Systems and methods according to the present invention address these needs and others by providing a 3D pointing device and methods for 3D pointing which provide accurate translation of movement of the 3D pointing device into user interface commands, e.g., cursor movement. According to exemplary embodiments of the present invention, a 3D pointing device includes a plurality of accelerometers.
|
1. A user interface device comprising:
a housing;
at least four accelerometer devices arranged in a non-coplanar configuration in said housing, each of said at least four accelerometer devices outputting respective accelerometer data; and
a processing unit in said housing comprising an algorithm that translates said accelerometer data from each of said at least four accelerometer devices into two-dimensional pointer movement,
wherein said algorithm reduces error by bounding device movement based on user movement characteristics.
8. A user interface device comprising:
a housing;
at least four accelerometer devices arranged in a non-coplanar configuration in said housing, each of said at least four accelerometer devices outputting respective accelerometer data,
wherein each accelerometer device contains three accelerometers; and
a processing unit in said housing comprising an algorithm with linear and non-linear components that translates said accelerometer data from each of said at least four accelerometer devices into two-dimensional pointer movement,
wherein said algorithm with linear and non-linear components reduces error introduced by gravitational drift, temperature drift and user created tremor accelerations.
2. The user interface device in
3. The user interface device in
4. The user interface device of
5. The user interface device of
6. The user interface device of
7. The user interface device of
9. The user interface device of
10. The user interface device of
11. The user interface device of
|
This application is related to, and claims priority from, U.S. Provisional Patent Application Ser. No. 60/513,869 filed on Oct. 23, 2003, entitled “User Interface Device Employing Accelerometers”, the disclosure of which is incorporated here by reference. This application is also related to, and claims priority from, U.S. Provisional Patent Application Ser. No. 60/566,444 filed on Apr. 30, 2004, entitled “Freespace Pointing Device”, the disclosure of which is incorporated here by reference. Additionally, this application is related to, and claims priority from, U.S. Provisional Patent Application Ser. No. 60/612,571 Sep. 23, 2004, entitled “Free Space Pointing Devices and Methods”, the disclosure of which is incorporated here by reference.
The present invention describes three-dimensional (hereinafter “3D”) pointing devices usable in a number of different applications including, for example, a framework for organizing, selecting and launching media items.
Technologies associated with the communication of information have evolved rapidly over the last several decades. Television, cellular telephony, the Internet and optical communication techniques (to name just a few things) combine to inundate consumers with available information and entertainment options. Taking television as an example, the last three decades have seen the introduction of cable television service, satellite television service, pay-per-view movies and video-on-demand. Whereas television viewers of the 1960s could typically receive perhaps four or five over-the-air TV channels on their television sets, today's TV watchers have the opportunity to select from hundreds, thousands, and potentially millions of channels of shows and information. Video-on-demand technology, currently used primarily in hotels and the like, provides the potential for in-home entertainment selection from among thousands of movie titles.
The technological ability to provide so much information and content to end users provides both opportunities and challenges to system designers and service providers. One challenge is that while end users typically prefer having more choices rather than fewer, this preference is counterweighted by their desire that the selection process be both fast and simple. Unfortunately, the development of the systems and interfaces by which end users access media items has resulted in selection processes which are neither fast nor simple. Consider again the example of television programs. When television was in its infancy, determining which program to watch was a relatively simple process primarily due to the small number of choices. One would consult a printed guide which was formatted, for example, as series of columns and rows which showed the correspondence between (1) nearby television channels, (2) programs being transmitted on those channels and (3) date and time. The television was tuned to the desired channel by adjusting a tuner knob and the viewer watched the selected program. Later, remote control devices were introduced that permitted viewers to tune the television from a distance. This addition to the user-television interface created the phenomenon known as “channel surfing” whereby a viewer could rapidly view short segments being broadcast on a number of channels to quickly learn what programs were available at any given time.
Despite the fact that the number of channels and amount of viewable content has dramatically increased, the generally available user interface, control device options and frameworks for televisions has not changed much over the last 30 years. Printed guides are still the most prevalent mechanism for conveying programming information. The multiple button remote control with up and down arrows is still the most prevalent channel/content selection mechanism. The reaction of those who design and implement the TV user interface to the increase in available media content has been a straightforward extension of the existing selection procedures and interface objects. Thus, the number of rows in the printed guides has been increased to accommodate more channels. The number of buttons on the remote control devices has been increased to support additional functionality and content handling, e.g., as shown in
In addition to increases in bandwidth and content, the user interface bottleneck problem is being exacerbated by the aggregation of technologies. Consumers are reacting positively to having the option of buying integrated systems rather than a number of segregable components. An example of this trend is the combination television/VCR/DVD in which three previously independent components are frequently sold today as an integrated unit. This trend is likely to continue, potentially with an end result that most if not all of the communication devices currently found in the household will be packaged together as an integrated unit, e.g., a television/VCR/DVD/internet access/radio/stereo unit. Even those who continue to buy separate components will likely desire seamless control of, and interworking between, the separate components. With this increased aggregation comes the potential for more complexity in the user interface. For example, when so-called “universal” remote units were introduced, e.g., to combine the functionality of TV remote units and VCR remote units, the number of buttons on these universal remote units was typically more than the number of buttons on either the TV remote unit or VCR remote unit individually. This added number of buttons and functionality makes it very difficult to control anything but the simplest aspects of a TV or VCR without hunting for exactly the right button on the remote. Many times, these universal remotes do not provide enough buttons to access many levels of control or features unique to certain TVs. In these cases, the original device remote unit is still needed, and the original hassle of handling multiple remotes remains due to user interface issues arising from the complexity of aggregation. Some remote units have addressed this problem by adding “soft” buttons that can be programmed with the expert commands. These soft buttons sometimes have accompanying LCD displays to indicate their action. These too have the flaw that they are difficult to use without looking away from the TV to the remote control. Yet another flaw in these remote units is the use of modes in an attempt to reduce the number of buttons. In these “moded” universal remote units, a special button exists to select whether the remote should communicate with the TV, DVD player, cable set-top box, VCR, etc. This causes many usability issues including sending commands to the wrong device, forcing the user to look at the remote to make sure that it is in the right mode, and it does not provide any simplification to the integration of multiple devices. The most advanced of these universal remote units provide some integration by allowing the user to program sequences of commands to multiple devices into the remote. This is such a difficult task that many users hire professional installers to program their universal remote units.
Some attempts have also been made to modernize the screen interface between end users and media systems. However, these attempts typically suffer from, among other drawbacks, an inability to easily scale between large collections of media items and small collections of media items. For example, interfaces which rely on lists of items may work well for small collections of media items, but are tedious to browse for large collections of media items. Interfaces which rely on hierarchical navigation (e.g., tree structures) may be speedier to traverse than list interfaces for large collections of media items, but are not readily adaptable to small collections of media items. Additionally, users tend to lose interest in selection processes wherein the user has to move through three or more layers in a tree structure. For all of these cases, current remote units make this selection processor even more tedious by forcing the user to repeatedly depress the up and down buttons to navigate the list or hierarchies. When selection skipping controls are available such as page up and page down, the user usually has to look at the remote to find these special buttons or be trained to know that they even exist.
Of particular interest for this specification are the remote devices usable to interact with such frameworks, as well as other applications and systems. As mentioned in the above-incorporated application, various different types of remote devices can be used with such frameworks including, for example, trackballs, “mouse”-type pointing devices, light pens, etc. However, another category of remote devices which can be used with such frameworks (and other applications) is 3D pointing devices. The phrase “3D pointing” is used in this specification to refer to the ability of an input device to move in three (or more) dimensions in the air in front of, e.g., a display screen, and the corresponding ability of the user interface to translate those motions directly into user interface commands, e.g., movement of a cursor on the display screen. The transfer of data between the 3D pointing device may be performed wirelessly or via a wire connecting the 3D pointing device to another device. Thus “3D pointing” differs from, e.g., conventional computer mouse pointing techniques which use a surface, e.g., a desk surface or mousepad, as a proxy surface from which relative movement of the mouse is translated into cursor movement on the computer display screen. An example of a 3D pointing device can be found in U.S. Pat. No. 5,440,326.
The '326 patent describes, among other things, a vertical gyroscope adapted for use as a pointing device for controlling the position of a cursor on the display of a computer. A motor at the core of the gyroscope is suspended by two pairs of orthogonal gimbals from a hand-held controller device and nominally oriented with its spin axis vertical by a pendulous device. Electro-optical shaft angle encoders sense the orientation of a handheld controller device as it is manipulated by a user and the resulting electrical output is converted into a format usable by a computer to control the movement of a cursor on the screen of the computer display. However there continues to be a need for a cost-effective, accurate and user-friendly, 3D pointing device.
Systems and methods according to the present invention address these needs and others by providing a 3D pointing device and methods for 3D pointing which provide accurate translation of movement of the 3D pointing device into user interface commands, e.g., cursor movement. According to exemplary embodiments of the present invention, a 3D pointing device includes a plurality of accelerometers.
According to one exemplary embodiment of the present invention, a handheld, user interface device includes a plurality of accelerometers, each of which provide acceleration data associated with movement of the device, a processing unit for transforming the acceleration data into data from which two dimensional cursor movement data can be generated, wherein the processing unit further processes the acceleration data to determine when the handheld, user interface device is stationary and recalibrates the handheld, user interface device when the handheld, user interface device is stationary.
The accompanying drawings illustrate exemplary embodiments of the present invention, wherein:
The following detailed description of the invention refers to the accompanying drawings. The same reference numbers in different drawings identify the same or similar elements. Also, the following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims.
In order to provide some context for this discussion, an exemplary aggregated media system 200 in which the present invention can be implemented will first be described with respect to
In this exemplary embodiment, the media system 200 includes a television/monitor 212, a video cassette recorder (VCR) 214, digital video disk (DVD) recorder/playback device 216, audio/video tuner 218 and compact disk player 220 coupled to the I/O bus 210. The VCR 214, DVD 216 and compact disk player 220 may be single disk or single cassette devices, or alternatively may be multiple disk or multiple cassette devices. They may be independent units or integrated together. In addition, the media system 200 includes a microphone/speaker system 222, video camera 224 and a wireless I/O control device 226. According to exemplary embodiments of the present invention, the wireless I/O control device 226 is a 3D pointing device according to one of the exemplary embodiments described below. The wireless I/O control device 226 can communicate with the entertainment system 200 using, e.g., an IR or RF transmitter or transceiver. Alternatively, the I/O control device can be connected to the entertainment system 200 via a wire.
The entertainment system 200 also includes a system controller 228. According to one exemplary embodiment of the present invention, the system controller 228 operates to store and display entertainment system data available from a plurality of entertainment system data sources and to control a wide variety of features associated with each of the system components. As shown in
As further illustrated in
More details regarding this exemplary entertainment system and frameworks associated therewith can be found in the above-incorporated by reference U.S. patent application “A Control Framework with a Zoomable Graphical User Interface for Organizing, Selecting and Launching Media Items”. Alternatively, remote devices in accordance with the present invention can be used in conjunction with other systems, for example computer systems including, e.g., a display, a processor and a memory system or with various other systems and applications.
As mentioned in the Background section, remote devices which operate as 3D pointers are of particular interest for the present specification. Such devices enable the translation of movement, e.g., gestures, into commands to a user interface. An exemplary 3D pointing device 400 is depicted in
According to one exemplary embodiment of the present invention, two rotational sensors 502 and 504 and one accelerometer 506 can be employed as sensors in 3D pointing device 400 as shown in
One challenge faced in implementing exemplary 3D pointing devices 400 in accordance with the present invention is to employ components, e.g., rotational sensors 502 and 504, which are not too costly, while at the same time providing a high degree of correlation between movement of the 3D pointing device 400, a user's expectation regarding how the user interface will react to that particular movement of the 3D pointing device and actual user interface performance in response to that movement. For example, if the 3D pointing device 400 is not moving, the user will likely expect that the cursor ought not to be drifting across the screen. Likewise, if the user rotates the 3D pointing device 400 purely around the y-axis, she or he would likely not expect to see the resulting cursor movement on display 408 contain any significant x2 axis component. To achieve these, and other, aspects of exemplary embodiments of the present invention, various measurements and calculations are performed by the handheld device 400 which are used to adjust the outputs of one or more of the sensors 502, 504 and 506 and/or as part of the input used by a processor to determine an appropriate output for the user interface based on the outputs of the sensors 502, 504 and 506. These measurements and calculations are used to compensate for factors which fall broadly into two categories: (1) factors which are intrinsic to the 3D pointing device 400, e.g., errors associated with the particular sensors 502, 504 and 506 used in the device 400 or the way in which the sensors are mounted in the device 400 and (2) factors which are not intrinsic to the 3D pointing device 400, but are instead associated with the manner in which a user is using the 3D pointing device 400, e.g., linear acceleration, tilt and tremor. Exemplary techniques for handling each of these effects are described below.
A process model 600 which describes the general operation of 3D pointing devices according to exemplary embodiments of the present invention is illustrated in
The output from the accelerometer 506 is provided and, if the accelerometer 506 provides analog output, then the output is sampled and digitized by an A/D converter (not shown) to generate sampled accelerometer output 602. The sampled output values are converted from raw units to units of acceleration, e.g., gravities (g), as indicated by conversion function 604. The acceleration calibration block 606 provides the values used for the conversion function 604. This calibration of the accelerometer output 602 can include, for example, compensation for one or more of scale, offset and axis misalignment error associated with the accelerometer 506. Exemplary conversions for the accelerometer data can be performed using the following equation:
A=S*((M−P).*G(T)) (1)
wherein M is a 3×1 column vector composed of the sampled output values (x, y, z), P is a 3×1 column vector of sensor offsets, and S is a 3×3 matrix that contains both scale, axis misalignment, and sensor rotation compensation. G(T) is a gain factor that is a function of temperature. The “*” operator represents matrix multiplication and the “.*” operator represents element multiplication. The exemplary accelerometer 506 has an exemplary full range of +/−2 g. Sensor offset, P, refers to the sensor output, M, for an accelerometer measurement of 0 g. Scale refers to the conversion factor between the sampled unit value and g. The actual scale of any given accelerometer sensor may deviate from these nominal scale values due to, e.g., manufacturing variances. Accordingly the scale factor in the equations above will be proportional to this deviation.
Accelerometer 506 scale and offset deviations can be measured by, for example, applying 1 g of force along one an axis and measuring the result, R1. Then a −1 g force is applied resulting in measurement R2. The individual axis scale, s, and the individual axis offset, p, can be computed as follows:
s=(R1−R2)/2 (2)
p=(R1+R2)/2 (3)
In this simple case, P is the column vector of the p for each axis, and S is the diagonal matrix of the 1/s for each axis.
However, in addition to scale and offset, readings generated by accelerometer 506 may also suffer from cross-axes effects. Cross-axes effects include non-aligned axes, e.g., wherein one or more of the sensing axes of the accelerometer 506 as it is mounted in the 3D pointing device 400 are not aligned with the corresponding axis in the inertial frame of reference, or mechanical errors associated with the machining of the accelerometer 506 itself, e.g., wherein even though the axes are properly aligned, a purely y-axis acceleration force may result in a sensor reading along the z-axis of the accelerometer 506. Both of these effects can also be measured and added to the calibration performed by function 606.
The accelerometer 506 serves several purposes in exemplary 3D pointing devices according to exemplary embodiments of the present invention. For example, if rotational sensors 502 and 504 are implemented using the exemplary Coriolis effect rotational sensors described above, then the output of the rotational sensors 502 and 504 will vary based on the linear acceleration experienced by each rotational sensor. Thus, one exemplary use of the accelerometer 506 is to compensate for fluctuations in the readings generated by the rotational sensors 502 and 504 which are caused by variances in linear acceleration. This can be accomplished by multiplying the converted accelerometer readings by a gain matrix 610 and subtracting (or adding) the results from (or to) the corresponding sampled rotational sensor data 612. For example, the sampled rotational data ay from rotational sensor 502 can be compensated for linear acceleration at block 614 as:
ay′=ay−C*A (4)
wherein C is the 1×3 row vector of rotational sensor susceptibility to linear acceleration along each axis given in units/g and A is the calibrated linear acceleration. Similarly, linear acceleration compensation for the sampled rotational data az from rotational sensor 504 can be provided at block 614. The gain matrices, C, vary between rotational sensors due to manufacturing differences. C may be computed using the average value for many rotational sensors, or it may be custom computed for each rotational sensor.
Like the accelerometer data, the sampled rotational data 612 is then converted from a sampled unit value into a value associated with a rate of angular rotation, e.g., radians/s, at function 616. This conversion step can also include calibration provided by function 618 to compensate the sampled rotational data for, e.g., scale and offset. Conversion/calibration for both ay and az can be accomplished using, for example, the following equation:
arad/s=(a′−offset(T))*scale+dOffset (5)
wherein a′ refers to the value being converted/calibrated, offset(T) refers to an offset value associated with temperature, scale refers to the conversion factor between the sampled unit value and rad/s, and dOffset refers to a dynamic offset value. Equation (5) may be implemented as a matrix equation in which case all variables are vectors except for scale. In matrix equation form, scale corrects for axis misalignment and rotational offset factors. Each of these variables is discussed in more detail below.
The offset values offset(T) and dOffset can be determined in a number of different ways. When the 3D pointing device 400 is not being rotated in, for example, the y-axis direction, the sensor 502 should output its offset value. However, the offset can be highly affected by temperature, so this offset value will likely vary. Offset temperature calibration may be performed at the factory, in which case the value(s) for offset(T) can be preprogrammed into the handheld device 400 or, alternatively, offset temperature calibration may also be learned dynamically during the lifetime of the device. To accomplish dynamic offset compensation, an input from a temperature sensor 619 is used in rotation calibration function 618 to compute the current value for offset(T). The offset(T) parameter removes the majority of offset bias from the sensor readings. However, negating nearly all cursor drift at zero movement can be useful for producing a high-performance pointing device. Therefore, the additional factor dOffset, can be computed dynamically while the 3D pointing device 400 is in use. The stationary detection function 608 determines when the handheld is most likely stationary and when the offset should be recomputed. Exemplary techniques for implementing stationary detection function 608, as well as other uses therefore, are described below.
An exemplary implementation of dOffset computation employs calibrated sensor outputs which are low-pass filtered. The stationary output detection function 608 provides an indication to rotation calibration function 618 to trigger computation of, for example, the mean of the low-pass filter output. The stationary output detection function 608 can also control when the newly computed mean is factored into the existing value for dOffset. Those skilled in the art will recognize that a multitude of different techniques can be used for computing the new value for dOffset from the existing value of dOffset and the new mean including, but not limited to, simple averaging, low-pass filtering and Kalman filtering. Additionally, those skilled in the art will recognize that numerous variations for offset compensation of the rotational sensors 502 and 504 can be employed. For example, the offset(T) function can have a constant value (e.g., invariant with temperature), more than two offset compensation values can be used and/or only a single offset value can be computed/used for offset compensation.
After conversion/calibration at block 616, the inputs from the rotational sensors 502 and 504 can be further processed to rotate those inputs into an inertial frame of reference, i.e., to compensate for tilt associated with the manner in which the user is holding the 3D pointing device 400, at function 620. Tilt correction is another significant aspect of some exemplary embodiments of the present invention as it is intended to compensate for differences in usage patterns of 3D pointing devices according to the present invention. More specifically, tilt correction according to exemplary embodiments of the present invention is intended to compensate for the fact that users will hold pointing devices in their hands at different x-axis rotational positions, but that the sensing axes of the rotational sensors 502 and 504 in the 3D pointing devices 400 are fixed. It is desirable that cursor translation across display 408 is substantially insensitive to the way in which the user grips the 3D pointing device 400, e.g., rotating the 3D pointing device 400 back and forth in a manner generally corresponding to the horizontal dimension (x2-axis) of the display 408 should result in cursor translation along the x2-axis, while rotating the 3D pointing device up and down in a manner generally corresponding to the vertical dimension (y2-axis) of the display 408 should result in cursor translation along the y2-axis, regardless of the orientation in which the user is holding the 3D pointing device 400.
To better understand the need for tilt compensation according to exemplary embodiments of the present invention, consider the example shown in
If, on the other hand, the user holds the 3D pointing device 400 in a different orientation, e.g., with some amount of x-axis rotation relative to the inertial frame of reference, then the information provided by the sensors 502 and 504 would not (absent tilt compensation) provide an accurate representation of the user's intended interface actions. For example, referring to
According to exemplary embodiments of the present invention, returning to
The value θ can be numerically computed as a tan 2(y,z) to prevent division by zero and give the correct sign. Then, function 620 can perform the rotation R of the converted/calibrated inputs ay and xz using the equation:
to rotate the converted/calibrated inputs ay and az to compensate for the tilt θ.
Once the calibrated sensor readings have been compensated for linear acceleration, processed into readings indicative of angular rotation of the 3D pointing device 400, and compensated for tilt, post-processing can be performed at blocks 626 and 628. Exemplary post-processing can include compensation for various factors such as human tremor. Although tremor may be removed using several different methods, one way to remove tremor is by using hysteresis. The angular velocity produced by rotation function 620 is integrated to produce an angular position. Hysteresis of a calibrated magnitude is then applied to the angular position. The derivative is taken of the output of the hysteresis block to again yield an angular velocity. The resulting output is then scaled at function 628 (e.g., based on the sampling period) and used to generate a result within the interface, e.g., movement of a cursor 410 on a display 408.
Having provided a process description of exemplary 3D pointing devices according to the present invention,
Stationary detection function 608, mentioned briefly above, can operate to determine whether the 3D pointing device 400 is, for example, either stationary or active (moving). This categorization can be performed in a number of different ways. One way, according to an exemplary embodiment of the present invention, is to compute the variance of the sampled input data of all inputs (x, y, z, ay, az) over a predetermined window, e.g., every quarter of a second. This variance is then compared with a threshold to classify the 3D pointing device as either stationary or active.
Another stationary detection technique according to exemplary embodiments of the present invention involves transforming the inputs into the frequency domain by, e.g., performing a Fast Fourier Transform (FFT) on the input data. Then, the data can be analyzed using, e.g., peak detection methods, to determine if the 3D pointing device 400 is either stationary or active. Additionally, a third category can be distinguished, specifically the case where a user is holding the 3D pointing device 400 but is not moving it (also referred to herein as the “stable” state. This third category can be distinguished from stationary (not held) and active by detecting the small movement of the 3D pointing device 400 introduced by a user's hand tremor when the 3D pointing device 400 is being held by a user. Peak detection can also be used by stationary detection function 608 to make this determination. Peaks within the range of human tremor frequencies, e.g., nominally 8-12 Hz, will typically exceed the noise floor of the device (experienced when the device is stationary and not held) by approximately 20 dB
In the foregoing examples, the variances in the frequency domain were sensed within a particular frequency range, however the actual frequency range to be monitored and used to characterize the status of the 3D pointing device 400 may vary. For example, the nominal tremor frequency range may shift based on e.g., the ergonomics and weight of the 3D pointing device 400, e.g., from 8-12 Hz to 4-7 Hz.
According to another exemplary embodiment of the present invention, stationary detection mechanism 608 can include a state machine. An exemplary state machine is shown in
State transitions can be determined by a number of different conditions based upon the interpreted sensor outputs. Exemplary condition metrics include the variance of the interpreted signals over a time window, the threshold between a reference value and the interpreted signal over a time window, the threshold between a reference value and the filtered interpreted signal over a time window, and the threshold between a reference value and the interpreted signal from a start time can be used to determine state transitions. All, or any combination, of these condition metrics can be used to trigger state transitions. Alternatively, other metrics can also be used. According to one exemplary embodiment of the present invention, a transition from the INACTIVE state to the ACTIVE state occurs either when (1) a mean value of sensor output(s) over a time window is greater than predetermined threshold(s) or (2) a variance of values of sensor output(s) over a time window is greater than predetermined threshold(s) or (3) an instantaneous delta between sensor values is greater than a predetermined threshold.
The INACTIVE state enables the stationary detection mechanism 608 to distinguish between brief pauses during which the 3D pointing device 400 is still being used, e.g., on the order of a tenth of a second, and an actual transition to either a stable or stationary condition. This protects against the functions which are performed during the STABLE and STATIONARY states, described below, from inadvertently being performed when the 3D pointing device is being used. The 3D pointing device 400 will transition back to the ACTIVE state when conditioninactive
The 3D pointing device 400 will transition to either the STABLE state or the STATIONARY state after the second predetermined time period elapses. As mentioned earlier, the STABLE state reflects the characterization of the 3D pointing device 400 as being held by a person but being substantially unmoving, while the STATIONARY state reflects a characterization of the 3D pointing device as not being held by a person. Thus, an exemplary state machine according to the present invention can provide for a transition to the STABLE state after the second predetermined time period has elapsed if minimal movement associated with hand tremor is present or, otherwise, transition to the STATIONARY state.
The STABLE and STATIONARY states define times during which the 3D pointing device 400 can perform various functions. For example, since the STABLE state is intended to reflect times when the user is holding the 3D pointing device 400 but is not moving it, the device can record the movement of the 3D pointing device 400 when it is in the STABLE state e.g., by storing outputs from the rotational sensor(s) and/or the accelerometer while in this state. These stored measurements can be used to determine a tremor pattern associated with a particular user or users as described below. Likewise, when in the STATIONARY state, the 3D pointing device 400 can take readings from the rotational sensors and/or the accelerometer for use in compensating for offset as described above.
If the 3D pointing device 400 starts to move while in either the STABLE or STATIONARY state, this can trigger a return to the ACTIVE state. Otherwise, after measurements are taken, the device can transition to the SLEEP state. While in the sleep state, the device can enter a power down mode wherein power consumption of the 3D pointing device is reduced and, e.g., the sampling rate of the rotational sensors and/or the accelerometer is also reduced. The SLEEP state can also be entered via an external command so that the user or another device can command the 3D pointing device 400 to enter the SLEEP state.
Upon receipt of another command, or if the 3D pointing device 400 begins to move, the device can transition from the SLEEP state to the WAKEUP state. Like the INACTIVE state, the WAKEUP state provides an opportunity for the device to confirm that a transition to the ACTIVE state is justified, e.g., that the 3D pointing device 400 was not inadvertently jostled.
The conditions for state transitions may be symmetrical or may differ. Thus, the threshold associated with the conditionactive
Entering or leaving a state can be used to trigger other device functions as well. For example, the user interface can be powered up based on a transition from any state to the ACTIVE state. Conversely, the 3D pointing device and/or the user interface can be turned off (or enter a sleep mode) when the 3D pointing device transitions from ACTIVE or STABLE to STATIONARY or INACTIVE. Alternatively, the cursor 410 can be displayed or removed from the screen based on the transition from or to the stationary state of the 3D pointing device 400.
As mentioned above, the STABLE state can be used to memorize tremor data. Typically, each user will exhibit a different tremor pattern. This property of user tremor can also be used to identify users. For example, a user's tremor pattern can be memorized by the system (either stored in the 3D pointing device 400 or transmitted to the system) during an initialization procedure wherein the user is requested to hold the 3D pointing device as steadily as possible for, e.g., 10 seconds. This pattern can be used as the user's unique signature to perform a variety of user interface functions. For example, the user interface can identify the user from a group of user's by comparing a current tremor pattern with those stored in memory. The identification can then be used, for example, to retrieve preference settings associated with the identified user. For example, if the 3D pointing device is used in conjunction with the media systems described in the above-incorporated by reference patent application, then the media selection item display preferences associated with that user can be activated after the system recognizes the user via tremor pattern comparison. System security can also be implemented using tremor recognition, e.g., access to the system may be forbidden or restricted based on the user identification performed after a user picks up the 3D pointing device 400.
In the exemplary embodiment of
In addition, the parasitic acceleration effects that are not measured by a rotational sensor should also be removed. These effects include actual linear acceleration, acceleration measured due to rotational velocity and rotational acceleration, and acceleration due to human tremor.
According to yet another exemplary embodiment of the present invention, a user interface device uses only accelerometers. As shown in
The advent of accurate and inexpensive accelerometers based upon micro-electromechanical systems (MEMS) makes it possible to bring this technology to the home consumer. Unlike gyroscopes that measure angular rotation, accelerometers measure linear acceleration. Traditional inertial navigation relies on three gyroscopes and three accelerometers, one each for the six degrees of freedom. Unfortunately, the cost and size of a traditional inertial navigation system are prohibitive for a consumer handheld. This exemplary embodiment of the handheld device uses a constellation of three three-dimensional accelerometers to determine its location and orientation at all times. However, other quantities and arrangements of accelerometers could be used with the same algorithm. For example, as shown in
The handheld device according to the
Several principles complicate the implementation of a 6DOF accelerometer-based system. First, acceleration measurement errors produce a squared positional measurement error due to the double integration of acceleration to calculate position. Second, the gravity vector must be accurately tracked, since gravity is a constant acceleration vector that changes relative to the handheld orientation. Regarding measurement error, the MEMS accelerometers are not absolutely accurate, and error will be introduced into the calculation of position. However, linear inaccuracies in the acceleration are not important. Although the positional error is squared, devices according to this exemplary embodiment can use both an absolute and a relative coordinate system. For the relative coordinate system, actual distance traveled (as measured by feet or meters) can be adjusted arbitrarily using a sensitivity setting, e.g., like that commonly found on mouse drivers. However, non-linear errors over time and temperature that do not average to zero (also known as “drift”, a characteristic of the MEMS accelerometers) will result in a constant acceleration of the mouse. Without appropriate processing, the pointer for the stationary handheld would appear to accelerate off the screen. To make the calculation more difficult, quantization introduces measurement error when converting from the raw analog acceleration signal to the digital representation.
Devices according to this exemplary embodiment of the present invention include an algorithm with both linear and non-linear components to tolerate and correct for the known error patterns of the accelerometer as seen in
The algorithm can optionally incorporate a user interaction model that takes advantage of normal user interface actions to recalibrate the handheld device as indicated by blocks 1130 and 1140. For example, a user typically stops moving the pointer before selecting an object, or “clicking”. In this mode, the handheld algorithm uses a weighted average of the readings during the specified period to provide recalibration input for both gravity and position.
This exemplary embodiment of the present invention allows for the algorithm processing to be performed on the handheld device for a self-contained solution or on a host machine. The link between the handheld device and the host machine can be any one of a number of technologies, including, but not limited to, RF, Bluetooth, Zigbee, and IR, some of which are illustrated in the exemplary block diagram hardware and software platforms in
The above-described exemplary embodiments are intended to be illustrative in all respects, rather than restrictive, of the present invention. Thus the present invention is capable of many variations in detailed implementation that can be derived from the description contained herein by a person skilled in the art. For example, although the foregoing exemplary embodiments describe, among other things, the use of inertial sensors to detect movement of a device, other types of sensors (e.g., ultrasound, magnetic or optical) can be used instead of, or in addition to, inertial sensors in conjunction with the aforedescribed signal processing. All such variations and modifications are considered to be within the scope and spirit of the present invention as defined by the following claims. No element, act, or instruction used in the description of the present application should be construed as critical or essential to the invention unless explicitly described as such. Also, as used herein, the article “a” is intended to include one or more items.
Liberty, Matthew G., Simpkins, Daniel S.
Patent | Priority | Assignee | Title |
10010790, | Apr 05 2002 | MQ Gaming, LLC | System and method for playing an interactive game |
10022624, | Mar 25 2003 | MQ Gaming, LLC | Wireless interactive game having both physical and virtual elements |
10035064, | Jul 13 2008 | Sony Interactive Entertainment LLC | Game aim assist |
10086282, | Jul 27 2002 | SONY INTERACTIVE ENTERTAINMENT INC | Tracking device for use in obtaining information for controlling game program execution |
10099130, | Jul 27 2002 | SONY INTERACTIVE ENTERTAINMENT AMERICA LLC | Method and system for applying gearing effects to visual tracking |
10099145, | Nov 22 2006 | Sony Interactive Entertainment LLC | Video game recording and playback with visual display of game controller manipulation |
10147564, | Feb 07 2013 | Universal Electronics Inc. | System and methods for providing orientation compensation in pointing devices |
10179283, | Feb 22 2001 | MQ Gaming, LLC | Wireless entertainment device, system, and method |
10188953, | Feb 22 2000 | MQ Gaming, LLC | Dual-range wireless interactive entertainment device |
10220302, | Jul 27 2002 | SONY INTERACTIVE ENTERTAINMENT INC | Method and apparatus for tracking three-dimensional movements of an object using a depth sensing camera |
10279254, | Oct 26 2005 | SONY INTERACTIVE ENTERTAINMENT INC | Controller having visually trackable object for interfacing with a gaming system |
10300374, | Feb 26 1999 | MQ Gaming, LLC | Multi-platform gaming systems and methods |
10303489, | Dec 29 2005 | Apple Inc. | Electronic device with automatic mode switching |
10307671, | Feb 22 2000 | MQ Gaming, LLC | Interactive entertainment system |
10307683, | Oct 20 2000 | MQ Gaming, LLC | Toy incorporating RFID tag |
10369463, | Mar 25 2003 | MQ Gaming, LLC | Wireless interactive game having both physical and virtual elements |
10372237, | Jul 13 2005 | ULTIMATEPOINTER, L L C | Apparatus for controlling contents of a computer-generated image using 3D measurements |
10394575, | Dec 29 2005 | Apple Inc. | Electronic device with automatic mode switching |
10406433, | Jul 27 2002 | SONY INTERACTIVE ENTERTAINMENT AMERICA LLC | Method and system for applying gearing effects to visual tracking |
10478719, | Apr 05 2002 | MQ Gaming, LLC | Methods and systems for providing personalized interactive entertainment |
10497279, | Jun 22 2015 | Verily Life Sciences LLC | Assessment of nutrition intake using a handheld tool |
10507387, | Apr 05 2002 | MQ Gaming, LLC | System and method for playing an interactive game |
10583357, | Mar 25 2003 | MQ Gaming, LLC | Interactive gaming toy |
10758818, | Feb 22 2001 | MQ Gaming, LLC | Wireless entertainment device, system, and method |
10956177, | Dec 29 2005 | Apple Inc. | Electronic device with automatic mode switching |
11010971, | May 29 2003 | SONY INTERACTIVE ENTERTAINMENT INC | User-driven three-dimensional interactive gaming environment |
11052309, | Mar 25 2003 | MQ Gaming, LLC | Wireless interactive game having both physical and virtual elements |
11073919, | May 28 2004 | UltimatePointer, L.L.C. | Multi-sensor device with an accelerometer for enabling user interaction through sound or image |
11278796, | Apr 05 2002 | MQ Gaming, LLC | Methods and systems for providing personalized interactive entertainment |
11295904, | Feb 07 2013 | Universal Electronics Inc. | System and methods for providing orientation compensation in pointing devices |
11402927, | May 28 2004 | UltimatePointer, L.L.C. | Pointing device |
11409376, | May 28 2004 | UltimatePointer, L.L.C. | Multi-sensor device with an accelerometer for enabling user interaction through sound or image |
11416084, | May 28 2004 | UltimatePointer, L.L.C. | Multi-sensor device with an accelerometer for enabling user interaction through sound or image |
11449349, | Dec 29 2005 | Apple Inc. | Electronic device with automatic mode switching |
11551883, | Feb 07 2013 | Universal Electronics Inc. | System and methods for providing orientation compensation in pointing devices |
11561608, | Oct 25 2004 | I-Interactive LLC | Method for controlling an application employing identification of a displayed image |
11721496, | Feb 07 2013 | Universal Electronics Inc. | System and methods for providing orientation compensation in pointing devices |
11755127, | May 28 2004 | UltimatePointer, L.L.C. | Multi-sensor device with an accelerometer for enabling user interaction through sound or image |
11841997, | Jul 13 2005 | UltimatePointer, L.L.C. | Apparatus for controlling contents of a computer-generated image using 3D measurements |
7623115, | Jul 27 2002 | SONY INTERACTIVE ENTERTAINMENT INC | Method and apparatus for light input device |
7659882, | Jul 27 2002 | Sony Computer Entertainment America Inc. | Method and apparatus for use in determining an activity level of a user in relation to a system |
7737944, | Jul 27 2002 | Sony Interactive Entertainment LLC | Method and system for adding a new player to a game in response to controller activity |
7782297, | Jul 27 2002 | Sony Interactive Entertainment LLC | Method and apparatus for use in determining an activity level of a user in relation to a system |
7817134, | Nov 29 2006 | Industrial Technology Research Institute | Pointing device |
7874917, | Sep 15 2003 | SONY INTERACTIVE ENTERTAINMENT INC | Methods and systems for enabling depth and direction detection when interfacing with a computer program |
7980951, | Dec 01 2006 | Nintendo Co., Ltd. | Storage medium having game program stored thereon and game apparatus |
7980952, | Jun 20 2007 | Nintendo Co., Ltd. | Storage medium having information processing program stored thereon and information processing apparatus |
8013838, | Jun 30 2006 | Microsoft Technology Licensing, LLC | Generating position information using a video camera |
8072417, | Oct 22 2004 | COMMISSARIAT A L ENERGIE ATOMIQUE | Stand-alone device, system and method for navigating in a space having at least three dimensions |
8072470, | May 29 2003 | SONY INTERACTIVE ENTERTAINMENT INC | System and method for providing a real-time three-dimensional interactive environment |
8073157, | Aug 27 2003 | SONY INTERACTIVE ENTERTAINMENT INC | Methods and apparatus for targeted sound detection and characterization |
8089458, | Feb 22 2000 | MQ Gaming, LLC | Toy devices and methods for providing an interactive play experience |
8139793, | Aug 27 2003 | SONY INTERACTIVE ENTERTAINMENT INC | Methods and apparatus for capturing audio signals based on a visual image |
8160269, | Aug 27 2003 | SONY INTERACTIVE ENTERTAINMENT INC | Methods and apparatuses for adjusting a listening area for capturing sounds |
8164567, | Feb 22 2000 | MQ Gaming, LLC | Motion-sensitive game controller with optional display screen |
8169406, | Feb 22 2000 | MQ Gaming, LLC | Motion-sensitive wand controller for a game |
8184097, | Feb 22 2000 | MQ Gaming, LLC | Interactive gaming system and method using motion-sensitive input device |
8210943, | May 06 2006 | Sony Interactive Entertainment LLC | Target interface |
8226493, | Aug 01 2002 | MQ Gaming, LLC | Interactive play devices for water play attractions |
8233642, | Aug 27 2003 | SONY INTERACTIVE ENTERTAINMENT INC | Methods and apparatuses for capturing an audio signal based on a location of the signal |
8237656, | Jul 06 2007 | Microsoft Technology Licensing, LLC | Multi-axis motion-based remote control |
8248367, | Feb 22 2001 | MQ Gaming, LLC | Wireless gaming system combining both physical and virtual play elements |
8251820, | Sep 15 2003 | SONY INTERACTIVE ENTERTAINMENT INC | Methods and systems for enabling depth and direction detection when interfacing with a computer program |
8253801, | Dec 17 2008 | SONY INTERACTIVE ENTERTAINMENT INC | Correcting angle error in a tracking system |
8303405, | Jul 27 2002 | Sony Interactive Entertainment LLC | Controller for providing inputs to control execution of a program when inputs are combined |
8303411, | Sep 15 2003 | SONY INTERACTIVE ENTERTAINMENT INC | Methods and systems for enabling depth and direction detection when interfacing with a computer program |
8310656, | Sep 28 2006 | Sony Interactive Entertainment LLC | Mapping movements of a hand-held controller to the two-dimensional image plane of a display screen |
8313380, | Jul 27 2002 | Sony Interactive Entertainment LLC | Scheme for translating movements of a hand-held controller into inputs for a system |
8321710, | Feb 20 2009 | Sony Corporation | Device, method and computer program product for causing an input device to enter a low power state and sending a command that disables display of a graphical user interface |
8323106, | May 30 2008 | Sony Interactive Entertainment LLC | Determination of controller three-dimensional location using image analysis and ultrasonic communication |
8342926, | Jul 13 2008 | Sony Interactive Entertainment LLC | Game aim assist |
8368648, | Feb 22 2000 | MQ Gaming, LLC | Portable interactive toy with radio frequency tracking device |
8373659, | Mar 25 2003 | MQ Gaming, LLC | Wirelessly-powered toy for gaming |
8384665, | Jul 14 2006 | AILIVE HOLDING CORPORATION; YEN, WEI | Method and system for making a selection in 3D virtual environment |
8384668, | Feb 22 2001 | MQ Gaming, LLC | Portable gaming device and gaming system combining both physical and virtual play elements |
8441388, | Jan 06 2009 | Hong Kong Applied Science and Technology Research Institute Co., Ltd. | Remote control devices and methods |
8456534, | Oct 25 2004 | I-Interactive LLC | Multi-directional remote control system and method |
8475275, | Feb 22 2000 | MQ Gaming, LLC | Interactive toys and games connecting physical and virtual play environments |
8491389, | Feb 22 2000 | MQ Gaming, LLC | Motion-sensitive input device and interactive gaming system |
8525783, | Jun 13 2007 | Nintendo Co., Ltd. | Storage medium storing information processing program and information processing device |
8531050, | Feb 22 2000 | MQ Gaming, LLC | Wirelessly powered gaming device |
8542907, | Dec 17 2007 | Sony Interactive Entertainment LLC | Dynamic three-dimensional object mapping for user-defined control device |
8570378, | Jul 27 2002 | SONY INTERACTIVE ENTERTAINMENT INC | Method and apparatus for tracking three-dimensional movements of an object using a depth sensing camera |
8587520, | Jun 30 2006 | Microsoft Technology Licensing, LLC | Generating position information using a video camera |
8608535, | Apr 05 2002 | MQ Gaming, LLC | Systems and methods for providing an interactive game |
8686579, | Feb 22 2000 | MQ Gaming, LLC | Dual-range wireless controller |
8686939, | Jul 27 2002 | SONY INTERACTIVE ENTERTAINMENT INC | System, method, and apparatus for three-dimensional input control |
8698746, | Apr 24 2012 | GOOGLE LLC | Automatic calibration curves for a pointing device |
8702515, | Apr 05 2002 | MQ Gaming, LLC | Multi-platform gaming system using RFID-tagged toys |
8708821, | Feb 22 2000 | MQ Gaming, LLC | Systems and methods for providing interactive game play |
8711094, | Feb 22 2001 | MQ Gaming, LLC | Portable gaming device and gaming system combining both physical and virtual play elements |
8723803, | May 28 2004 | UltimatePointer, LLC | Easily deployable interactive direct-pointing system and presentation control system and calibration method therefor |
8753165, | Oct 20 2000 | MQ Gaming, LLC | Wireless toy systems and methods for interactive entertainment |
8758132, | Sep 15 2003 | SONY INTERACTIVE ENTERTAINMENT INC | Methods and systems for enabling depth and direction detection when interfacing with a computer program |
8758136, | Feb 26 1999 | MQ Gaming, LLC | Multi-platform gaming systems and methods |
8760522, | Oct 21 2005 | I-Interactive LLC | Multi-directional remote control system and method |
8761412, | Dec 16 2010 | SONY INTERACTIVE ENTERTAINMENT INC | Microphone array steering with image-based source location |
8761434, | Dec 17 2008 | SONY INTERACTIVE ENTERTAINMENT INC | Tracking system calibration by reconciling inertial data with computed acceleration of a tracked object in the three-dimensional coordinate system |
8781151, | Sep 28 2006 | SONY INTERACTIVE ENTERTAINMENT INC | Object detection using video input combined with tilt angle information |
8790180, | Feb 22 2000 | MQ Gaming, LLC | Interactive game and associated wireless toy |
8797260, | Aug 27 2003 | SONY INTERACTIVE ENTERTAINMENT INC | Inertially trackable hand-held controller |
8814688, | Mar 25 2003 | MQ Gaming, LLC | Customizable toy for playing a wireless interactive game having both physical and virtual elements |
8827804, | May 06 2006 | Sony Interactive Entertainment LLC | Target interface |
8827810, | Apr 05 2002 | MQ Gaming, LLC | Methods for providing interactive entertainment |
8866742, | May 28 2004 | UltimatePointer, LLC | Easily deployable interactive direct-pointing system and presentation control system and calibration method therefor |
8888576, | Feb 26 1999 | MQ Gaming, LLC | Multi-media interactive play system |
8913011, | Feb 22 2001 | MQ Gaming, LLC | Wireless entertainment device, system, and method |
8915785, | Feb 22 2000 | MQ Gaming, LLC | Interactive entertainment system |
8947347, | Aug 27 2003 | SONY INTERACTIVE ENTERTAINMENT INC | Controlling actions in a video game unit |
8961260, | Oct 20 2000 | MQ Gaming, LLC | Toy incorporating RFID tracking device |
8961312, | Mar 25 2003 | MQ Gaming, LLC | Motion-sensitive controller and associated gaming applications |
8970707, | Dec 17 2008 | SONY INTERACTIVE ENTERTAINMENT INC | Compensating for blooming of a shape in an image |
8976265, | Jul 27 2002 | SONY INTERACTIVE ENTERTAINMENT INC | Apparatus for image and sound capture in a game environment |
9007302, | Nov 11 2011 | Device and user interface for visualizing, navigating, and manipulating hierarchically structured information on host electronic devices | |
9013264, | Mar 12 2011 | Perceptive Devices, LLC | Multipurpose controller for electronic devices, facial expressions management and drowsiness detection |
9030405, | Feb 04 2011 | Invensense, Inc. | High fidelity remote controller device for digital living room |
9039533, | Mar 25 2003 | MQ Gaming, LLC | Wireless interactive game having both physical and virtual elements |
9046937, | Feb 04 2011 | Invensense, Inc. | High fidelity remote controller device for digital living room |
9058063, | May 30 2009 | SONY INTERACTIVE ENTERTAINMENT INC | Tracking system calibration using object position and orientation |
9063586, | May 28 2004 | UltimatePointer, LLC | Easily deployable interactive direct-pointing system and presentation control system and calibration method therefor |
9069380, | Jun 10 2011 | JB IP ACQUISITION LLC | Media device, application, and content management using sensory input |
9149717, | Feb 22 2000 | MQ Gaming, LLC | Dual-range wireless interactive entertainment device |
9152248, | Jul 14 2006 | AiLive Inc | Method and system for making a selection in 3D virtual environment |
9162148, | Feb 22 2001 | MQ Gaming, LLC | Wireless entertainment device, system, and method |
9174119, | Jul 27 2002 | Sony Interactive Entertainment LLC | Controller for providing inputs to control execution of a program when inputs are combined |
9177387, | Feb 11 2003 | SONY INTERACTIVE ENTERTAINMENT INC | Method and apparatus for real time motion capture |
9186585, | Feb 26 1999 | MQ Gaming, LLC | Multi-platform gaming systems and methods |
9261969, | Nov 14 2013 | JFE Systems, Inc. | Gesture detecting device, gesture recognition device |
9272206, | Apr 05 2002 | MQ Gaming, LLC | System and method for playing an interactive game |
9285897, | Jul 07 2006 | ULTIMATEPOINTER, L L C | Easily deployable interactive direct-pointing system and calibration method therefor |
9295912, | Jul 13 2008 | Sony Interactive Entertainment LLC | Game aim assist |
9320976, | Oct 20 2000 | MQ Gaming, LLC | Wireless toy systems and methods for interactive entertainment |
9381424, | Jul 27 2002 | Sony Interactive Entertainment LLC | Scheme for translating movements of a hand-held controller into inputs for a system |
9393487, | Jul 27 2002 | SONY INTERACTIVE ENTERTAINMENT INC | Method for mapping movements of a hand-held controller to game commands |
9393491, | Feb 22 2001 | MQ Gaming, LLC | Wireless entertainment device, system, and method |
9393500, | Mar 25 2003 | MQ Gaming, LLC | Wireless interactive game having both physical and virtual elements |
9405431, | Oct 25 2004 | I-Interactive LLC | Generating position information employing an imager |
9411437, | May 28 2004 | UltimatePointer, L.L.C. | Easily deployable interactive direct-pointing system and presentation control system and calibration method therefor |
9446319, | Mar 25 2003 | MQ Gaming, LLC | Interactive gaming toy |
9463380, | Apr 05 2002 | MQ Gaming, LLC | System and method for playing an interactive game |
9468854, | Feb 26 1999 | MQ Gaming, LLC | Multi-platform gaming systems and methods |
9474962, | Feb 22 2000 | MQ Gaming, LLC | Interactive entertainment system |
9474968, | Jul 27 2002 | Sony Interactive Entertainment LLC | Method and system for applying gearing effects to visual tracking |
9480929, | Oct 20 2000 | MQ Gaming, LLC | Toy incorporating RFID tag |
9526995, | Nov 22 2006 | Sony Interactive Entertainment LLC | Video game recording and playback with visual display of game controller manipulation |
9579568, | Feb 22 2000 | MQ Gaming, LLC | Dual-range wireless interactive entertainment device |
9612251, | Sep 30 2014 | G-force measurement system with a horizontally deviated accelerometer | |
9616334, | Apr 05 2002 | MQ Gaming, LLC | Multi-platform gaming system using RFID-tagged toys |
9675878, | Sep 29 2004 | MQ Gaming, LLC | System and method for playing a virtual game by sensing physical movements |
9682319, | Jul 31 2002 | SONY INTERACTIVE ENTERTAINMENT INC | Combiner method for altering game gearing |
9682320, | Jul 27 2002 | SONY INTERACTIVE ENTERTAINMENT INC | Inertially trackable hand-held controller |
9703397, | Feb 04 2011 | Invensense, Inc. | High fidelity remote controller device for digital living room |
9707478, | Mar 25 2003 | MQ Gaming, LLC | Motion-sensitive controller and associated gaming applications |
9713766, | Feb 22 2000 | MQ Gaming, LLC | Dual-range wireless interactive entertainment device |
9731194, | Feb 26 1999 | MQ Gaming, LLC | Multi-platform gaming systems and methods |
9737797, | Feb 22 2001 | MQ Gaming, LLC | Wireless entertainment device, system, and method |
9770652, | Mar 25 2003 | MQ Gaming, LLC | Wireless interactive game having both physical and virtual elements |
9785255, | May 28 2004 | UltimatePointer, L.L.C. | Apparatus for controlling contents of a computer-generated image using three dimensional measurements |
9814973, | Feb 22 2000 | MQ Gaming, LLC | Interactive entertainment system |
9818310, | Jun 22 2015 | GOOGLE LLC | Assessment of nutrition intake using a handheld tool |
9829987, | Nov 11 2011 | Device and user interface for visualizing, navigating, and manipulating hierarchically structured information on host electronic devices | |
9861887, | Feb 26 1999 | MQ Gaming, LLC | Multi-platform gaming systems and methods |
9900664, | Jan 15 2015 | Industrial Technology Research Institute | Method and system for display control, breakaway judging apparatus and video/audio processing apparatus |
9931578, | Oct 20 2000 | MQ Gaming, LLC | Toy incorporating RFID tag |
9965027, | Oct 25 2004 | I-Interactive LLC | Control system employing identification of a displayed image |
9993724, | Mar 25 2003 | MQ Gaming, LLC | Interactive gaming toy |
RE47327, | Nov 15 2010 | LG Electronics Inc. | Image display apparatus and method for operating the same |
RE48417, | Sep 28 2006 | SONY INTERACTIVE ENTERTAINMENT INC. | Object direction using video input combined with tilt angle information |
Patent | Priority | Assignee | Title |
4787051, | May 16 1986 | Tektronix, Inc. | Inertial mouse system |
4839838, | Mar 30 1987 | IDHL HOLDINGS, INC | Spatial input apparatus |
5045843, | Dec 06 1988 | RICHARDS, III ,JAMES D AND MARTINE RICHARDS | Optical pointing device |
5128671, | Apr 12 1990 | VAC ACQUISITION CORP ; Vought Aircraft Company | Control device having multiple degrees of freedom |
5138154, | Apr 04 1990 | Silicon Valley Bank | Shaft angle encoder with rotating off-axis interference pattern |
5181181, | Sep 27 1990 | TRITON TECH OF TEXAS, LLC | Computer apparatus input device for three-dimensional information |
5359348, | May 21 1992 | RICHARDS, III ,JAMES D AND MARTINE RICHARDS | Pointing device having improved automatic gain control and information reporting |
5396265, | Sep 17 1990 | MASSACHUSETTS INSTITUTE OF TECHNOLOGY, A CORP OF MA | Three-dimensional tactile computer input device |
5440326, | Mar 21 1990 | Thomson Licensing | Gyroscopic pointer |
5453758, | Jul 31 1992 | Sony Corporation | Input apparatus |
5484355, | Oct 01 1993 | SMITH & NEPHEW ROLYAN, INC | System for therapeutic exercise and evaluation |
5506605, | Jul 27 1992 | Three-dimensional mouse with tactile feedback | |
5645077, | Jun 16 1994 | Massachusetts Institute of Technology | Inertial orientation tracker apparatus having automatic drift compensation for tracking human head and other similarly sized body |
5698784, | Jan 24 1996 | GYRATION, INC | Vibratory rate gyroscope and methods of assembly and operation |
5703623, | Jan 24 1996 | PINN COMMUNICATIONS CORPORATION | Smart orientation sensing circuit for remote control |
5796354, | Feb 07 1997 | REALITY QUEST CORP | Hand-attachable controller with direction sensing |
5819206, | Jan 21 1994 | MOVEMENT SOFTWARE SOLUTIONS L L C | Method and apparatus for determining position and orientation of a moveable object using accelerometers |
5825350, | Mar 13 1996 | Silicon Valley Bank | Electronic pointing apparatus and method |
5835156, | Sep 30 1996 | Samsung Electroncis, Ltd. | Television graphical user interface employing remote random access pointing device |
5898421, | Mar 21 1990 | Silicon Valley Bank | Gyroscopic pointer and method |
5912612, | Oct 14 1997 | Multi-speed multi-direction analog pointing device | |
5955988, | Aug 14 1996 | Samsung Electronics Co., Ltd. | Graphical user interface for establishing installation location for satellite based television system |
6002394, | Oct 02 1995 | Rovi Guides, Inc | Systems and methods for linking television viewers with advertisers and broadcasters |
6016144, | Aug 14 1996 | Samsung Electronics Co., Ltd. | Multi-layered television graphical user interface |
6049823, | Oct 04 1995 | Multi server, interactive, video-on-demand television system utilizing a direct-access-on-demand workgroup | |
6069594, | Jul 29 1991 | LOGITECH EUROPE, S A | Computer input device with multiple switches using single line |
6115028, | Aug 22 1996 | AUTODESK, Inc | Three dimensional input system using tilt |
6164808, | Feb 09 1996 | MURATA MFG CO , LTD ; DATA TEC CO , LTD | Three-dimensional data input device |
6191774, | Nov 26 1996 | IMMERSION CORPORATION A DELAWARE CORPORATION | Mouse interface for providing force feedback |
6369794, | Sep 09 1998 | Intertrust Technologies Corporation | Operation indication outputting device for giving operation indication according to type of user's action |
6400996, | Feb 01 1999 | Blanding Hovenweep, LLC; HOFFBERG FAMILY TRUST 1 | Adaptive pattern recognition based control system and method |
6466198, | Nov 05 1999 | INNOVENTIONS, INC | View navigation and magnification of a hand-held device with a display |
6466831, | Feb 09 1996 | Murata MPg. Co. Ltd.; Data Tec Co. Ltd. | Three-dimensional data input device |
6473713, | Sep 20 1999 | American GNC Corporation | Processing method for motion measurement |
6492981, | Dec 23 1997 | Ricoh Company, Ltd. | Calibration of a system for tracking a writing instrument with multiple sensors |
6544126, | Apr 25 2000 | NINTENDO CO , LTD | Portable game machine with download capability |
6650313, | Apr 26 2001 | International Business Machines Corporation | Method and adapter for performing assistive motion data processing and/or button data processing external to a computer |
6672962, | May 13 1998 | Kabushiki Kaisha Sega Enterprises | Gun-shaped controller and game device |
6753849, | Oct 27 1999 | Ken Curran & Associates | Universal remote TV mouse |
6757446, | Nov 27 2000 | Microsoft Technology Licensing, LLC | System and process for image-based relativistic rendering |
6766456, | Feb 23 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method and system for authenticating a user of a computer system |
6929548, | Apr 23 2002 | Apparatus and a method for more realistic shooting video games on computers or similar devices | |
6933923, | Apr 05 2000 | INNOVENTIONS, INC | View navigation and magnification of a hand-held device with a display |
6984208, | Aug 01 2002 | Hong Kong Polytechnic University, The | Method and apparatus for sensing body gesture, posture and movement |
6990639, | Feb 07 2002 | Microsoft Technology Licensing, LLC | System and process for controlling electronic components in a ubiquitous computing environment using multimodal integration |
6998966, | Nov 26 2003 | Nokia Technologies Oy | Mobile communication device having a functional cover for controlling sound applications by motion |
7098891, | Sep 18 1992 | Method for providing human input to a computer | |
7173604, | Mar 23 2004 | Fujitsu Limited | Gesture identification of controlled devices |
7262760, | Apr 30 2004 | DRNC HOLDINGS, INC | 3D pointing devices with orientation compensation and improved usability |
20020130835, | |||
20020158843, | |||
20030107551, | |||
20030193572, | |||
20040095317, | |||
20040193413, | |||
20040204240, | |||
20040229693, | |||
20040239626, | |||
20040268393, | |||
20050125826, | |||
20050212767, | |||
20050243061, | |||
20050243062, | |||
20050253806, | |||
20060028446, | |||
20060092133, | |||
WO178055, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 21 2004 | HILLCREST LABORATORIES, INC. | (assignment on the face of the patent) | / | |||
Mar 29 2005 | LIBERTY, MATTHEW G | HILLCREST COMMUNICATIONS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015932 | /0301 | |
Mar 30 2005 | SIMPKINS, DANIEL S | HILLCREST COMMUNICATIONS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015932 | /0301 | |
May 23 2005 | HILLCREST COMMUNICATIONS, INC | HILLCREST LABORATORIES, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 017007 | /0603 | |
Apr 06 2012 | HILLCREST LABORATORIES, INC | HERCULES TECHNOLOGY III, L P | SECURITY AGREEMENT | 028023 | /0544 | |
Oct 02 2014 | HILLCREST LABORATORIES, INC | MULTIPLIER CAPITAL, LP | SECURITY AGREEMENT | 037963 | /0405 | |
Jun 11 2015 | HERCULES TECHNOLOGY III, L P | HILLCREST LABORATORIES, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 035899 | /0239 | |
Dec 22 2016 | HILLCREST LABORATORIES, INC | IDHL HOLDINGS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 042747 | /0445 | |
Jun 06 2017 | MULTIPLIER CAPITAL, LP | HILLCREST LABORATORIES, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 043339 | /0214 | |
Nov 04 2022 | IDHL HOLDINGS, INC | DRNC HOLDINGS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 063327 | /0188 |
Date | Maintenance Fee Events |
Jul 11 2012 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 15 2016 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Aug 05 2020 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 10 2012 | 4 years fee payment window open |
Aug 10 2012 | 6 months grace period start (w surcharge) |
Feb 10 2013 | patent expiry (for year 4) |
Feb 10 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 10 2016 | 8 years fee payment window open |
Aug 10 2016 | 6 months grace period start (w surcharge) |
Feb 10 2017 | patent expiry (for year 8) |
Feb 10 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 10 2020 | 12 years fee payment window open |
Aug 10 2020 | 6 months grace period start (w surcharge) |
Feb 10 2021 | patent expiry (for year 12) |
Feb 10 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |