A multilumen catheter that maximizes the blood flow into and out of the patient's vasculature while also providing for passive and/or active perfusion of tissue downstream of where the catheter resides in the vasculature. The inventive catheter comprises a proximal end, a first distal and a second distal end with first and second lumens extending from the proximal end to each of these distal ends to provide for blood circulation within one blood vessel or between two different blood vessels. The second lumen, and any additional lumens so desired, may be positioned coaxially with or radially around the first lumen. Redirecting means is provided at a distal end of at least one of said lumens for directing blood in a direction generally opposite of the direction of flow through said lumen.

Patent
   7491163
Priority
Jun 06 2001
Filed
May 03 2006
Issued
Feb 17 2009
Expiry
Dec 29 2021
Extension
206 days
Assg.orig
Entity
Large
138
143
all paid
1. A method of treating a patient comprising:
providing a multilumen catheter, said catheter comprising:
a catheter body having a proximal end, a first distal end, and a second distal end, said first distal end extending distally farther from the proximal end than the second distal end;
a first lumen extending between said first distal end and said proximal end;
a second lumen extending between said second distal end and said proximal end, said second lumen in fluid communication with said first lumen at the proximal end; and
inserting said multilumen catheter into the patient minimally invasively such that the first distal end is at a first vascular location and the second distal end is at a second vascular location remote from the first vascular location;
causing blood to flow in said second lumen to said proximal end and to flow distally from the proximal end in said first lumen without exiting said catheter body; and
redirecting substantially all of the blood flow exiting the first lumen in a direction generally opposite of the direction of flow in the first lumen;
wherein the second vascular location is within a femoral artery or an iliac artery.
18. A method of treating a patient comprising:
providing a multilumen catheter, said catheter comprising:
a catheter body having a proximal end, a first distal end, and a second distal end, said first distal end extending distally farther from the proximal end than the second distal end;
a first lumen extending between said first distal end and said proximal end;
a second lumen extending between said second distal end and said proximal end, said second lumen in fluid communication with said first lumen at the proximal end; and
inserting said multilumen catheter into the patient minimally invasively such that the first distal end is at a first vascular location and the second distal end is at a second vascular location remote from the first vascular location;
causing blood to flow in said second lumen to said proximal end and to flow distally from the proximal end in said first lumen without exiting said catheter body; and
redirecting substantially all of the blood flow exiting the first lumen in a direction generally opposite of the direction of flow in the first lumen;
wherein inserting said multilumen catheter into the patient further comprises inserting said catheter into a femoral artery, said first vascular location being the aorta of the patient.
2. The method of claim 1, further comprising providing a tip portion having a surface positioned at the distal end of and within the first lumen, the surface configured to redirect substantially all the blood flow exiting the first lumen.
3. The method of claim 2, wherein the surface extends across the first lumen between a side of the first lumen and a central longitudinal axis of the first lumen.
4. The method of claim 2, wherein the surface prevents substantially all of the blood flowing distally in the first lumen from flowing distally beyond the surface.
5. The method of claim 2, wherein the surface comprises a parabolic cross-sectional profile.
6. The method of claim 1, further comprising withdrawing blood at subcardiac rates and causing blood to flow distally in the first lumen at subcardiac rates.
7. The method of claim 1, wherein the first and second vascular locations are both spaced apart from the heart.
8. The method of claim 1, wherein the blood flow exiting the first lumen supplements circulation of the patient.
9. The method of claim 1, wherein redirecting substantially all of the blood flow exiting the first lumen causes the blood exiting the first lumen to flow in substantially the same direction as blood flow at the first vascular location.
10. The method of claim 1, wherein inserting the multilumen catheter into the patient comprises inserting the catheter through a single cannulation site.
11. The method of claim 1, wherein the first lumen has a closed distal end.
12. The method of claim 1, wherein the catheter body has a plurality of side outlets fluidly coupled to the first lumen such that the blood being redirected exits the first lumen through the side outlets.
13. The method of claim 12, where three side outlets are provided in the catheter body.
14. The method of claim 1, further comprising providing a pump within the catheter to direct the flow of blood from the second vascular location to the first vascular location through the catheter.
15. The method of claim 14, further comprising operating the pump at subcardiac rates to cause blood to flow distally in the first lumen to the first vascular location.
16. The method of claim 14, wherein the pump is located within the first lumen of the catheter.
17. The method of claim 14, wherein the pump is located within the second lumen of the catheter.
19. The method of claim 18, wherein at least one of the first and second vascular locations is a vascular location in a blood vessel that branches off from a blood vessel directly connected to the heart.

This application is a divisional of U.S. application Ser. No. 10/078,283, filed Feb. 14, 2002, which is a continuation-in-part of U.S. application Ser. No. 09/876,281, filed Jun. 6, 2001, now U.S. Pat. No. 7,048,680, both of which are incorporated herein in their entireties by reference.

1. Field of the Invention

The present invention relates to a multilumen catheter and, in particular, to multilumen catheters designed to prevent ischemia in patients when the catheter is positioned within the body.

2. Description of the Related Art

It is often necessary to divert the flow of blood from a patient's blood vessel back to the same or a different blood vessel as part of treating a patient suffering from one or more of numerous health impairments, including cardiovascular disease, such as congestive heart failure. Although surgical cut-down procedures can achieve this, percutaneous insertion of catheters has made this procedure less invasive and therefore less traumatic to the patient. Still, insertion of a cannula into the circulatory system can cause complex, and sometimes adverse, reactions within the body.

Some of the percutaneous procedures involve removing blood from the body and subsequently returning it to the body. For example, dialysis treatment involves first removing blood from the patient's circulatory system, treating the blood outside of the body, and then returning the blood to the patient's circulatory system to perfuse the various tissues and organs. Depending on the volume of blood flow, cannulae with large carrying capacity may be necessary. By maximizing the cross-sectional area of the cannula, the volume of blood that may be removed and/or returned to the patient's vascular system via the cannula is maximized. One approach to maximize the cross-sectional area of the cannula involves using either two single lumen catheters or a multi-lumen catheter. In a recirculation application, one lumen would function to withdraw blood and one would function to return blood to the patient. One problem with using two single lumen catheters is that it subjects the patient to multiple percutaneous insertion procedures, which complicates the procedure and increases the potential for infection and other complications. Therefore, it would be desirable to have a catheter assembly which could be inserted into the patient through a single insertion site.

Multilumen catheters in various forms have been employed for this purpose. For example, multilumen catheters have been made with two, three or more lumens to serve various aspiration and infusion functions, including extracting and returning blood to vessels, taking blood samples for testing and providing medications to the patient's vascular system. Simple multilumen catheters have been made by providing two round catheters of equal or nearly equal length joined by a web, or thin strip. This approach is described in U.S. Pat. No. 5,776,111 to Tesio. Other multilumen catheter designs have a unitary body with at least one septum dividing the lumens which extend from a proximal to a distal end.

While multilumen catheters require only a single puncture of the epidermis, their performance is limited in at least two ways. For one, the outer perimeter of the multilumen catheter cannot exceed the inner diameter of the vessel into which it is inserted. Furthermore, the already limited cross-sectional area must be divided into at least two lumens, one for withdrawal and one for return. Thus the carrying capacity of each lumen is further reduced. To supply the same amount of blood, the velocity and pressure of the blood in the lumens must increase over what it would be in the vessel itself. This has the potential to cause damage to the vessel as blood comes jetting out of the return lumen. Also, it may put further stress upon blood cells, even causing hemolysis. Thus, multilumen catheters must be made as large as possible to carry enough blood at satisfactory conditions.

Where the size of a catheter approaches the interior size of a vessel, less and less blood can flow around the catheter. As a result, limited blood supply reaches tissues and organs located downstream of the catheter in the vascular system. With insufficient perfusion, the tissues downstream of the lumen insertion site suffer from ischemia and become oxygen deprived. Prolonged oxygen deprivation can lead to tissue damage, as is well known in the art. Therefore, it would be desirable to have a multilumen catheter that can maximize cross-sectional area of withdrawal and return lumens while at the same time providing for acceptable levels of blood perfusion of tissue downstream of the catheter insertion site in the vascular system. It would also be advantageous to have a multilumen catheter that can also remove blood from one peripheral vessel and return blood to a second peripheral vessel.

Overcoming many if not all of the limitations of the prior art, the present invention comprises a multilumen catheter for directing the flow of blood to and from a patient through a single cannulation site. The catheter comprises a proximal end, a first distal end and a second distal end. The first distal end extends farther from the proximal end than the second distal end. A first lumen extends between the first distal end and the proximal end and a second lumen extends between the second distal end and the proximal end. At least one aperture, but preferably a plurality of apertures may be formed in one of the first or second lumens positioned near the proximal end so that the aperture permits active maintenance or enhancement of perfusion of blood to the patient's vasculature downstream of where the aperture resides in the vasculature when the catheter is inserted into the patient for treatment.

In an alternative embodiment, the multilumen catheter further comprises a third lumen with distal and proximal ends configured to be positioned entirely within the patient's vascular system. This third lumen is configured to permit the passive flow of blood downstream of the catheter site to maintain or enhance perfusion.

In another embodiment, the multilumen catheter also comprises means for redirecting at least a portion of the blood flow exiting a lumen of the catheter in a direction generally opposite of the direction of flow of blood in the catheter. In one embodiment, the redirecting means is a redirecting tip positioned at the distal end of one of the lumens. In this embodiment, the redirecting tip is configured to redirect at least a portion of the blood flow exiting the lumen in a direction generally opposite of the direction of flow.

In one embodiment, a connector formed in the shape of a Y (“Y-connector”) is positioned at the proximal end of the multilumen catheter. One leg of the Y-connector is in fluid communication with the first lumen and the other leg of the Y-connector is in fluid communication with the second lumen.

Preferably, in an application of the present invention, an outflow conduit of a pumping system is fluidly engaged to one lumen of the multilumen catheter and an inflow conduit of the same system is fluidly engaged to the other lumen. The inflow and outflow conduits are fluidly coupled to a pump so that, when connected to the patient, the pump circulates blood from one distal end of the multilumen catheter to the other distal end, and also through at least one aperture in one of the first or second lumens positioned near the proximal end. In one application, the multilumen catheter of the present invention is incorporated into an extracardiac pumping system for supplementing blood circulation in a patient without any component thereof being connected to the patient's heart. Such a system is described in U.S. Pat. Nos. 6,200,260 and 6,299,575, which are incorporated herein by reference. The system includes, in addition to the multilumen catheter, a pump configured to pump blood through the patient at subcardiac rates, an inflow conduit fluidly coupled to the pump to divert blood to the pump from a first blood vessel, and an outflow conduit fluidly coupled to the pump to direct blood from the pump to a second blood vessel.

Another embodiment of the present invention is an extracardiac pumping system for supplementing blood circulation through a patient without any component thereof being connected to the patient's heart. The extracardiac system comprises a multilumen catheter that has at least two lumens therethrough. Each lumen has a distal end configured for insertion into the patient's vasculature and a proximal end. At least two of the lumens are in fluid communication with each other at their proximal end. The extracardiac pumping system also comprises a pump secured within one of the lumens and configured to pump blood through the patient at subcardiac volumetric rates. The pump has an average flow rate that, during normal operation thereof, is substantially below that of the patient's heart when healthy. The pump can be operated to pump blood from one location in the patient's vasculature to a different location in the vasculature while the proximal end of each lumen resides outside the patient's body.

The present invention also provides a method for treating a patient using one of the multilumen catheters of the present invention. The method comprises the step of inserting the multilumen catheter described above into the patient at a single cannulation site of a first blood vessel, locating the catheter such that a first lumen may be in fluid communication with a second blood vessel and a second lumen may be in fluid communication with the first blood vessel, withdrawing blood from one of said blood vessels through one of the first or said second lumens, and delivering blood through the other of said first or second lumens so that blood is delivered upstream and downstream of the cannulation site.

These and other features and advantages of the invention will now be described with reference to the drawings, which are intended to illustrate and not to limit the invention.

FIG. 1 is a schematic of one embodiment of the present invention multilumen catheter.

FIG. 2 is a schematic of an alternative embodiment of the present invention multilumen catheter.

FIG. 3 is a schematic of an alternative embodiment of the present invention multilumen catheter with a distal end comprising a J-tip configuration.

FIG. 4 is a schematic of an alternative embodiment of the present invention multilumen catheter comprising a Y-connector.

FIG. 5 is a schematic of one application of one embodiment of the multilumen catheter to a patient.

FIG. 6 is an enlarged view of a portion of the proximal end of the embodiment shown in FIG. 1 applied to a patient.

FIG. 7 is an enlarged view of a portion of the proximal end of the embodiment shown in FIG. 2 applied to a patient.

FIG. 8 is a schematic of an alternative embodiment of the present invention multilumen catheter having a redirecting tip.

FIG. 9 is a schematic of an alternative embodiment of the present invention multilumen catheter having coaxial lumens.

FIG. 10 is a cross-sectional view of the embodiment of FIG. 9.

FIG. 11 is a schematic of an alternative embodiment of the present invention multilumen catheter having a second lumen and a third lumen radially housed around a first lumen.

FIG. 12 is a cross-sectional view of the embodiment of FIG. 11.

FIG. 13 is a schematic of an extracardiac pumping system for supplementing blood circulation through a patient.

Turning now to the drawings provided herein, a more detailed description of the embodiments of the present invention is provided below.

With reference to FIG. 1, one embodiment of the present invention comprises a multilumen catheter 10 designed to lessen ischemia that can occur when a large diameter catheter is inserted into a patient's blood vessel. The multilumen catheter preferably is of unitary construction and requires only one entry point into the patient's body. The multilumen catheter 10 comprises at least two lumens: a first lumen 12 and a second lumen 14. The first lumen 12 extends from a proximal end 16 of the multilumen catheter 10 to a first distal end 18. The second lumen 14 extends from the proximal end 16 of the multilumen catheter 10 to a second distal end 20. The lumens 12, 14 of the multilumen catheter 10 may be arranged one of many different ways. For example, the two lumens may be joined in a side-by-side manner, forming a “figure-8” when viewed from the proximal end 16. Alternately, a single cylindrical catheter housing may contain within it two or more side-by-side lumens. A cylindrical catheter housing could be formed with a diametral septum, i.e. a wall, extending across the cylinder at a diameter. A cylindrical housing with concentrically positioned lumens is also contemplated.

The first distal end 18 may be formed with one or more distal apertures 22, although such apertures may also be located in the second distal end 20. The distal apertures 22 may be positioned close together or spaced circumferentially around the distal end. The apertures 22 serve to decrease the pressure drop across the cannula tip, thereby minimizing damage to vessel walls from jetting effects. It may also be appropriate to practice methods for directing blood flow so as to minimize damage to vessel walls from jetting effects and from the recoil effect on the catheter of blood exiting a catheter. The present invention may further comprise a tapered tip 24 at the first distal end 18, which facilitates insertion and threading of the catheter into the patient. The present invention may also further comprise a tapered tip 26 at the second distal end 20.

One preferred embodiment of the multilumen catheter further comprises a set of apertures 28 positioned on the catheter 10 near the proximal end 16. The apertures 28 are formed on at least one lumen of the catheter to provide for fluid communication between one of the lumens 12, or 14 of the multilumen catheter 10 and the blood vessel in which it resides. A radiopaque marker 30 may be positioned at the distal end 18 of the multilumen catheter 10. The multilumen catheter could further comprise markings 32 near the proximal end of the multilumen catheter which are a known distance from one or more of the distal ends. These markings 32, as well as the marker 30 can be used to accurately position the catheter when applied to the patient.

In another embodiment of the present multilumen catheter shown in FIG. 2, the multilumen catheter 110 comprises a third lumen 134 extending between a proximal end 136 and a distal end 138. The lumen 134 is positioned and sized such that when the multilumen catheter 110 is applied to the patient (described below), the lumen resides entirely within the patient's body. As described above, the lumen 134 may be connected to the catheter 110 in a variety of ways. The purpose of the third lumen 134 is configured to permit the passive flow of blood downstream to the catheter to enhance perfusion. The embodiment shown in FIG. 2 also may have apertures 128 disposed near the proximal end 116 of the multilumen catheter 110. As described above, this embodiment may further comprise a tapered tip 140 at the distal end of the third lumen 134 and a tapered tip 142 at the proximal end of the third lumen 134 to facilitate application of the catheter to the patient.

In one variation of the three lumen embodiment the third lumen 134 may be made of collapsible material. In the collapsed state, the third lumen 134 would conform to at least a portion of the outside surface of the multilumen catheter 110. Once applied to the patient, as described in more detail below, the lumen 134 would be expanded to the deployed state shown in FIG. 2. This collapsible lumen could comprise a stone basket, or a frame similar to a stent. A stone basket is a structure that can be deployed within a patient's body and is used to capture objects. Here, the basket is used primarily to create a space between the catheter 110 and the vessel wall to permit the passive flow of blood downstream of the catheter site to enhance perfusion.

In an alternate embodiment of the multilumen catheter 210, shown in FIG. 3, the first distal end 218 is formed in the shape of a J-tip. That is, the opening at the distal end 218 may be curved such that blood exiting the lumen 212 is directed back along the multilumen catheter 210. Distal aperture(s) 222 may be formed at the bend of the J-tip so that blood also exits the lumen 212 and flows distal of the catheter 210. The “J” shape of the multi-lumen catheter tip may be formed and/or maintained by pre-loading it with a coil or with wire reinforcement, or by using a shape-memory material to create and maintain this shape. If the catheter is inserted so that the tip is straight and the “J” shape is deployed after the catheter inserted into the patient, the catheter may comprise a tapered tip at the first distal end 218, as described above.

Referring to FIG. 4, yet another alternative embodiment of the present invention multilumen catheter 310 comprises a Y-connector 334 formed at the proximal end of the multilumen catheter 310. As described above, the lumens are separated in any suitable way such that fluid communication is provided between the distal end 318 of the lumen 312 of the multilumen catheter 310 and the proximal end 336 of one leg of the Y-connector 334, and fluid communication is provided between the distal end 320 of the lumen 314 of the catheter 310 and the proximal end 338 of one leg of the Y-connector 334.

Any of the multilumen catheters described herein may be made from various materials to improve their viability in long-term treatment applications. For example, it is preferred that the biocompatibility of the catheter be improved compared to uncoated catheters to prevent adverse reactions such as compliment activation and the like. To prevent such side effects, the interior lumens of the catheters can be coated with biocompatible materials. Also known in the art are anti-bacterial coatings. Such coatings may be very useful on the outer surface of the catheter. This is especially true at or about where the catheter enters the patient's skin. At such a location, the patient is vulnerable to introduction of bacteria into the body cavity. Anti-bacterial coatings can reduce the likelihood of infection and thus improve the viability of long-term treatments.

In one application, the multilumen catheter of the present invention may be integrated into a pumping system, such as the one described in more detail in U.S. Pat. No. 6,200,260. Referring to FIG. 5, such a system comprises the multilumen catheter 10, an inflow conduit 38, an outflow conduit 40 and a pump 42. One end of the outflow conduit 40 may be connected to the proximal end of the lumen 12, while the other end is connected to the inlet of the pump 42. One end of the inflow conduit 38 may be connected to the proximal end of the lumen 14, while the other end is connected to the outlet of the pump 42. This results in a flow from the first distal end 18 to the second distal end 20. Of course, the flow direction may be reversed using the same multilumen catheter, resulting in a flow from distal end 20 to distal end 18. In that case, the outflow conduit 40 is connected to the proximal end of lumen 14 and the inflow conduit 38 is connected to the proximal end of lumen 12. Referring to FIG. 5, the present multilumen catheter 10 when incorporated into a pumping system may be applied to a patient in an arterial-arterial fashion. Where the multilumen catheter 10 is inserted into the femoral artery 44 of the patient 46. The radiopaque marker 30 which may be incorporated into the distal end 18 of the multilumen catheter is used to track the insertion of the catheter so that to catheter may be positioned at a desired site within the patient's vascular system. As mentioned above, markings 32 on the proximal end could also be used to locate the distal end or ends.

In one example, the distal end 18 may be located in the aortic arch 48. The pump draws blood from the patient's vascular system in the area near the distal end 18 and into the lumen 12. This blood is further drawn into the lumen of the conduit 40 and into the pump 42. The pump 42 then expels the blood into the lumen of the outflow conduit 38. This lumen carries the blood into the lumen 14 of the multilumen catheter 10 and back into the patient's vascular system in the area near the distal end 20. As described in greater detail below regarding FIGS. 6 and 7, the apertures 28 and/or the third lumen 134 provide blood flow to the patient's vasculature downstream of where the multilumen catheter resides in the vasculature to maintain or enhance perfusion of blood. The blood flow in the multilumen catheter may be reversed. In that case, blood is drawn from the patient through distal end 20 and returned to the patient through distal end 18.

Referring to FIG. 6, the multilumen catheter 10 comprises features that will maintain or increase the blood flow to downstream tissue when the catheter is inserted into the patient. The apertures 28 provide for fluid communication between at least one lumen 12 or 14 and the patient's blood vessel. The apertures 28, thus, provides active perfusion of the downstream tissues.

Referring to FIG. 7, the lumen 134 of the embodiment shown in FIG. 2 is located entirely within the vessel when the catheter 110 is inserted into the patient. The lumen provides a pathway for blood flow to tissue downstream of the catheter so that the catheter 110 may maintain or increase the flow of blood to downstream tissue. The lumen 134, thus, provides passive perfusion. If desired, apertures may be included in one of the other two lumens to supplement passive perfusion with active perfusion.

Referring to FIG. 8, yet another alternative embodiment of the present invention is a multilumen catheter 410 for directing the flow of blood through a patient through a single cannulation site. The catheter 410 comprises a proximal end 414, a first distal end 418, and a second distal end 422. The first distal end 418 extends distally farther from the proximal end 414 than does the second distal end 422. A first lumen 426 extends between the first distal end 418 and the proximal end 414. A second lumen 430 extends between the second distal end 422 and the proximal end 414. As with other embodiments, a radiopaque marker may be provided.

Means for redirecting the flow of blood out of the catheter is provided. For example, in the embodiment of FIG. 8, a redirecting tip 434 is positioned at the distal end of one of the lumens, in this case first lumen 426. The redirecting tip 434 is configured to redirect at least a portion of the blood flow exiting the lumen 426 in a direction generally opposite of the direction of flow of blood in the lumen 426. One of a variety of configurations for a redirecting tip may be employed.

In the embodiment of FIG. 8, the redirecting tip 434 has a closed end 438 at a distal position that is generally hemispherially shaped, although it need not be, and may more particularly have a parabolic profile. Preferably, a plurality of outlets 442 are provided in the side of the lumen 426 that has the redirecting tip 434. These outlets 442 permit blood to flow out of the lumen 426 and into the vasculature of the patient. As shown, the outlets 442 comprise rectangular windows framed by structural elements 444 that connect the closed end 438 to the rest of the catheter 410. It should be recognized that the number and the shape of the outlets 442 can vary.

The redirecting tip 434 further comprises a flow redirecting surface 446 that defines the proximal portion of the closed end 438 and the travel path of the redirected blood. In this embodiment, a cross-section of the flow redirecting surface 446 taken through the longitudinal axis of the lumen 426 reflects two parabolic curves meeting at the longitudinal axis. The three dimensional shape of the redirecting surface 446 of this embodiment is defined by rotating one of the parabolic curves about the longitudinal axis of the lumen 426 in which the surface 446 is positioned. This is one geometrical shape that could be used to form the redirecting surface 446 to gradually redirect the flow of the blood exiting the lumen 426. Other geometrical shapes could be used as well to define the redirecting surface.

The J-tip configuration, discussed above is another means for redirecting blood in a direction generally opposite of the direction of flow of blood through the lumen 426.

Referring to FIGS. 9 and 10, a multilumen catheter 510 for directing the flow of blood through a patient through a single cannulation site comprises a proximal end 516 a first distal end 518 and a second distal end 520. The first distal end 518 extends distally farther from the proximal end 516 than the second distal end 520. A first lumen 522 extends between the first distal end 518 and the proximal end 516. A second lumen 524 extends between the second distal end 520 and the proximal end 516, is positioned coaxially with the first lumen 522, and has a diameter greater than the first lumen 522. A radiopaque marker may be provided if desired.

One application of the catheter 510 comprises connecting the second lumen 524 to a patient's blood vessel, preferably via an anastomosis connection after the first lumen 522, which is preferably of tubular configuration, is inserted through the same vessel. In this application, blood may be drawn through the second lumen 524 and redirected into the first lumen 522 using a circulating system such as that disclosed in U.S. Pat. No. 6,200,260. In another application, the first and second lumen may be inserted in the blood vessel in a manner that results in the second lumen 524 extending into the vessel. In this application, if desired, apertures 526 may be provided to permit a more diffuse discharge of blood into the vessel from second lumen 524.

Referring to FIGS. 11 and 12, a multilumen catheter 610 for directing the flow of blood through a patient through a single cannulation site comprises a proximal end 616, a first distal end 618, and a second distal end 620. The first distal end 618 extends distally farther from the proximal end 616 than the second distal end 620. A first lumen 622 extends between the first distal end 618 and the proximal end 616. A second lumen 624, and if desired a third lumen 626, extend between the second distal end 620 and the proximal end 616. In one application, the third lumen 626 is in fluid communication with the second lumen 624 at a position proximal of the catheter 610, although they need not be. The second lumen 624 and third lumen 626 are positioned radially around the first lumen 622 in a housing 628 that surrounds the first lumen 622, as shown in FIG. 12. One variation of the catheter shown in FIGS. 11 and 12 comprises a fourth lumen in the housing 628 where, if desired, the fourth lumen may be in fluid communication with second lumen 624 and/or third lumen 626 proximal of the catheter. The fourth lumen, as well as the second lumen 624 and the third lumen 626 can be arranged in any suitable manner within the housing 628. In one embodiment, the lumens are arranged symmetrically and radially around the first lumen 622. Asymmetrical arrangements are also contemplated.

With reference to FIG. 13, another embodiment of the present invention comprises an extracardiac pumping system 700 for supplementing blood circulation through a patient without any component thereof being connected to the patient's heart. The extracardiac system 700 comprises a multilumen catheter 704 and a pump 706 housed within the catheter 704.

The multilumen catheter 704 of the system 700 comprises a first lumen 708 with a proximal end 710 and a distal end 712. The catheter 704 also comprises a second lumen 716 with a proximal end 718 and a distal end 720. In other embodiments, the catheter 704 can have additional lumens, as discussed above. The distal ends 712, 720 are configured for insertion into the patient's vasculature. The two lumens 708, 716 are in fluid communication with each other at their proximal ends 710, 718. First lumen 708 is longer than second lumen 716. In other variations, the lumens 708, 716 could be of the same length.

The pump 706 is secured within one of the lumens 708, 716 and is configured to pump blood through the patient at subcardiac volumetric rates the benefits of which are discussed in U.S. Pat. No. 6,200,260. The pump 706 has an average flow rate that, during normal operation thereof, is substantially below that of the patient's heart when healthy. The pump 706 may be operated to pump blood from one location in the patient's vasculature to a different location in the vasculature while the proximal end 710 of the first lumen 708 and the proximal end 718 of the second lumen 716 resides outside the patient's body. If desired, the entire system 700 may be implanted into a patient's blood vessel.

If desired, at least one aperture 724 is provided in one of the lumens, in this case lumen 708 and is positioned in the lumen distal from the proximal end 710 so that the aperture(s) 724 may reside within the patient's vasculature, close to the point of insertion. The aperture 724 can maintain or enhance perfusion of blood to the patient's vasculature downstream of where the aperture(s) 724 resides in the vasculature when inserted into the patient. As discussed above, one or more of the lumens of the catheter 704 can have a tapered tip 726. Also, at least one aperture may be positioned proximate a distal end of at least one of the lumens. In other embodiment, a third lumen could be provided that is configured similar to, and functions the same as, the third lumen 134 shown in FIG. 2.

A variety of redirecting tip constructions can be employed in different embodiments of the catheter 704 of the extracardiac pumping system 700, as discussed above; for example redirecting tip 730. Also, the extracardiac pumping system 700 may be provided with a radiopaque marker 728. As discussed above, the marker 728 can be used to position the catheter 704 of the extracardiac pumping system 700 when applied to a patient.

The invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiment is to be considered in all respects only as illustrative and not restrictive and the scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Werner, Wolfgang, O'Leary, Shawn, Pecor, Robert, Bolling, Steven F., Kelly, Ryan, Beizai, Masoud, Sirimanne, Laksen, Viole, Anthony

Patent Priority Assignee Title
10029037, Apr 15 2014 THORATEC LLC; TC1 LLC Sensors for catheter pumps
10039872, May 14 2012 TC1 LLC Impeller for catheter pump
10052420, Feb 11 2015 TC1 LLC Heart beat identification and pump speed synchronization
10071192, Mar 15 2013 TC1 LLP Catheter pump assembly including a stator
10086121, Jul 03 2012 TC1 LLC Catheter pump
10105475, Apr 15 2014 TC1 LLC Catheter pump introducer systems and methods
10117980, May 14 2012 THORATEC LLC; TC1 LLC Distal bearing support
10117983, Nov 16 2015 TC1 LLC Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
10149932, Mar 23 2006 The Penn State Research Foundation; TC1 LLC Heart assist device with expandable impeller pump
10166318, Feb 12 2015 TC1 LLC System and method for controlling the position of a levitated rotor
10215187, Sep 17 2004 THORATEC LLC; TC1 LLC Expandable impeller pump
10245361, Feb 13 2015 TC1 LLC Impeller suspension mechanism for heart pump
10258730, Aug 17 2012 ARTIO MEDICAL, INC Blood pump systems and methods
10265448, May 05 2009 ECP ENTWICKLUNGSGESELLSCHAFT MBH Fluid pump changeable in diameter, in particular for medical application
10293089, Feb 17 2010 ARTIO MEDICAL, INC System and method to increase the overall diameter of veins
10371152, Feb 12 2015 TC1 LLC Alternating pump gaps
10376629, Feb 17 2010 ARTIO MEDICAL, INC Methods to increase the overall diameter of donating veins and arteries
10426878, Aug 17 2011 ARTIO MEDICAL, INC Centrifugal blood pump systems
10449279, Aug 18 2014 TC1 LLC Guide features for percutaneous catheter pump
10456513, Apr 30 2013 TC1 LLC Cardiac pump with speed adapted for ventricle unloading
10506935, Feb 11 2015 TC1 LLC Heart beat identification and pump speed synchronization
10525178, Mar 15 2013 TC1 LLC Catheter pump assembly including a stator
10537674, Feb 17 2010 ARTIO MEDICAL, INC System and method to increase the overall diameter of veins
10576192, Apr 15 2014 TC1 LLC Catheter pump with access ports
10576193, Jul 03 2012 TC1 LLC Motor assembly for catheter pump
10583232, Apr 15 2014 TC1 LLC Catheter pump with off-set motor position
10632241, Mar 13 2013 TC1 LLC; TCI1 LLC Fluid handling system
10709829, Apr 15 2014 TC1 LLC Catheter pump introducer systems and methods
10709830, Jan 22 2015 TC1 LLC Reduced rotational mass motor assembly for catheter pump
10737005, Jan 22 2015 TC1 LLC Motor assembly with heat exchanger for catheter pump
10765789, May 14 2012 TC1 LLC Impeller for catheter pump
10786610, Mar 15 2013 TC1 LLC Catheter pump assembly including a stator
10835653, May 05 2009 ECP ENTWICKLUNGSESELLSCHAFT MBH Fluid pump changeable in diameter, in particular for medical application
10856748, Feb 11 2015 TC1 LLC Heart beat identification and pump speed synchronization
10857272, May 05 2009 ECP ENTWICKLUNGSGESELLSCHAFT MBH Fluid pump changeable in diameter, in particular for medical application
10864308, Apr 15 2014 TC1 LLC Sensors for catheter pumps
10864309, Mar 23 2006 The Penn State Research Foundation; TCI LLC Heart assist device with expandable impeller pump
10874782, Feb 12 2015 TC1 LLC System and method for controlling the position of a levitated rotor
10888645, Nov 16 2015 TC1 LLC Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
10925709, Apr 30 2015 SILK ROAD MEDICAL, INC Systems and methods for transcatheter aortic valve treatment
10960116, Jan 06 2011 TCI LLC; THE PENNS STATE RESEARCH FOUNDATION Percutaneous heart pump
10980928, Apr 30 2013 TC1 LLC Cardiac pump with speed adapted for ventricle unloading
11015605, Feb 12 2015 TC1 LLC Alternating pump gaps
11033728, Mar 13 2013 TC1 LLC; TCI1 LLC Fluid handling system
11045638, May 14 2012 TC1 LLC Sheath system for catheter pump
11058865, Jul 03 2012 TC1 LLC Catheter pump
11077294, Mar 13 2013 TC1 LLC Sheath assembly for catheter pump
11160914, Aug 17 2012 ARTIO MEDICAL, INC Blood pump systems and methods
11160970, Jul 21 2016 TC1 LLC Fluid seals for catheter pump motor assembly
11173297, Apr 15 2014 TC1 LLC Catheter pump with off-set motor position
11219756, Jul 03 2012 TC1 LLC Motor assembly for catheter pump
11229786, May 14 2012 TC1 LLC Impeller for catheter pump
11260213, May 14 2012 TC1 LLC Impeller for catheter pump
11278711, May 05 2009 ECP ENTWICKLUNGSGESELLSCHAFT MBH Fluid pump changeable in diameter, in particular for medical application
11311712, May 14 2012 TC1 LLC Impeller for catheter pump
11331470, Apr 15 2014 TC1 LLC Catheter pump with access ports
11357967, May 14 2012 TC1 LLC Impeller for catheter pump
11400275, Aug 17 2011 ARTIO MEDICAL, INC Blood pump system for causing persistent increase in the overall diameter of a target vessel
11428236, Sep 17 2004 TC1 LLC; The Penn State Research Foundation Expandable impeller pump
11434921, Sep 17 2004 TC1 LLC; The Penn State Research Foundation Expandable impeller pump
11491322, Jul 21 2016 TC1 LLC Gas-filled chamber for catheter pump motor assembly
11497896, Jan 22 2015 TC1 LLC Reduced rotational mass motor assembly for catheter pump
11534593, Apr 29 2016 FLOW FORWARD MEDICAL, INC Conduit tips and systems and methods for use
11547845, Mar 13 2013 TC1 LLC Fluid handling system
11577066, May 05 2009 ECP ENTWICKLUNDGESELLSCHAFT MBH Fluid pump changeable in diameter, in particular for medical application
11633586, Jan 22 2015 TC1 LLC Motor assembly with heat exchanger for catheter pump
11639722, Nov 16 2015 TC1 LLC Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
11654276, Jul 03 2012 TC1 LLC Catheter pump
11660441, Jul 03 2012 TC1 LLC Catheter pump
11708833, Mar 23 2006 The Penn State Research Foundation; TC1 LLC Heart assist device with expandable impeller pump
11712167, Feb 11 2015 TC1 LLC Heart beat identification and pump speed synchronization
11724018, Feb 17 2010 ARTIO MEDICAL, INC System and method to increase the overall diameter of veins
11724094, Apr 30 2013 TC1 LLC Cardiac pump with speed adapted for ventricle unloading
11724097, Feb 12 2015 TC1 LLC System and method for controlling the position of a levitated rotor
11759612, Jan 22 2015 TC1 LLC Reduced rotational mass motor assembly for catheter pump
11781551, Feb 12 2015 TC1 LLC Alternating pump gaps
11786718, May 05 2009 ECP ENTWICKLUNGSGESELLSCHAFT MBH Fluid pump changeable in diameter, in particular for medical application
11786720, Apr 15 2014 TC1 LLC Catheter pump with off-set motor position
11833342, Jul 03 2012 TC1 LLC Motor assembly for catheter pump
11850414, Mar 13 2013 TC1 LLC Fluid handling system
11911579, Jan 22 2015 TC1 LLC Reduced rotational mass motor assembly for catheter pump
7841976, Mar 23 2006 THORATEC LLC; TC1 LLC Heart assist device with expandable impeller pump
7927068, Sep 17 2004 THORATEC LLC; TC1 LLC Expandable impeller pump
7998054, Oct 09 1997 Thoratec Corporation Implantable heart assist system and method of applying same
8118724, Sep 18 2003 TC1 LLC Rotary blood pump
8376707, Sep 17 2004 TC1 LLC; THORATEC LLC Expandable impeller pump
8485961, Jan 05 2011 THORATEC LLC; TC1 LLC Impeller housing for percutaneous heart pump
8535211, Jul 01 2009 THORATEC LLC; TC1 LLC Blood pump with expandable cannula
8591393, Jan 06 2011 THORATEC LLC; TC1 LLC Catheter pump
8597170, Jan 05 2011 THORATEC LLC; TC1 LLC Catheter pump
8684902, Sep 18 2003 TC1 LLC Rotary blood pump
8684904, Jul 01 2009 Thoratec Corporation; The Penn State Research Foundation Blood pump with expandable cannula
8721517, May 14 2012 TC1 LLC; THORATEC LLC Impeller for catheter pump
8821365, Jul 29 2009 TC1 LLC Rotation drive device and centrifugal pump apparatus using the same
8827661, Jun 23 2008 TC1 LLC Blood pump apparatus
8992163, Sep 17 2004 Thoratec Corporation; The Penn State Research Foundation Expandable impeller pump
9067005, Dec 08 2008 TC1 LLC Centrifugal pump apparatus
9067007, Jul 03 2012 Thoratec Corporation Motor assembly for catheter pump
9068572, Jul 12 2010 TC1 LLC Centrifugal pump apparatus
9109601, Jun 23 2008 TC1 LLC Blood pump apparatus
9132215, Feb 16 2010 TC1 LLC Centrifugal pump apparatus
9133854, Mar 26 2010 TC1 LLC Centrifugal blood pump device
9138518, Jan 06 2011 Tubemaster, Inc Percutaneous heart pump
9155827, Feb 17 2010 ARTIO MEDICAL, INC System and method to increase the overall diameter of veins
9308302, Mar 15 2013 THORATEC LLC; TC1 LLC Catheter pump assembly including a stator
9327067, May 14 2012 TC1 LLC; THORATEC LLC Impeller for catheter pump
9358329, Jul 03 2012 Thoratec Corporation Catheter pump
9364592, Mar 23 2006 THORATEC LLC; TC1 LLC Heart assist device with expandable impeller pump
9364593, Mar 23 2006 THORATEC LLC; TC1 LLC Heart assist device with expandable impeller pump
9366261, Jan 18 2012 TC1 LLC Centrifugal pump device
9371826, Jan 24 2013 TC1 LLC Impeller position compensation using field oriented control
9381285, Mar 05 2009 TC1 LLC Centrifugal pump apparatus
9381288, Mar 13 2013 TC1 LLC; TCI1 LLC Fluid handling system
9382908, Sep 14 2010 TC1 LLC Centrifugal pump apparatus
9410549, Mar 06 2009 TC1 LLC Centrifugal pump apparatus
9421311, Jul 03 2012 THORATEC LLC; TC1 LLC Motor assembly for catheter pump
9446179, May 14 2012 THORATEC LLC; TC1 LLC Distal bearing support
9512852, Mar 31 2006 TC1 LLC Rotary blood pump
9539380, Aug 17 2011 ARTIO MEDICAL, INC System and method to increase the overall diameter of veins and arteries
9555174, Feb 17 2010 ARTIO MEDICAL, INC Blood pump systems and methods
9556873, Feb 27 2013 TC1 LLC Startup sequence for centrifugal pump with levitated impeller
9622890, Apr 27 2012 Terumo Kabushiki Kaisha Catheter for forming biological tissue holding member
9623161, Aug 26 2014 TC1 LLC Blood pump and method of suction detection
9638202, Sep 14 2010 TC1 LLC Centrifugal pump apparatus
9662431, Feb 17 2010 ARTIO MEDICAL, INC Blood pump systems and methods
9675738, Jan 22 2015 TC1 LLC Attachment mechanisms for motor of catheter pump
9675739, Jan 22 2015 TC1 LLC Motor assembly with heat exchanger for catheter pump
9675740, May 14 2012 TC1 LLC; THORATEC LLC Impeller for catheter pump
9709061, Jan 24 2013 TC1 LLC Impeller position compensation using field oriented control
9713663, Apr 30 2013 TC1 LLC Cardiac pump with speed adapted for ventricle unloading
9717833, Mar 23 2006 THORATEC LLC; TC1 LLC Heart assist device with expandable impeller pump
9770543, Jan 22 2015 TC1 LLC Reduced rotational mass motor assembly for catheter pump
9827356, Apr 15 2014 THORATEC LLC; TC1 LLC Catheter pump with access ports
9850906, Mar 28 2011 TC1 LLC Rotation drive device and centrifugal pump apparatus employing same
9872947, May 14 2012 TC1 LLC Sheath system for catheter pump
9907890, Apr 16 2015 THORATEC LLC; TC1 LLC Catheter pump with positioning brace
9962475, Jan 06 2011 THORATEC LLC; TC1 LLC Percutaneous heart pump
9987404, Jan 22 2015 TC1 LLC Motor assembly with heat exchanger for catheter pump
Patent Priority Assignee Title
1902418,
2876769,
2935068,
3017885,
3410263,
3938530, Nov 15 1974 Catheter
4080958, Feb 27 1976 DATASCOPE INVESTMENT CORP A CORP OF NEW JERSEY Apparatus for aiding and improving the blood flow in patients
4134402, Feb 11 1976 Double lumen hemodialysis catheter
4149535, May 06 1976 Gist-Brocades N.V. Catheter holding device
4375941, Mar 20 1978 CHILD LABORATORIES,INC , A CORP OF MN Method and apparatus for pumping blood
4405313, Jan 29 1982 EVERMED, INC , A DE CORP Figure-eight, dual-lumen catheter and method of using
4459977, Mar 27 1981 CORDAY, ELIOT Coronary sinus retroperfusion apparatus for the treatment of myocardial ischemia
4464164, Sep 24 1982 MCNEILAB, INC Flowrate control for a blood flow system
4540402, Apr 20 1982 Double perfusion catheter
4543087, Nov 14 1983 Sherwood Services AG Double lumen catheter tip
4692141, Mar 08 1982 Double lumen catheter
4897077, May 22 1987 Kontron Inc. Method of inserting an IAB device into the body
4902272, Jun 17 1987 ABIOMED, INC , A MA CORP Intra-arterial cardiac support system
4944745, Feb 29 1988 Boston Scientific Scimed, Inc Perfusion balloon catheter
4957504, Dec 02 1988 Implantable blood pump
4960411, Sep 18 1984 PLUNKETT, DIANNE M F Low profile sterrable soft-tip catheter
4976270, Mar 28 1989 Vanderbilt University Apparatus for continuously sampling plasma
4985014, Jul 11 1989 Ventricular venting loop
4995857, Apr 07 1989 Left ventricular assist device and method for temporary and permanent procedures
5014715, Nov 22 1988 Device for measuring the impedance to flow of a natural or prosthetic vessel in a living body
5059167, May 29 1987 ZOLL CIRCULATION, INC Retroperfusion and retroinfusion control apparatus, system and method
5087247, Aug 28 1990 CARDIOVASCULAR DESIGNS, INC , A CORP OF MASSACHUSETTS Balloon perfusion catheter
5129883, Jul 26 1991 Catheter
5147281, Apr 23 1990 ADVANCED MEDICAL SYSTEMS, INC Biological fluid pumping means and method
5186713, Nov 01 1990 Jostra Bentley Inc Extracorporeal blood oxygenation system and method for providing hemoperfusion during transluminal balloon angioplasty procedures
5318518, Aug 14 1991 Boston Scientific Scimed, Inc Irrigating catheter
5374245, Jan 10 1990 Reinforced multiple-lumen catheter and apparatus and method for making the same
5378230, Nov 01 1993 SUDHA S MAHURKAR TRUST Triple-lumen critical care catheter
5403291, Aug 02 1993 Covidien AG Catheter with elongated side holes
5437601, Mar 02 1992 Blood conduit and pulsatile cardiopulmonary bypass pump system
5472417, Dec 22 1987 Vas-Cath Incorporated Triple lumen catheter
5486159, Oct 01 1993 Multiple-lumen catheter
5522800, Mar 08 1994 Cardiovascular Dynamics, Inc. Low profile perfusion catheter
5533957, May 06 1994 Trustees of Boston University Method of tissue retroperfusion
5536250, Apr 01 1994 LocalMed, Inc. Perfusion shunt device and method
5542937, Jun 24 1994 Target Therapeutics, Inc Multilumen extruded catheter
5554136, Sep 07 1994 Becton, Dickinson and Company Dual lumen infusion/aspiration catheter
5556390, Mar 07 1995 Covidien AG Catheter with oval or elliptical lumens
5571093, Sep 21 1994 Multiple-lumen catheter
5616137, Feb 22 1995 MICHIGAN CRITICAL CARE CONSULTANTS, INC Low velocity aortic cannula
5618267, Jul 28 1994 Method for establishing collapsible infusion conduit
5722930, Aug 06 1992 Electric Boat Corporation Reciprocating pump circulatory assist arrangement
5746709, Apr 25 1996 Medtronic, Inc. Intravascular pump and bypass assembly and method for using the same
5766151, Jul 16 1991 Edwards Lifesciences, LLC Endovascular system for arresting the heart
5776111, Nov 07 1996 Medical Components, Inc. Multiple catheter assembly
5776151, Jul 12 1993 CHAN, KWAN-HO Surgical repair kit and its method of use
5785686, May 02 1996 Cannula system for a biventricular cardiac support system or a cardiopulmonary bypass system
5795326, Jan 29 1997 Medline Industries, Inc Double lumen tubing design for catheter
5807311, Nov 29 1996 Dialysis catheter having rigid and collapsible lumens and related method
5868703, Dec 06 1996 BIOVENTRIX, INC Multichannel catheter
5928181, Nov 21 1997 Advanced International Technologies, Inc. Cardiac bypass catheter system and method of use
5947953, Aug 06 1997 MEDICAL COMPONENTS, INC Splittable multiple catheter assembly and methods of inserting the same
5961486, Feb 09 1995 Clot resistant multiple lumen catheter
5965089, Oct 04 1996 United States Surgical Corporation Circulatory support system
6044845, Feb 03 1998 Salient Interventional Systems, Inc. Methods and systems for treating ischemia
6053900, Feb 16 1996 Apparatus and method for delivering diagnostic and therapeutic agents intravascularly
6059760, Aug 14 1997 Medtronic, Inc Cannula having reverse flow tip
6083198, Jun 25 1998 Cardiovention, Inc. Perfusion catheter providing segmented flow regions and methods of use
6135981, Oct 22 1997 Protective aortic occlusion catheter
6167765, Sep 25 1998 The Regents of the University of Michigan System and method for determining the flow rate of blood in a vessel using doppler frequency signals
6200260, Oct 09 1997 THORATEC LLC; TC1 LLC Implantable heart assist system
6245045, Apr 23 1999 Combination sheath and catheter for cardiovascular use
6287608, Apr 11 2000 Gambro Lundia AB Method and apparatus for treatment of congestive heart failure by improving perfusion of the kidney by infusion of a vasodilator
6293958, Jul 27 1998 ACIST Medical Systems, Inc. Catheter having flow diffusing tip
6299575, Oct 09 1997 THORATEC LLC; TC1 LLC Implantable heart assist system
6371935, Jan 22 1999 SURGERX MEDICAL, LLC Aortic catheter with flow divider and methods for preventing cerebral embolization
6387037, Oct 09 1997 THORATEC LLC; TC1 LLC Implantable heart assist system and method of applying same
6390969, Oct 09 1997 THORATEC LLC; TC1 LLC Implantable heart assist system and method of applying same
6428464, Oct 09 1997 THORATEC LLC; TC1 LLC Implantable heart assist system
6488662, Dec 19 2000 THORATEC LLC; TC1 LLC Percutaneous catheter assembly
6508777, May 08 1998 Cardeon Corporation Circulatory support system and method of use for isolated segmental perfusion
6514226, Feb 10 2000 Gambro Lundia AB Method and apparatus for treatment of congestive heart failure by improving perfusion of the kidney
6558356, Jan 15 1999 ZOLL CIRCULATION, INC Medical device for flow augmentation in patients with occlusive cerebrovascular disease and methods of use
6592567, Dec 07 1999 Gambro Lundia AB Kidney perfusion catheter
6610004, Oct 09 1997 THORATEC LLC; TC1 LLC Implantable heart assist system and method of applying same
6685621, Oct 09 1997 THORATEC LLC; TC1 LLC Implantable heart assist system and method of applying same
6719749, Jun 01 2000 MEDICAL COMPONENTS, INC Multilumen catheter assembly and methods for making and inserting the same
6889082, Oct 09 1997 THORATEC LLC; TC1 LLC Implantable heart assist system and method of applying same
7048680, Jun 06 2001 THORATEC LLC; TC1 LLC Multilumen catheter for minimizing limb ischemia
7125376, Oct 09 1997 THORATEC LLC; TC1 LLC Implantable heart assist system and method of applying same
20020111577,
20020169413,
20020188167,
20030040736,
20030083617,
20030144628,
20040116768,
20040138519,
20040236172,
20050085683,
20050113631,
20050256363,
20050277803,
20050277804,
20050277870,
20060264693,
20060264694,
20060264797,
20060264798,
20060264800,
20060264801,
20060270890,
20060270891,
20060270892,
20060270893,
20060270895,
20060270963,
20060270964,
20060270965,
20060270966,
20060276681,
20060276682,
20060281962,
EP405749,
EP411605,
EP533432,
EP711574,
EP836861,
EP1407798,
FR2201908,
GB1370546,
GB2174151,
JP58190448,
JP8257001,
WO4943,
WO12148,
WO38591,
WO61207,
WO2064204,
WO3068303,
WO9617644,
WO9814225,
WO9828034,
WO9907301,
WO9919010,
WO9942156,
WO9959652,
WO9965546,
/////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 11 2002VIOLE, ANTHONYOrqis Medical CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0232080949 pdf
Apr 11 2002BEIZAI, MASOUDOrqis Medical CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0232080949 pdf
Apr 12 2002KELLY, RYANOrqis Medical CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0232080949 pdf
Apr 12 2002SIRIMANNE, LAKSENOrqis Medical CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0232080949 pdf
Apr 12 2002O LEARY, SHAWNOrqis Medical CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0232080949 pdf
Apr 12 2002PECOR, ROBERTOrqis Medical CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0232080949 pdf
Apr 12 2002WERNER, WOLFGANGOrqis Medical CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0232080949 pdf
May 03 2002BOLLING, STEVEN F Orqis Medical CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0232080949 pdf
May 03 2006Orqis Medical Corporation(assignment on the face of the patent)
Oct 13 2009ORQUIS MEDICAL CORPORATIONThoratec CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0233790031 pdf
Oct 13 2009Orqis Medical CorporationThoratec CorporationCORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNOR S NAME PREVIOUSLY RECORDED ON REEL 023379 FRAME 0031 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT OF ASSIGNOR S INTEREST 0234550396 pdf
Nov 28 2016Thoratec CorporationTHORATEC LLCCONFIRMATORY ASSIGNMENT0422610587 pdf
Nov 28 2016THORATEC LLCTC1 LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0422610615 pdf
Date Maintenance Fee Events
Dec 23 2009STOL: Pat Hldr no Longer Claims Small Ent Stat
Jan 25 2011ASPN: Payor Number Assigned.
Aug 17 2012M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Aug 17 2016M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jul 14 2020M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Feb 17 20124 years fee payment window open
Aug 17 20126 months grace period start (w surcharge)
Feb 17 2013patent expiry (for year 4)
Feb 17 20152 years to revive unintentionally abandoned end. (for year 4)
Feb 17 20168 years fee payment window open
Aug 17 20166 months grace period start (w surcharge)
Feb 17 2017patent expiry (for year 8)
Feb 17 20192 years to revive unintentionally abandoned end. (for year 8)
Feb 17 202012 years fee payment window open
Aug 17 20206 months grace period start (w surcharge)
Feb 17 2021patent expiry (for year 12)
Feb 17 20232 years to revive unintentionally abandoned end. (for year 12)