A manufacturing process for enhancing a light reflective rate in a reflective type display device is provided. The manufacturing process comprises steps of: forming a first conductive layer and a first dielectric layer over a substrate; etching the first dielectric layer; polishing the etched first dielectric layer; forming a second conductive layer over the substrate; and patterning the second conductive layer to form a concave mirror on the surface of the second conductive layer.
|
1. A manufacturing process for enhancing a light reflective rate in a reflective type display device, the manufacturing process comprising steps of:
forming a first conductive layer and a first dielectric layer over a substrate;
etching the first dielectric layer by a depth smaller than the thickness of the first dielectric layer;
polishing the etched first dielectric layer;
forming a second conductive layer over the substrate; and
patterning the second conductive layer to form a concave mirror on the surface of the second conductive layer.
2. The manufacturing process of
3. The manufacturing process of
4. The manufacturing process of
5. The manufacturing process of
6. The manufacturing process of
7. The manufacturing process of
|
1. Field of Invention
The present invention relates to a manufacturing process for enhancing light reflective rate in a reflective type display device.
2. Description of Related Art
Display devices are becoming slimmer, lighter and have a large screen. Especially, a large screen display device is an ongoing subject in current display technologies. Projection TVs are typical examples of the large screen display device.
Projection TVs are largely classified into CRT (Cathode Ray Tube) projection TVs and LCD (Liquid Crystal Display) projection TVs. The LCD projection TVs are classified into transmissive LCD-based systems or reflective LCD-based systems.
In the reflective LCD-based systems, a particular type of reflective LCD panel known as a liquid crystal on silicon (LCOS) display panel is used. The LCOS display panel uses reflective LCD elements arranged on a silicon backplane. LCOS display panels can be used in both single-panel and three-panel configurations, and are becomingly increasingly popular for use in applications such as compact projectors and head-up or near-to-eye projection display systems. LCOS display panels have a number of significant advantages over other types of reflective LCD panels. For example, crystalline silicon can be used to form active matrix elements of the LCOS panels. The silicon backplane can also be used to form the TFT drivers, timing controller and other functional circuitry, using well-known and efficient semiconductor manufacturing techniques. Moreover, a larger percentage of the active area can be used for processing video information for display.
In a reflective LCOS system, light reflection rate is a key factor to improve brightness of the system. During the prior manufacturing process of the LCOS display panel, a top metal layer is flat. However, the flat top metal layer may have some disadvantages concerning light reflection rate. Now please refer to
There is a need to enhance the light reflection rate to approach high brightness requirement in the reflective LCOS system.
One of the aspects of the invention is to provide a manufacturing process for enhancing light reflective rate in a reflective type display device. A top metal layer has concave mirrors and it can change light reflection to move forward and be detected by front side detection configuration for enhancing light reflection rate effectively. In order to achieve the above and other aspects of the invention, the invention provides a manufacturing process for enhancing a light reflective rate in a reflective type display device is provided. The manufacturing process comprises steps of: forming a first conductive layer and a first dielectric layer over a substrate; etching the first dielectric layer; polishing the etched first dielectric layer; forming a second conductive layer over the substrate; and patterning the second conductive layer to form a concave mirror on the surface of the second conductive layer.
It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the invention as claimed.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
In order to enhance light reflection rate, in an embodiment of the invention, a top metal layer has concave mirrors and it can change light reflection to move forward and be detected by front side detection configuration. This can enhance light reflection rate effectively.
Now please refer to
Now please refer to
Now, please refer to
Now, please refer to
Now, please refer to
As shown in
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing descriptions, it is intended that the present invention covers modifications and variations of this invention if they fall within the scope of the following claims and their equivalents.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4106859, | Jun 27 1975 | U S PHILIPS CORPORATION | Reflector with light-scattering surface for liquid-crystal displays and method for their manufacture |
6429919, | Jul 29 1997 | ALPS Electric Co., Ltd. | Reflector having pits and projection on a surface thereof, manufacturing method for the same, and reflection-type liquid crystal display device employing the reflector |
6473145, | Sep 09 1999 | BOE-HYDIS TECHNOLOGY CO , LTD | Reflective liquid crystal display device using a reflective plate having light weight |
6501522, | Sep 13 2000 | AU Optronics Corporation | Method of fabricating a reflective type LCD |
6509943, | Feb 12 2000 | LG DISPLAY CO , LTD | Reflective liquid crystal display device |
6806928, | May 09 2002 | JAPAN DISPLAY CENTRAL INC | Reflection member and liquid crystal display device using the same |
6856366, | Mar 06 2002 | Omron Corporation | Reflector plate, reflection type display device, electronic apparatus, light reflecting method and image display method |
7123324, | Jul 03 2000 | ALPS Electric Co., Ltd. | Reflector providing particularly high reflectance in an intended viewing angle and reflection type liquid crystal display device using the same |
JP2000089217, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 09 2006 | HUANG, SHUN-TAI | HIMAX DISPLAY, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017985 | /0914 | |
Jun 16 2006 | Himax Display, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jul 05 2012 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 21 2016 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jul 30 2020 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 03 2012 | 4 years fee payment window open |
Aug 03 2012 | 6 months grace period start (w surcharge) |
Feb 03 2013 | patent expiry (for year 4) |
Feb 03 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 03 2016 | 8 years fee payment window open |
Aug 03 2016 | 6 months grace period start (w surcharge) |
Feb 03 2017 | patent expiry (for year 8) |
Feb 03 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 03 2020 | 12 years fee payment window open |
Aug 03 2020 | 6 months grace period start (w surcharge) |
Feb 03 2021 | patent expiry (for year 12) |
Feb 03 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |