
Jun 23 2016 | 6 months grace period start (w surcharge) |
Dec 23 2016 | patent expiry (for year 8) |
Dec 23 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 23 2019 | 12 years fee payment window open |
Jun 23 2020 | 6 months grace period start (w surcharge) |
Dec 23 2020 | patent expiry (for year 12) |
Dec 23 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |