An integrated circuit (IC) design, method and program product for reducing IC design power consumption. The IC is organized in circuit rows. circuit rows may include a low voltage island powered by a low voltage (vddl) supply and a high voltage island powered by a high voltage (vddh) supply. circuit elements including cells, latches and macros are placed with high or low voltage islands to minimize IC power while maintaining overall performance. Level converters may be placed with high voltage circuit elements.
|
1. An integrated circuit (IC) comprising:
a plurality of circuit rows, at least one row of said plurality of circuit rows including three or more voltage islands;
at least one low voltage island in said at least one row and at least one low voltage island spans two or more of said plurality of circuit rows, circuit elements in each said at least one low voltage island being powered by a low voltage (vddl) supply; and
at least one high voltage island in said at least one row, circuit elements in each said at least one high voltage island being powered by a high voltage (vddh) supply, vddh being a higher voltage than vddl.
5. An IC as in
6. An IC as in
7. An IC as in
8. An IC as in
|
The present application is a divisional application of U.S. Pat. No. 7,111,266 application Ser. No. 10/720,464, filed Nov. 24, 2003 entitled “MULTIPLE VOLTAGE INTEGRATED CIRCUIT AND DESIGN METHOD THEREFOR” to Anthony Correale, Jr. et al.; and related to U.S. Pat. No. 7,089,510 application Ser. No. 10/720,562 entitled “METHOD AND PROGRAM PRODUCT OF LEVEL CONVERTER OPTIMIZATION” to Anthony Correale Jr. et al., U.S. Pat. No. 7,119,578 application Ser. No. 10/720,466 entitled “SINGLE SUPPLY LEVEL CONVERTER” to Anthony Correale Jr. et al., both filed coincident with the parent application and to U.S. Pat. No. 7,091,574 application Ser. No. 10/387,728 entitled “VOLTAGE ISLAND CIRCUIT PLACEMENT” to Anthony Correale Jr., all assigned to the assignee of the present invention.
1. Field of the Invention
The present invention is related to integrated circuit (IC) design circuit design and more particularly, to optimizing standard cell design configurations.
2. Background Description
Semiconductor technology and chip manufacturing advances have resulted in a steady increase of on-chip clock frequencies, the number of transistors on a single chip and the die size itself, coupled with a corresponding decrease in chip supply voltage and chip feature size. Generally, all other factors being constant, the power consumed by a given clocked unit increases linearly with the frequency of switching within it. Thus, not withstanding the decrease of chip supply voltage, chip power consumption has increased as well. Both at the chip and system levels, cooling and packaging costs have escalated as a natural result of this increase in chip power. For low end systems (e.g., handhelds, portable and mobile systems), where battery life is crucial, net power consumption reduction is important but, must be achieved without degrading performance below acceptable levels. Consequently, power consumption has been a major design consideration for designing very large scale integrated circuits (VLSI) such as high performance microprocessors. In particular, increasing power requirements run counter to the low end design goal of longer battery life. Since chip power is directly proportion to the square of supply voltage (Vdd), reducing supply voltage is one of the most effective ways to reduce the power consumption, both active and standby (leakage) power, which is becoming more and more of a problem as technology features scale into nanometer (nm) dimension range.
While reducing supply voltage is attractive to reduce the power consumption, reducing Vdd increases transistor and gate delay. Thus, for a design that is performance constrained, the supply voltage may not be lowered too much and, it is usually determined by the most timing critical paths. However, it is often the case that most cells in a chip are timing non-critical. If those timing non-critical cells are properly selected to be on lower supply voltage(s), significant power saving may be achieved without degrading the overall circuit performance.
One approach to reducing power is to use multiple supply voltages each supplying different circuit blocks or voltage islands. Each voltage island runs at its minimum necessary supply voltage. However, multiple supply voltages on the same circuit/chip present numerous problems, especially for deep submicron (DSM) designs, where circuit performance often is dominated by interconnect delays. In particular, logic synthesis is very complicated for multiple supply designs and, placement and routing must be considered together for voltage assignment, level converter insertion and minimization, and for circuit block clustering to simplify power routing of multiple supply lines.
Thus, there is a need for circuit element clustering for minimum power and to simplify power routing of multiple supply lines.
It is a purpose of the invention to improve integrated circuit (IC) chip design;
It is another purpose of the invention to improve cell placement in multi supply voltage IC chip designs;
It is yet another purpose of the invention to improve cell placement of first supply voltage cells with cells of other supply voltages in multi supply voltage IC chip designs;
It is yet another purpose of the invention to group circuit cells in a multi-supply design close to their respective power supplies;
It is yet another purpose of the invention to group circuit cells in a multi-supply design to facilitate timing closure;
It is yet another purpose of the invention to group circuit cells in a multi-supply design for optimum level converter placement;
It is yet another purpose of the invention to group circuit cells in a multi-supply design for a minimum number of level converters;
It is yet another purpose of the invention to group circuit cells in a multi-supply design for efficient level converter placement.
The present invention relates to an integrated circuit (IC) design, method and program product for reducing IC design power consumption. The IC is organized in circuit rows. Circuit rows may include a low voltage island powered by a low voltage (Vddl) supply and a high voltage island powered by a high voltage (Vddh) supply. Circuit elements including cells, latches and macros are placed with high or low voltage islands to minimize IC power while maintaining overall performance. Level converters may be placed with high voltage circuit elements.
The foregoing and other objects, aspects and advantages will be better understood from the following detailed description of a preferred embodiment of the invention with reference to the drawings, in which:
Accordingly, as described hereinbelow, the present invention provides a versatile and generic multi-supply voltage island circuit structure, wherein different supply voltages are assigned at both macro and cell level within the islands. Unless indicated otherwise for simplicity of discussion hereinbelow, logic cell and gate are used interchangeably and each is a sub-circuit of standard cell design. Further, a standard cell design is taken as having the same height, i.e., row height, for most cells. Abutting cells form circuit rows. Also, typical modem application specific integrated circuit (ASIC) and system on a chip (SOC) designs often have many proprietary macros (known in the art as intellectual property (IP) blocks) mixed with standard cells. A voltage island can be a single cell, an IP block or macro or, a continuous region of cells on the same or adjacent rows that have the same power supply voltage (referred to herein as a high voltage supply or Vddh and a low voltage supply or Vddl). An output or source drives a net connecting one or more inputs or sinks to the source and a low/high voltage net connects a low/high voltage source to low/high voltage sinks. Also, although described herein in terms of two (2) supplies description, this is for example only and not intended as a limitation. A person skilled in the art would readily understand how to extended the 2 supply description to multiple supply voltages.
So,
By contrast, a preferred circuit and chip design method incorporates generic voltage islands with much finer layout granularity. Supply voltage assignment may be done at both macro and gate level, affording designers much more design freedom and providing a much more flexible voltage island layout structure. Further such a preferred embodiment design achieves timing closure on design timing goals during voltage island formation and hastens timing optimization.
Typically, a Vddl source cannot drive a Vddh, sink reliably without excessive leakage. Thus, a level converter is needed for a transition from a low voltage net to a high voltage net. Traditional level converters require both supply voltages, Vddl and Vddh, to avoid excessive leakage. Previously, using dual-supply voltage level converters required that they be placed at the island 132, 134 boundaries for access to both power supplies. However, a single-supply level converter is used such as is described in U.S. Pat. No. 7,119,578 entitled “SINGLE SUPPLY LEVEL CONVERTER” to Anthony Correale Jr. et al., filed coincident with the parent to this application and incorporated herein by reference. Correale Jr. et al. level converters 144 can be placed anywhere in a higher voltage island 134 or logic 146 and so, provide additional placement flexibility. Preferably, a level converters as described hereinbelow is a single supply level converter such as Correale Jr. et al.
So, beginning in step 152 an input netlist description and specifications (e.g., technology files and timing constraints) is provided. In step 154 a timing closure tool with Spice RC delays (e.g., a suitable tool from Synopsis, Inc., or EinsTimer from IBM Corporation) is used to determine the entire circuit/chip timing at the higher supply voltage (Vddh) for a base placement and optimization, i.e., determining global placement and obtaining a good timing estimation. Then, non-critical cells are identified and assigned a lower supply voltage (Vddl). As noted hereinabove, interconnect delay can dominate the gate delay for deep submicron circuits and so, power can be reduced for lightly loaded circuits where power is not needed for driving large interconnect loads. So, the global placement information is used to correctly identify the critical versus non-critical cells, e.g., heavily loaded verses lightly loaded. Then in step 156, a logic aware voltage assignment is performed, assigning the lower supply voltage(s) to less critical circuits, i.e., macro, latch and/or cell. Next, in step 158 level converters are inserted and the results are refined and optimized. A level converter is inserted wherever there is a transition net with a low voltage cell driving a high voltage cell or, where a pass gate data input to a low voltage cell or circuit element is being driven by a high voltage cell and being controlled by a low voltage cell. In step 160 isolated assignments are removed in a physical aware voltage reassignment step, locating and reverting solo or very small groups of low voltage circuits that are difficult to form into low voltage islands. Since eliminating those isolated low voltage cells may create opportunities to reassign previously assigned high voltage cells to low voltage cells, in step 162 the design is checked for such opportunities. If any are found, returning to step 156 for another pass the design is further optimized, until there is no improvement available in step 162. Finally, in step 164 placement and power routing patterns are effected based on the voltage island assignments to form the final high and low voltage islands. As result, the entire flow can be tightly integrated with a suitable physical synthesis engine 166 such as a routing tool from Cadence Design Systems, e.g., for application of any necessary further timing optimization.
In addition to identifying circuits for separation into voltage islands, supply high and low voltages may similarly be selected to achieve optimum power saving. Further, a preferred voltage assignment method has application to static and incremental timing engines. Every time a macro or cell is changed from a higher voltage cell to a lower voltage cell, or vice verse, the timing (slack) is updated.
The initial voltage assignment is not physically aware, i.e., no consideration is given to cell placement. As shown in the example of
Physical aware voltage reassignment step 160 in
In each iteration level converter placement is optimized in step 158 to reduce the total number of level converters, gradually deleting the less efficient level converters. Level converters are necessary for transitions between islands, i.e., at least when a Vddl source is driving a Vddh sink. So, for example, branches to those level converters with a small Vddl fanin may be eliminated (deleting the level converter and returning the prior cell with a Vddl cell) or another level converter efficiency metric may be used to select level converters for deletion. Further, since level converters and buffers essentially have the same function and so, can be substituted for buffers, optimizing level converters, simultaneously optimizes buffers. In particular, for any Vddl output driving multiple Vddh inputs (i.e., inputs to multiple Vddh cells), instead of inserting a level converter for each Vddh input, a single level converter is shared, provided that timing and electrical constraints are still met.
Similarly, as shown in the examples of
It should be noted that in all of the above examples, if one level converter 186, 200, 218, 240 is not enough to drive all the respective Vddl receivers, it may be powered up using any suitable technique, e.g., cloning. Whether the level converter is powered up through cloning or otherwise should be evaluated together with the overall power saving of the placement. In particular, the original assignment of Vddl driver may be reverted to Vddh if the level converter cost is higher than the gain by selecting the driver to be Vddl in the first place. Furthermore, level converter placement as described with reference to
In this example the Vddl fanin cone 250 for level converter 252 includes the 5 gates 254, 256, 258, 260, 262. In this example, the size of each Vddl fanin cone for the level converters 252, 266 and 268 is 5, 1 and 4, respectively. However, since each level converter 252, 266, 268 consumes power and chip area, placement is optimized by deleting inefficient level converters. To the first order, the size of Vddl fanin cone is a rough measure of the efficiency of a particular level converter. So, level converters that are inefficient, i.e., level converters with small fanin cones, are deleted. For example, the level converter 266, which has Vddl fanin cone size of one (i.e., only one buffer 270 driving into it) and so, may not be cost effective with respect to power or area. Further, as shown in
A design may be constrained wherein portions may not be modified, e.g., with input/output (I/O) constraints that may not be replaced, for example, with Vddl cells. For example in a microprocessor core design, placing slower Vddl cells at the input logic between primary chip input and the first level latches, as well as at the output logic between the final level latches and the primary chip outputs may be unacceptable. Such constrained logic can be hidden or removed from consideration to avoid changing those cells to Vddl cells. Also, a user may specify a supply voltage for a set or sets of cells or macros. Such constraint information can be passed to voltage assignment with those constrained cells marked as hidden and so, not touched. Also, circuitry related constraints, can be applied during voltage assignment.
Advantageously, the present invention provides a flexible, systematic method for identifying cell candidates and creating optimized voltage islands. Further, such a design is achieved with a fine-grained voltage island and without performance degradation. Additionally, voltage assignment is both logically and physically, honoring both logic and physical adjacencies. Level converters are efficiently optimized for the design.
While the invention has been described in terms of preferred embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims.
Correale, Jr., Anthony, Puri, Ruchir, Wallach, David, Kung, David S., Lamb, Douglass T., Pan, Zhigang
Patent | Priority | Assignee | Title |
8390369, | Aug 05 2010 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Electronic circuit and method for operating a module in a functional mode and in an idle mode |
8423930, | Sep 13 2007 | Qualcomm Incorporated | Area and power saving standard cell methodology |
8516417, | Aug 07 2009 | GLOBALFOUNDRIES Inc | Method and system for repartitioning a hierarchical circuit design |
8701059, | Aug 07 2009 | GLOBALFOUNDRIES Inc | Method and system for repartitioning a hierarchical circuit design |
8893063, | Sep 13 2007 | Qualcomm Incorporated | Area and power saving standard cell methodology |
9443050, | Aug 01 2012 | State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon State University | Low-voltage swing circuit modifications |
Patent | Priority | Assignee | Title |
4742383, | Jan 12 1983 | International Business Machines Corporation | Multi-function FET masterslice cell |
5313079, | Jun 22 1992 | CALLAHAN CELLULAR L L C | Gate array bases with flexible routing |
5517132, | Jan 19 1994 | Matsushita Electric Industrial Co., Ltd. | Logic synthesis method and semiconductor integrated circuit |
5594368, | Apr 19 1995 | Kabushiki Kaisha Toshiba | Low power combinational logic circuit |
5754061, | Mar 17 1993 | Fujitsu Limited | Bi-CMOS circuits with enhanced power supply noise suppression and enhanced speed |
5796299, | Dec 11 1995 | Kabushiki Kaisha Toshiba | Integrated circuit array including I/O cells and power supply cells |
5818256, | Apr 19 1995 | Kabushiki Kaisha Toshiba | Low power combinational logic circuit |
5838947, | Apr 02 1996 | Synopsys, Inc | Modeling, characterization and simulation of integrated circuit power behavior |
5926396, | May 26 1995 | Matsushita Electric Industrial Co., Ltd. | Logic synthesis method, semiconductor integrated circuit and arithmetic circuit |
6000829, | Sep 11 1996 | Matsushita Electric Industrial Co., Ltd. | Semiconductor integrated circuit capable of compensating for flucuations in power supply voltage level and method of manufacturing the same |
6167554, | Dec 04 1996 | Kabushiki Kaisha Toshiba | Combinational logic circuit, its design method and integrated circuit device |
6490715, | Apr 16 1999 | SOCIONEXT INC | Cell library database and design aiding system |
6668356, | Jan 04 2001 | Infineon Technologies AG | Method for designing circuits with sections having different supply voltages |
6768354, | Jul 26 2000 | Renesas Electronics Corporation | Multi-power semiconductor integrated circuit device |
6779163, | Sep 25 2002 | Intel Corporation | Voltage island design planning |
6792582, | Nov 15 2000 | International Business Machines Corporation | Concurrent logical and physical construction of voltage islands for mixed supply voltage designs |
6842045, | May 19 2000 | Renesas Electronics Corporation; NEC Electronics Corporation | Semiconductor integrated circuit having high-speed and low-power logic gates with common transistor substrate potentials, design methods thereof, and related program recording medium |
6859917, | May 19 2000 | Renesas Electronics Corporation; NEC Electronics Corporation | Semiconductor integrated circuit having high-speed and low-power logic gates with common transistor substrate potentials, design methods thereof, and related program recording medium |
6941534, | Dec 20 2000 | Fujitsu Limited | Semiconductor device and layout data generation apparatus |
6944843, | Aug 05 2003 | BAE Systems, Information and Electronic Systems Integration, Inc. | Method for providing a cell-based ASIC device with multiple power supply voltages |
6990645, | Apr 29 2003 | International Business Machines Corporation | Method for static timing verification of integrated circuits having voltage islands |
7069522, | Jun 02 2003 | Synopsys, Inc | Various methods and apparatuses to preserve a logic state for a volatile latch circuit |
7089510, | Nov 24 2003 | International Business Machines Corporation | Method and program product of level converter optimization |
7091574, | Mar 13 2003 | International Business Machines Corporation | Voltage island circuit placement |
7111266, | Nov 24 2003 | GLOBALFOUNDRIES U S INC | Multiple voltage integrated circuit and design method therefor |
7336100, | Nov 24 2003 | GLOBALFOUNDRIES Inc | Single supply level converter |
20030141899, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 18 2003 | PURI, RUCHIR | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018077 | /0979 | |
Nov 18 2003 | KUNG, DAVID S | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018077 | /0979 | |
Nov 19 2003 | PAN, ZHIGANG | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018077 | /0979 | |
Mar 05 2004 | LAMB, DOUGLASS T | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018077 | /0979 | |
Mar 05 2004 | CORREALE, JR , ANTHONY | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018077 | /0979 | |
Mar 08 2004 | WALLACH, DAVID | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018077 | /0979 | |
Jul 27 2006 | International Business Machines Corporation | (assignment on the face of the patent) | / | |||
Jun 29 2015 | International Business Machines Corporation | GLOBALFOUNDRIES U S 2 LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036550 | /0001 | |
Sep 10 2015 | GLOBALFOUNDRIES U S 2 LLC | GLOBALFOUNDRIES Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036779 | /0001 | |
Sep 10 2015 | GLOBALFOUNDRIES U S INC | GLOBALFOUNDRIES Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036779 | /0001 | |
Nov 27 2018 | GLOBALFOUNDRIES Inc | WILMINGTON TRUST, NATIONAL ASSOCIATION | SECURITY AGREEMENT | 049490 | /0001 | |
Oct 22 2020 | GLOBALFOUNDRIES Inc | GLOBALFOUNDRIES U S INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054633 | /0001 | |
Nov 17 2020 | WILMINGTON TRUST, NATIONAL ASSOCIATION | GLOBALFOUNDRIES Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 054636 | /0001 | |
Nov 17 2020 | WILMINGTON TRUST, NATIONAL ASSOCIATION | GLOBALFOUNDRIES U S INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 056987 | /0001 |
Date | Maintenance Fee Events |
Jan 21 2009 | ASPN: Payor Number Assigned. |
Sep 03 2012 | REM: Maintenance Fee Reminder Mailed. |
Nov 30 2012 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 30 2012 | M1554: Surcharge for Late Payment, Large Entity. |
Jul 07 2016 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jul 09 2020 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 20 2012 | 4 years fee payment window open |
Jul 20 2012 | 6 months grace period start (w surcharge) |
Jan 20 2013 | patent expiry (for year 4) |
Jan 20 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 20 2016 | 8 years fee payment window open |
Jul 20 2016 | 6 months grace period start (w surcharge) |
Jan 20 2017 | patent expiry (for year 8) |
Jan 20 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 20 2020 | 12 years fee payment window open |
Jul 20 2020 | 6 months grace period start (w surcharge) |
Jan 20 2021 | patent expiry (for year 12) |
Jan 20 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |