A port spike for medical fluid containers, such as infusate bags, for example, provides two ports to permit recirculation of fluids within the container. The recirculating flow allows bubbles to settle out which can't happen effectively if the flow is sucked out immediately after entering the container. The spike provides two openings inside the container which prevent such short-circuit flow by ensuring that fluid entering the container is not greatly affected by the suction zone of the flow leaving the container.
|
1. A device for providing a recirculating flow, comprising:
a shaft having a shaft axis, a base end and a tip;
an inlet orifice proximate the tip;
the shaft having an elongate section terminating at the tip with a wider portion closer to the base end;
the wider portion being shaped such that it has a constant cross-sectional shape over a substantial portion of the length of the wider portion;
a transition between the elongate section and the wider portion, the transition having an outlet orifice spaced from the wider portion; and
inlet and outlet lumens extending along the shaft,
wherein the elongate section has a cutting edge extending in an axial direction above a surface of the elongate section.
8. A device for providing a recirculating flow, comprising:
a shaft having a shaft axis, a base end and a tip;
an inlet orifice proximate the tip;
the shaft having an elongate section terminating at the tip with a wider portion closer to the base end;
the wider portion being shaped such that, at least at a point remote from the base end, the wider portion has a constant circular cross-section over a substantial portion of the length of the wider portion;
a transition between the elongate section and the wider portion, the transition having an outlet orifice spaced from the wider portion; and
inlet and outlet lumens extending along the shaft,
wherein the elongate section has a cutting edge extending in an axial direction above or below a surface of the elongate section.
15. A device for providing a recirculating flow, comprising:
a shaft having:
an elongate portion extending from a base end of the shaft to a tip of the shaft;
a wider portion extending from the base end to a location between the base end and the tip;
a transition section between the elongate portion and the wider portion;
a first orifice located proximal to the tip of the shaft;
a second orifice located on a surface of the transition section; and
first and second lumens extending along the shaft so as to respectively connect the first and second orifices with corresponding first and second ports at the base end;
wherein the elongate portion has a membrane disruption portion between the tip and the transition, wherein the membrane disruption portion is arranged to cut the membrane upon insertion of the elongate portion of the shaft through said membrane.
2. A device as in
3. A device as in
5. A device as in
6. A device as in
7. A device as in
9. A device as in
10. A device as in
12. A device as in
13. A device as in
14. A device as in
16. A device as in
17. A device as in
18. A device as in
19. A device as in
|
The invention generally relates to access used for providing two openings to a fluid container, for example, an infusible fluid bag such as saline.
Air needs to be eliminated from many kinds of fluid circuits. For example, in extracorporeal blood circuits, air in replacement fluid that is injected into a patient can be hazardous. Typically; drip chambers are used in such circuits because these may serve as air traps. Another device is air-trapping filters. There exists a need for effective and convenient techniques for removing air from such circuits.
The invention provides systems and devices for handling air in a fluid processing circuit. U.S. patent application Ser. No. 09/905,171, incorporated by reference as if fully set forth herein in its entirety, describes systems for priming a replacement fluid circuit of a hemofiltration machine by recirculating fluid through a replacement fluid reservoir. Gas settles out of solution in the reservoir as the fluid is recirculated. The replacement fluid reservoir used in hemofiltration systems is commonly in the form of a fluid bag as used for sterile infusates such as saline or glucose solutions. To make a double-access to the bag to facilitate the recirculation, of the replacement fluid, a connector device is employed which consists, in part, of a bag spike with two flow channels. The single spike can be forced into a port that is sealed by a membrane until being perforated by the spike. Fluid flow out an inlet opening at the tip of the spike and is drawn from the bag through an outlet opening at the base of the spike.
One problem that may arise in connection with the spike discussed in the above application is that some fluid bags have long tube-shaped ports which surround the entire length of the spike so that the inlet and outlet openings both lie in a narrow tubular channel. The confinement of the outlet to the narrow channel can cause short-circuit flow that does not permit bubbles to settle out of the flow injected into the reservoir.
The present invention solves the problem of short-circuit flow in a double-access connector by various means, for instances, by providing that a distance between the outlet opening be located at a point within the greater interior volume of the bag. This can be achieved by extending the tip of the spike until it is long enough to reach outside the tube-shaped port of the fluid bag.
Various features of the double access spike provide for reliable insertion and use for recirculation. For example, the tip may be beveled to provide a sharp point that eases the piercing of the membrane. The outlet opening may be formed in a rounded or beveled surface located at the very tip. In addition, the inlet opening may be provided on a second beveled surface whose edges are rounded to allow it to pass through the membrane easily. In a preferred configuration, the beveled surface is conical to ease insertion. Another feature is that the lower portion is made substantially larger than the upper portion, the latter being so narrow as to not make a tight fit into the port. This requires that the spike be inserted all the way into the port to obtain a seal. The transition to a wide diameter base of the spike may be made an abrupt one and the inlet opening located sufficiently far away from the base to guarantee its placement in the larger volume of the bag. Other features and variations on the invention will be apparent from the detailed description below.
According to an embodiment, the invention is a multiple access container connector for use with fluid containers having elongated access extensions that has a body with an elongated shaft. The elongated shaft has a base, a tip, and an inlet orifice at the tip and an outlet orifice. The body has an inlet flow channel to couple for flow an inlet port at the base to the inlet orifice and an outlet flow channel to couple for flow an outlet port at the base to the outlet orifice. The elongated shaft has a length to ensure the inlet orifice is insertable beyond the elongated access extension.
In this embodiment, the body may have a base shaft substantially coaxial with the elongated shaft and located at the base, the base shaft having a diameter large enough to provide a compression seal with an opening of the elongated access neck. A transition portion of the body between the elongated shaft and the base shaft may be characterized by a progressively increasing cross-sectional area that is effective to ease a forcing of the connector through any obstacles in the elongated extension. The elongated shaft may have a diameter that is too small to provide a compression seal with an opening of the elongated access neck. The outlet opening may be located at the base. Where the body has a base shaft substantially coaxial with the elongated shaft and located at the base, the base shaft may have a diameter large enough to provide a compression seal with an opening of the elongated access neck. In such as, the elongated shaft may have a diameter that is too small to provide a compression seal with an opening of the elongated access neck. This ensures the connector is inserted well into the elongated access extensions of some fluid containers, such as fluid bags used for infusible fluids.
According to another embodiment, the invention is a connector for use with fluid containers having access ports with elongated necks. The connector has a body constructed for coupling to a fluid container, a first fluid passage in the body, a second fluid passage in the body that does not communicate with the first fluid passage. A first assembly communicating with the first fluid passage and including a first fitting to releasably couple the first fluid passage to an outlet of a fluid circuit and to convey fluid only through the first fluid passage is also provided. A second assembly communicates only with the second fluid passage and includes a second fitting to releasably couple the second fluid passage to an inlet of the fluid circuit. As a result, fluid can be circulated through the fluid container in a loop that includes the fluid circuit to collect in the fluid source air residing in the fluid circuit. The body has an elongated portion sufficiently long to ensure an outlet of the first fluid passage can reach into the fluid container and beyond a neck of the container.
In this embodiment, one end of the connector body may be tapered to form a spike. At least one of the first and second assemblies may include a luer fitting. At least one of the first and second assemblies may include an in-line clamp. The body may include a distal end communicating with the fluid source, wherein the first and second fluid passages each exits the distal end, and wherein the first fluid passage exits the distal end of the body at a higher gravity height that the second fluid passage exits the distal end. The base of the body near the releasable connectors may be wider than near the tip such that if the connector is not fully inserted in a port, the fluid will leak. This configuration may help to ensure the connector is fully inserted so the outlet is well within the container.
The invention may be embodied in several forms without departing from its spirit or essential characteristics. The scope of the invention is defined in the appended claims, rather than in the specific description preceding them. All embodiments that fall within the meaning and range of equivalency of the claims are therefore intended to be embraced by the claims.
Referring to
Referring now to
Referring now also to
Some manufacturers of containers 320, such as fluid bag-types, provide port tubes 360 that are much longer than others. As a result, for some types, the tip 365 may not extend into the greater interior 312. When that occurs, fluid entering the container 320 from the inlet opening 336 may take a short-circuit path into the outlet opening 337. This is due, in part, to the fact that the outlet flow from the outlet opening 336 is confined within an interior flow space 331 defined by the port tube 360. The high flow resistance overcomes the inertia of the initial flow slowing it down and keeping the outlet flow close to the suction zone of the flow back into inlet opening 337.
Referring to
A shelf 12 facilitates a user's ability to grasp the spike 10 and force it into a port (shown in
A protrusion 33 may be incorporated on the outside of the extension shaft portion 22 to cut through any sealing material that might seal around the extension shaft portion 22 thereby allowing a user to force the spike 10 less than fully into a container port (not shown). This is explained in connection with
The spike 22 may be supplied as part of a complete fluid circuit as described in the patent application incorporated by reference above. The spike 10 may be manufactured from injection-molded plastic material. It may be formed in one or more parts of identical or different materials. For medical applications, the spike 10 is preferably made from bio-compatible materials.
Referring to
Referring now also to
By ensuring the extended shaft portion 22 extends well into the interior volume 526, the inlet opening 18 may be certain to be located well within the interior 526 and well beyond an interior 531 of the port shaft 530. This helps to ensure against short-circuit flow because the momentum of an inlet flow 540 carries any gases well inside the interior volume 526 thereby substantially avoiding a suction zone 527 near the outlet opening 20 created by an outlet flow through the outlet opening 20.
Referring now to
Referring to
Referring again to 1B and 1C and also to
A refinement of the embodiment of
Referring to
Referring back to Figs.
While not specifically described above, variations on the above embodiments can benefit from various of the features described above. For example, an outlet opening a tip of a spike need not face in an upward direction, but may also be configured to eject flow sideways into a fluid container. Also, the number of accesses is not necessarily limited to two. The configuration features described can be applied in spikes with more than two openings connected to various different fluid circuits or joined to common fluid circuits. Also, the seal between the spike and bag need not be a compression seal as illustrated in the above embodiments. For example, a luer-type connector could be used or any other type of fitting. Also, while a sharp spike is described above, in some applications, a sharp point may be superfluous. For example, where a container does not require the puncturing, for example of a membrane, a sharp tip may not be useful.
It will be evident to those skilled in the art that the invention is not limited to the details of the foregoing illustrative embodiments, and that the present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
Brugger, James, Buckler, Kenneth E.
Patent | Priority | Assignee | Title |
10278897, | Nov 25 2015 | WEST PHARMA SERVICES IL, LTD | Dual vial adapter assemblage including drug vial adapter with self-sealing access valve |
10285907, | Jan 05 2015 | WEST PHARMA SERVICES IL, LTD | Dual vial adapter assemblages with quick release drug vial adapter for ensuring correct usage |
10299990, | Aug 26 2012 | WEST PHARMA SERVICES IL, LTD | Liquid drug transfer devices |
10357429, | Jul 16 2015 | WEST PHARMA SERVICES IL, LTD | Liquid drug transfer devices for secure telescopic snap fit on injection vials |
10646404, | May 24 2016 | WEST PHARMA SERVICES IL, LTD | Dual vial adapter assemblages including identical twin vial adapters |
10688295, | Aug 07 2013 | WEST PHARMA SERVICES IL, LTD | Liquid transfer devices for use with infusion liquid containers |
10765604, | May 24 2016 | WEST PHARMA SERVICES IL, LTD | Drug vial adapter assemblages including vented drug vial adapter and vented liquid vial adapter |
10772797, | Dec 06 2016 | WEST PHARMA SERVICES IL, LTD | Liquid drug transfer devices for use with intact discrete injection vial release tool |
10772798, | Dec 06 2016 | WEST PHARMA SERVICES IL, LTD | Liquid transfer device with integral telescopic vial adapter for use with infusion liquid container and discrete injection vial |
10806667, | Jun 06 2016 | WEST PHARMA SERVICES IL, LTD | Fluid transfer devices for filling drug pump cartridges with liquid drug contents |
10806671, | Aug 21 2016 | WEST PHARMA SERVICES IL, LTD | Syringe assembly |
10945921, | Mar 29 2017 | WEST PHARMA SERVICES IL, LTD | User actuated liquid drug transfer devices for use in ready-to-use (RTU) liquid drug transfer assemblages |
11305040, | Apr 29 2014 | OUTSET MEDICAL, INC. | Dialysis system and methods |
11484470, | Apr 30 2019 | WEST PHARMA SERVICES IL, LTD | Liquid transfer device with dual lumen IV spike |
11534537, | Aug 19 2016 | OUTSET MEDICAL, INC | Peritoneal dialysis system and methods |
11642285, | Sep 29 2017 | WEST PHARMA SERVICES IL, LTD | Dual vial adapter assemblages including twin vented female vial adapters |
11724013, | Jun 07 2010 | OUTSET MEDICAL, INC | Fluid purification system |
11786442, | Apr 30 2019 | WEST PHARMA. SERVICES IL, LTD. | Liquid transfer device with dual lumen IV spike |
11786443, | Dec 06 2016 | WEST PHARMA. SERVICES IL, LTD. | Liquid transfer device with integral telescopic vial adapter for use with infusion liquid container and discrete injection vial |
11911592, | Dec 08 2020 | Carefusion 303, Inc. | Safety drip chamber spike with breakable feature |
11918542, | Jan 31 2019 | WEST PHARMA SERVICES IL, LTD | Liquid transfer device |
11951241, | Aug 19 2016 | OUTSET MEDICAL, INC. | Peritoneal dialysis system and methods |
7588684, | Jul 13 2001 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Systems and methods for handling air and/or flushing fluids in a fluid circuit |
7790043, | Jul 13 2001 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Systems and methods for handling air and/or flushing fluids in a fluid circuit |
8016809, | Sep 25 2007 | WEST PHARMA SERVICES IL, LTD | Liquid drug delivery devices for use with syringes with widened distal tips |
8021325, | Apr 29 2004 | WEST PHARMA SERVICES IL, LTD | Liquid drug medical device |
8066688, | Apr 29 2004 | WEST PHARMA SERVICES IL, LTD | Liquid drug medical device |
8070739, | Aug 11 2005 | WEST PHARMA SERVICES IL, LTD | Liquid drug transfer devices for failsafe correct snap fitting onto medicinal vials |
8317743, | Sep 18 2007 | WEST PHARMA SERVICES IL, LTD | Medicament mixing and injection apparatus |
8435210, | Apr 17 2007 | WEST PHARMA SERVICES IL, LTD | Fluid control device with manually depressed actuator |
8460228, | Oct 27 2009 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Methods, devices, and systems for parallel control of infusion device |
8486044, | Aug 19 2008 | Baxter International Inc; BAXTER HEALTHCARE S A | Port assembly for use with needleless connector |
8608723, | Nov 12 2009 | WEST PHARMA SERVICES IL, LTD | Fluid transfer devices with sealing arrangement |
8684994, | Feb 24 2010 | WEST PHARMA SERVICES IL, LTD | Fluid transfer assembly with venting arrangement |
8752598, | Apr 17 2011 | WEST PHARMA SERVICES IL, LTD | Liquid drug transfer assembly |
8753325, | Feb 24 2010 | WEST PHARMA SERVICES IL, LTD | Liquid drug transfer device with vented vial adapter |
8852145, | Nov 14 2010 | WEST PHARMA SERVICES IL, LTD | Inline liquid drug medical device having rotary flow control member |
8864725, | Mar 17 2009 | BAXTER CORPORATION ENGLEWOOD | Hazardous drug handling system, apparatus and method |
8905994, | Oct 11 2011 | WEST PHARMA SERVICES IL, LTD | Valve assembly for use with liquid container and drug vial |
8979792, | Nov 12 2009 | WEST PHARMA SERVICES IL, LTD | Inline liquid drug medical devices with linear displaceable sliding flow control member |
8998875, | Oct 01 2009 | MEDIMOP MEDICAL PROJECTS LTD | Vial assemblage with vial and pre-attached fluid transfer device |
9132063, | Nov 12 2009 | WEST PHARMA SERVICES IL, LTD | Inline liquid drug medical devices with linear displaceable sliding flow control member |
9254243, | Mar 31 2011 | Panasonic Corporation | Drug transferring needle and drug transferring method |
9283324, | Apr 05 2012 | WEST PHARMA SERVICES IL, LTD | Fluid transfer devices having cartridge port with cartridge ejection arrangement |
9328969, | Oct 07 2011 | OUTSET MEDICAL, INC | Heat exchange fluid purification for dialysis system |
9339438, | Sep 13 2012 | WEST PHARMA SERVICES IL, LTD | Telescopic female drug vial adapter |
9402945, | Apr 29 2014 | OUTSET MEDICAL, INC. | Dialysis system and methods |
9504777, | Apr 29 2014 | OUTSET MEDICAL, INC. | Dialysis system and methods |
9545469, | Dec 05 2009 | OUTSET MEDICAL, INC. | Dialysis system with ultrafiltration control |
9579440, | Apr 29 2014 | OUTSET MEDICAL, INC. | Dialysis system and methods |
9795536, | Aug 26 2012 | WEST PHARMA SERVICES IL, LTD | Liquid drug transfer devices employing manual rotation for dual flow communication step actuations |
9801786, | Apr 14 2013 | WEST PHARMA SERVICES IL, LTD | Drug container closure for mounting on open-topped drug container to form drug reconstitution assemblage for use with needleless syringe |
9839580, | Aug 26 2012 | WEST PHARMA SERVICES IL, LTD | Liquid drug transfer devices |
9943463, | May 10 2013 | WEST PHARMA SERVICES IL, LTD | Medical devices including vial adapter with inline dry drug module |
9993592, | Dec 01 2011 | Picolife Technologies, LLC | Cartridge system for delivery of medicament |
D641080, | Mar 31 2009 | WEST PHARMA SERVICES IL, LTD | Medical device having syringe port with locking mechanism |
D669980, | Oct 15 2010 | WEST PHARMA SERVICES IL, LTD | Vented vial adapter |
D674088, | Feb 13 2012 | WEST PHARMA SERVICES IL, LTD | Vial adapter |
D720451, | Feb 13 2012 | WEST PHARMA SERVICES IL, LTD | Liquid drug transfer assembly |
D734868, | Nov 27 2012 | WEST PHARMA SERVICES IL, LTD | Drug vial adapter with downwardly depending stopper |
D737436, | Feb 13 2012 | WEST PHARMA SERVICES IL, LTD | Liquid drug reconstitution assembly |
D757933, | Sep 11 2014 | WEST PHARMA SERVICES IL, LTD | Dual vial adapter assemblage |
D765837, | Aug 07 2013 | WEST PHARMA SERVICES IL, LTD | Liquid transfer device with integral vial adapter |
D767124, | Aug 07 2013 | WEST PHARMA SERVICES IL, LTD | Liquid transfer device with integral vial adapter |
D801522, | Nov 09 2015 | WEST PHARMA SERVICES IL, LTD | Fluid transfer assembly |
D832430, | Nov 15 2016 | WEST PHARMA SERVICES IL, LTD | Dual vial adapter assemblage |
D917693, | Jul 06 2018 | WEST PHARMA. SERVICES IL, LTD. | Medication mixing apparatus |
D923782, | Jan 17 2019 | WEST PHARMA. SERVICES IL, LTD. | Medication mixing apparatus |
D923812, | Jan 16 2019 | WEST PHARMA SERVICES IL, LTD | Medication mixing apparatus |
D954253, | Jan 13 2020 | WEST PHARMA SERVICES IL, LTD | Liquid transfer device |
D956958, | Jul 13 2020 | WEST PHARMA SERVICES IL, LTD | Liquid transfer device |
ER7141, |
Patent | Priority | Assignee | Title |
2409343, | |||
3484849, | |||
3788524, | |||
4133314, | Dec 06 1976 | Baxter International Inc | Extension transfer set |
4439179, | Feb 16 1982 | Baxter Travenol Laboratories, Inc. | Dual tubing clamp |
4787898, | May 12 1987 | B BRAUN MEDICAL, INC | Vented needle with sideport |
4873991, | Sep 21 1988 | Biopsy needle | |
4889529, | Jul 10 1987 | S P M FLOW CONTROL, INC | Needle |
5024657, | Dec 03 1984 | Baxter International Inc. | Drug delivery apparatus and method preventing local and systemic toxicity |
5445630, | Jul 28 1993 | Spike with luer fitting | |
5533647, | Oct 24 1995 | Spike means with air passage for drip chamber device | |
5698090, | Sep 10 1991 | GAMBRO INDUSTRIES | Artificial kidney for adjusting a concentration of substance in blood |
5702597, | Jul 26 1994 | GAMBRO INDUSTRIES | Device for preparing a treatment liquid by filtration |
5725776, | Feb 13 1995 | Baxter International Inc; BAXTER HEALTHCARE SA | Methods for ultrafiltration control in hemodialysis |
5744027, | Apr 19 1991 | Baxter International Inc | Apparatus for kidney dialysis |
5762805, | Feb 12 1993 | GAMBRO RENAL PRODUCTS, INC | Technique for extracorporeal treatment of blood |
5772624, | Jul 20 1995 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Reusable blood lines |
5776345, | Feb 12 1993 | GAMBRO RENAL PRODUCTS, INC | Automatic priming technique |
5808181, | Sep 16 1995 | Fresenius AG | Method for testing a filter in a dialysis system |
5846419, | Jul 13 1994 | Fresenius Medical Care Deutschland GmbH | Hemo(Dia)filtration apparatus |
5858006, | Oct 26 1993 | Texas Instruments Incorporated | Hypodermic needle with a protrusion |
5863421, | Feb 13 1995 | Baxter International Inc; BAXTER HEALTHCARE SA | Hemodialysis machine with automatic priming by induced pressure pulses |
5871694, | Dec 09 1995 | Fresenius AG | Device for providing a substituate |
5895368, | Sep 23 1996 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Blood set priming method and apparatus |
5919154, | Jun 07 1995 | Terumo BCT, Inc | Extracorporeal blood processing methods and apparatus |
5951870, | Oct 21 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Automatic priming of blood sets |
6004302, | Aug 28 1997 | Cannula | |
6039877, | Jul 26 1994 | GAMBRO INDUSTRIES | Device and method for preparing a treatment liquid by filtration |
6042784, | Mar 01 1997 | Fresenius Medical Care Deutschland GmbH | Method and apparatus for ultrafiltration in hemodialysis |
6132616, | Aug 21 1991 | Baxter International Inc; BAXTER HEALTHCARE SA | Method for flushing and filling of an extracorporeal blood circulation system of a dialysis machine |
6261267, | Oct 09 1998 | Globe Enterprises, Inc. | Automatic IV shut off valve |
6284131, | Apr 19 1991 | Baxter International Inc | Method and apparatus for kidney dialysis |
6409708, | Nov 04 1996 | Carmel Pharma AB | Apparatus for administrating toxic fluid |
6474375, | Feb 02 2001 | Baxter International Inc | Reconstitution device and method of use |
6517508, | Nov 03 1999 | B BRAUN MEDICAL INC | Set for blood processing |
6645166, | Aug 29 2000 | Fresenius Medical Care Deutschland GmbH | Blood treatment device and disposable kit for a blood treatment device |
6669709, | Mar 15 1996 | Medtronic Vascular, Inc | Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo |
6726672, | Sep 28 1998 | ICU Medical, Inc. | Intravenous drug access system |
6979309, | Feb 14 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Systems and methods for performing blood processing and/or fluid exchange procedures |
20040054321, | |||
20040122418, | |||
20050020958, | |||
20050045540, | |||
20050061740, | |||
20050065459, | |||
20050090774, | |||
20050171469, | |||
20050251086, | |||
20050288623, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 13 2003 | BUCKLER, KENNETH | NXSTAGE MEDICAL, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013899 | /0688 | |
Mar 13 2003 | BRUGGER, JAMES | NXSTAGE MEDICAL, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013899 | /0688 | |
Mar 20 2003 | NxStage Medical, Inc. | (assignment on the face of the patent) | / | |||
Mar 16 2009 | MEDISYSTEMS SERVICES CORPORATION | GE BUSINESS FINANCIAL SERVICES INC | SECURITY AGREEMENT | 022610 | /0602 | |
Mar 16 2009 | MEDISYSTEMS CORPORATION | GE BUSINESS FINANCIAL SERVICES INC | SECURITY AGREEMENT | 022610 | /0602 | |
Mar 16 2009 | EIR MEDICAL, INC | GE BUSINESS FINANCIAL SERVICES INC | SECURITY AGREEMENT | 022610 | /0602 | |
Mar 16 2009 | NXSTAGE MEDICAL, INC | GE BUSINESS FINANCIAL SERVICES INC | SECURITY AGREEMENT | 022610 | /0602 | |
Jun 05 2009 | MEDISYSTEMS SERVICES CORPORATION | ASAHI KASEI KURARAY MEDICAL CO , LTD | INTELLECTUAL PROPERTY SECURITY AGREEMENT | 022804 | /0496 | |
Jun 05 2009 | MEDISYSTEMS CORPORATION | ASAHI KASEI KURARAY MEDICAL CO , LTD | INTELLECTUAL PROPERTY SECURITY AGREEMENT | 022804 | /0496 | |
Jun 05 2009 | EIR MEDICAL, INC | ASAHI KASEI KURARAY MEDICAL CO , LTD | INTELLECTUAL PROPERTY SECURITY AGREEMENT | 022804 | /0496 | |
Jun 05 2009 | NXSTAGE MEDICAL, INC | ASAHI KASEI KURARAY MEDICAL CO , LTD | INTELLECTUAL PROPERTY SECURITY AGREEMENT | 022804 | /0496 | |
Jun 05 2009 | GE BUSINESS FINANCIAL SERVICES INC | MEDISYSTEMS SERVICES CORPORATION | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 022804 | /0150 | |
Jun 05 2009 | GE BUSINESS FINANCIAL SERVICES INC | MEDISYSTEMS CORPORATION | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 022804 | /0150 | |
Jun 05 2009 | GE BUSINESS FINANCIAL SERVICES INC | EIR MEDICAL, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 022804 | /0150 | |
Jun 05 2009 | GE BUSINESS FINANCIAL SERVICES INC | NXSTAGE MEDICAL, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 022804 | /0150 | |
Mar 10 2010 | NXSTAGE MEDICAL, INC | Silicon Valley Bank | SECURITY AGREEMENT | 024114 | /0789 | |
May 04 2012 | ASAHI KASEI MEDICAL CO , LTD F K A ASAHI KASEI KURARAY MEDICAL CO , LTD | MEDISYSTEMS SERVICES CORPORATION | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 043364 | /0936 | |
May 04 2012 | ASAHI KASEI MEDICAL CO , LTD F K A ASAHI KASEI KURARAY MEDICAL CO , LTD | MEDISYSTEMS CORPORATION | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 043364 | /0936 | |
May 04 2012 | ASAHI KASEI MEDICAL CO , LTD F K A ASAHI KASEI KURARAY MEDICAL CO , LTD | NXSTAGE MEDICAL, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 043364 | /0936 | |
Jun 09 2014 | Silicon Valley Bank | NXSTAGE MEDICAL, INC | RELEASE OF SECURITY INTEREST | 033133 | /0902 | |
Jun 09 2014 | NXSTAGE MEDICAL, INC | GENERAL ELECTRIC CAPITAL CORPORATION, AS ADMINISTRATIVE AGENT | SECURITY INTEREST | 033123 | /0836 | |
Nov 13 2015 | GENERAL ELECTRIC CAPITAL CORPORATION, AS RETIRING AGENT | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | ASSIGNMENT OF INTELLECTUAL PROPERTY SECURITY AGREEMENT | 037112 | /0376 | |
Feb 21 2019 | CAPITAL ONE, NATIONAL ASSOCIATION AS SUCCESSOR BY MERGER TO HEALTHCARE FINANCIAL SOLUTIONS, LLC | NXSTAGE MEDICAL, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 048407 | /0865 |
Date | Maintenance Fee Events |
Jul 02 2012 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 01 2014 | ASPN: Payor Number Assigned. |
Jun 30 2016 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 30 2020 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 30 2011 | 4 years fee payment window open |
Jun 30 2012 | 6 months grace period start (w surcharge) |
Dec 30 2012 | patent expiry (for year 4) |
Dec 30 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 30 2015 | 8 years fee payment window open |
Jun 30 2016 | 6 months grace period start (w surcharge) |
Dec 30 2016 | patent expiry (for year 8) |
Dec 30 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 30 2019 | 12 years fee payment window open |
Jun 30 2020 | 6 months grace period start (w surcharge) |
Dec 30 2020 | patent expiry (for year 12) |
Dec 30 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |