This invention includes methods of forming conductive lines, and methods of forming conductive contacts adjacent conductive lines. In one implementation, a method of forming a conductive line includes forming a conductive line within an elongated trench within first insulative material over a semiconductive substrate. The conductive line is laterally spaced from opposing first insulative material sidewall surfaces of the trench. The conductive line includes a second conductive material received over a different first conductive material. The second conductive material is recessed relative to an elevationally outer surface of the first insulative material proximate the trench. A second insulative material different from the first insulative material is formed within the trench over a top surface of the conductive line and within laterally opposing spaces received between the first insulative material and the conductive line. In one implementation, a conductive contact is formed adjacent to and insulated from the conductive line.
|
1. A method of forming a conductive line, comprising: forming a conductive line within an elongated trench within first insulative material over a semiconductive substrate, the conductive line being everywhere laterally spaced from opposing first insulative material sidewall surfaces of the trench, the conductive line comprising a second conductive material received over a different first conductive material, the second conductive material being recessed elevationally relative to an elevationally outer surface of the first insulative material proximate the trench; and
forming a second insulative material different from the first insulative material within the trench over a top surface of the conductive line and within laterally opposing spaces received between the first insulative material and the conductive line.
25. A method of forming a conductive line, comprising:
forming a conductive line within an elongated trench within first insulative material over a semiconductive substrate, the conductive material sidewall surfaces of the trench, the conductive line comprising a second conductive material received over a different first conductive material, the second conductive material being recessed elevationally relative to an elevationally outer surface of the first insulative material proximate the trench; and
forming a second insulative material different from the first insulative material within the trench over a top surface of the conductive line and within laterally opposing spaces received between the first insulative material and conductive line, the forming of the second insulative material comprising depositing the second insulative material and polishing it back at least to the first insulative material.
12. A method of forming a conductive contact adjacent to and insulated from a conductive line, comprising:
forming a conductive line within an elongated trench within first insulative material over a semiconductive substrate, the conductive line being everywhere laterally spaced from opposing first insulative material sidewall surfaces of the trench, the conductive line comprising a second conductive material received over a different first conductive material, the second conductive material being recessed elevationally relative to an elevationally outer surface of the first insulative material proximate the trench;
forming a second insulative material different from the first insulative material within the trench over a top surface of the conductive line and within laterally opposing spaces received between the first insulative material and the conductive line;
etching a contact opening into the first insulative material proximate the conductive line using an etching chemistry which is substantially selective to the second insulative material; and
forming conductor material within the contact opening.
26. A method of forming a conductive contact adajacent to and insulated from a conductive line, comprising:
forming a conductive line within an elongated trench within first insulative material over a semiconductive substrate, the conductive line being everywhere laterally spaced from opposing first insulative material sidewall surfaces of the trench, the conductive line comprising a second conductive material received over a different first conductive material, the second conductive material being recessed elevationally relative to an elevationally outer surface of the first insulative material proximate the trench;
forming a second insulative material different from the first insulative material within the trench over a top surface of the conductive line and within laterally opposing spaces received between the first insulative material and the conductive line, the forming of the second insulative material comprising depositing the second insulative material and polishing it back at least to the first insulative material;
etching a contact opening into the first insulative material proximate the conductive line using an etching chemistry which is substantially selective to the second insulative material; and
forming conductor material within the contact opening.
27. A method of forming a conductive contact adjacent to and insulated from a conductive line, comprising:
forming a conductive line within an elongated trench within first insulative material over a semiconductive substrate, the conductive line being everywhere laterally spaced from opposing first insulative material sidewall surfaces of the trench, the conductive line comprising a second conductive material received over a different first conductive material, the second conductive material being recessed elevationally relative to an elevationally outer surface of the first insulative material proximate the trench;
forming a second insulative material different from the first insulative material within the trench over a top surface of the conductive line and within laterally opposing spaces received between the first insulative material and the conductive line, the forming of the second insulative material comprising depositing the second insulative material and polishing it back at least to the first insulative material;
etching a contact opening into the first insulative material proximate the conductive line using an etching chemistry which is substantially selective to the second insulative material, the etching exposing the second insulative material; and
forming conductor material within the contact opening in contact with the second insulative material.
2. The method of
5. The method of
7. The method of
8. The method of
9. The method of
10. The method of
11. The method of
14. The method of
16. The method of
19. The method of
21. The method of
22. The method of
23. The method of
24. The method of
|
This patent resulted from a divisional application of U.S. patent application Ser. No. 10/925,158, filed Aug. 23, 2004 now U.S. Pat. No. 7,118,966, entitled “Methods of Forming Conductive Lines”, naming Scott A. Southwick, Alex J. Schrinsky and Terrence B. McDaniel as inventors, the disclosure of which is incorporated by reference.
This invention relates to methods of forming conductive lines, and to methods of forming conductive contacts adjacent conductive lines.
Integrated circuits are typically formed on a semiconductor substrate, such as a silicon wafer or other semiconductive material. In general, layers of various materials which are either semiconducting, conducting or insulating, are utilized to form the integrated circuits. By way of example, various materials are doped, ion implanted, deposited, etched, grown, etc. using various processes. A continuing goal in semiconductor processing is to reduce the size of individual electronic components, thereby enabling smaller and denser integrated circuitry.
One type of integrated circuitry comprises memory circuitry, for example dynamic random access memory (DRAM). Such comprises an array of memory cells where individual cells include a transistor and a capacitor. The capacitor electrically connects with one of the source/drain regions of the transistor and a bit or a digit line electrically connects with the other of the source/drain regions of the transistor. DRAM circuitry might be constructed such that the capacitors are elevationally higher within the substrate than the bit line (buried bit line construction), or alternately with the bit line fabricated elevationally higher or outwardly of the capacitor (bit line-over-capacitor construction). The invention was principally motivated in addressing issues associated with buried bit line memory circuitry, although the invention is in no way so limited, nor is it limited to memory integrated circuitry. Rather, the invention is limited only by the accompanying claims as literally worded without interpretative or limiting reference to the specification and drawings herein, and in accordance with the doctrine of equivalents.
This invention includes methods of forming conductive lines, and methods of forming conductive contacts adjacent conductive lines. In one implementation, a method of forming a conductive line includes forming a conductive line within an elongated trench within first insulative material over a semiconductive substrate. The conductive line is laterally spaced from opposing first insulative material sidewall surfaces of the trench. The conductive line includes a second conductive material received over a different first conductive material. The second conductive material is recessed relative to an elevationally outer surface of the first insulative material proximate the trench. A second insulative material different from the first insulative material is formed within the trench over a top surface of the conductive line and within laterally opposing spaces received between the first insulative material and the conductive line. In one implementation, a conductive contact is formed adjacent to and insulated from the conductive line. Such can be formed by etching a contact opening into the first insulative material proximate the conductive line using an etching chemistry which is substantially selective to the second insulative material. Conductor material is formed within the contact opening.
Other aspects and implementations are contemplated.
Preferred embodiments of the invention are described below with reference to the following accompanying drawings.
This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).
Exemplary preferred embodiments of methods of forming a conductive line, and of forming a conductive contact adjacent a conductive line, are described with reference to exemplary implementations depicted by
An elongated trench 16 is formed into first insulative material 14 over semiconductor substrate 12. By way of example only, an exemplary width range for trench 16 is from 10 Angstroms to 100 microns, with an exemplary depth range for trench 16 being from 10 Angstroms to 200 microns. Such can be formed by photolithographic patterning and etch using any existing or yet-to-be developed methods. In one implementation, trench 16 can be considered as having opposing sidewall surfaces 18 and a base surface 20. In the illustrated preferred embodiment, opposing sidewall surfaces 18 are essentially parallel and vertical, and base surface 20 extends horizontally therebetween, joining therewith at right angles. Sloped and other than straight sidewall and base surfaces are also of course contemplated. An exemplary preferred first insulative material 14 comprises a silicon oxide doped with at least one of phosphorus and boron, for example borophosphosilicate glass (BPSG). Other, and more than one, materials are also of course contemplated for first insulative material 14. In the preferred embodiment, first insulative material 14 is depicted as having an elevationally outer surface 19, and which is substantially planar at least proximate trench 16.
Referring to
Referring to
Such describes in the depicted and preferred embodiment, an example of but only one preferred method of forming at least first and second different conductive materials within a trench, wherein the first conductive material lines the trench and the second conductive material is received over the first conductive material. However, any method of so forming as just stated is contemplated and whether existing or yet-to-be developed.
Referring to
In one preferred implementation, the removal of second conductive material 24 recesses the second conductive material from 500 Angstroms to 300 Angstroms from elevationally outer surface 19 proximate trench 16, with a recess of 1,000 Angstroms being a specific example.
Referring to
By way of example only, an exemplary preferred dry etch for a first material composite of elemental titanium and titanium nitride includes Cl2 in an inductively coupled reactor where the top electrode is powered from 100 to 1000 Watts and the bottom electrode is powered from 10 to 500 Watts. An exemplary preferred temperature range and specific example is as described above in connection with the second conductive material etch, with an exemplary preferred pressure range being from 5 mTorr to 100 mTorr, with 10 mTorr being a specific example. An exemplary preferred flow rate for the Cl2 is from 15 sccm to 100 sccm, with 90 sccm being a specific example. Such etching conditions can selectively etch first conductive material 22 substantially selectively relative to tungsten and BPSG. An exemplary preferred wet etching chemistry for selectively removing first conductive material 22 substantially selectively relative to the stated materials 14 and 24 includes hot phosphoric acid.
In one preferred embodiment, the removal of the first conductive material and the removal of the second conductive material is conducted in the same chamber under subatmospheric conditions without breaking the vacuum between such removals.
By way of example only, the above processing describes and depicts exemplary methods of forming a conductive line within an elongated trench within first insulative material over a semiconductive substrate. Such conductive line is laterally spaced from opposing first insulative material sidewall surfaces of the trench. The conductive line comprises a second conductive material received over a different first conductive material, with the second conductive material being recessed relative to an elevationally outer surface of the first insulative material proximate the trench. Any other method of so forming, whether existing or yet-to-be developed, is also contemplated with the above-described
Referring to
The invention also contemplates forming a conductive contact adjacent to and isolated/insulated from a conductive line, for example as is described by way of example only in connection with
Referring to
Referring to
In one preferred embodiment, the conductive line comprises a buried digit line of DRAM circuitry, for example and by way of example only as shown in U.S. Pat. Nos. 6,376,380 and 6,337,274, which are herein incorporated by reference.
In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.
McDaniel, Terrence B., Southwick, Scott A., Schrinsky, Alex J.
Patent | Priority | Assignee | Title |
8329567, | Nov 03 2010 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of forming doped regions in semiconductor substrates |
8361856, | Nov 01 2010 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Memory cells, arrays of memory cells, and methods of forming memory cells |
8450175, | Feb 22 2011 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of forming a vertical transistor and at least a conductive line electrically coupled therewith |
8497194, | Nov 03 2010 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of forming doped regions in semiconductor substrates |
8569831, | May 27 2011 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Integrated circuit arrays and semiconductor constructions |
8609488, | Feb 22 2011 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of forming a vertical transistor and at least a conductive line electrically coupled therewith |
8790977, | Feb 22 2011 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of forming a vertical transistor, methods of forming memory cells, and methods of forming arrays of memory cells |
8871589, | May 27 2011 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of forming semiconductor constructions |
9006060, | Aug 21 2012 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | N-type field effect transistors, arrays comprising N-type vertically-oriented transistors, methods of forming an N-type field effect transistor, and methods of forming an array comprising vertically-oriented N-type transistors |
9036391, | Mar 06 2012 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Arrays of vertically-oriented transistors, memory arrays including vertically-oriented transistors, and memory cells |
9054216, | Feb 22 2011 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of forming a vertical transistor |
9093367, | Nov 03 2010 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of forming doped regions in semiconductor substrates |
9111853, | Mar 15 2013 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of forming doped elements of semiconductor device structures |
9129896, | Aug 21 2012 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Arrays comprising vertically-oriented transistors, integrated circuitry comprising a conductive line buried in silicon-comprising semiconductor material, methods of forming a plurality of conductive lines buried in silicon-comprising semiconductor material, and methods of forming an array comprising vertically-oriented transistors |
9318493, | May 27 2011 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Memory arrays, semiconductor constructions, and methods of forming semiconductor constructions |
9337201, | Nov 01 2010 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Memory cells, arrays of memory cells, and methods of forming memory cells |
9472663, | Aug 21 2012 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | N-type field effect transistors, arrays comprising N-type vertically-oriented transistors, methods of forming an N-type field effect transistor, and methods of forming an array comprising vertically-oriented N-type transistors |
9478550, | Aug 27 2012 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Arrays of vertically-oriented transistors, and memory arrays including vertically-oriented transistors |
9773677, | Mar 15 2013 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor device structures with doped elements and methods of formation |
Patent | Priority | Assignee | Title |
4661202, | Feb 14 1984 | Kabushiki Kaisha Toshiba | Method of manufacturing semiconductor device |
5422296, | Apr 25 1994 | Motorola, Inc. | Process for forming a static-random-access memory cell |
5573969, | Jan 19 1994 | HYUNDAI ELECTRONICS INDUSTRIES CO , LTD | Method for fabrication of CMOS devices having minimized drain contact area |
5614765, | Jun 07 1995 | GLOBALFOUNDRIES Inc | Self aligned via dual damascene |
5920098, | Jul 30 1997 | Taiwan Semiconductor Manufacturing Company, Ltd | Tungsten local interconnect, using a silicon nitride capped self-aligned contact process |
5970375, | May 03 1997 | Advanced Micro Devices, Inc. | Semiconductor fabrication employing a local interconnect |
6008084, | Feb 27 1998 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Method for fabricating low resistance bit line structures, along with bit line structures exhibiting low bit line to bit line coupling capacitance |
6011712, | Dec 27 1996 | Samsung Electronics Co., Ltd. | Interconnection structures for integrated circuits including recessed conductive layers |
6017813, | Jan 12 1998 | Vanguard International Semiconductor Corporation | Method for fabricating a damascene landing pad |
6027994, | Jun 22 1998 | United Microelectronics Corp. | Method to fabricate a dual metal-damascene structure in a substrate |
6071804, | Sep 19 1998 | United Microelectronics Corp | Method of fabricating bit lines by damascene |
6133116, | Jun 29 1998 | Samsung Electronics Co., Ltd. | Methods of forming trench isolation regions having conductive shields therein |
6180494, | Mar 11 1999 | Round Rock Research, LLC | Integrated circuitry, methods of fabricating integrated circuitry, methods of forming local interconnects, and methods of forming conductive lines |
6258709, | Jun 07 2000 | Micron Technology, Inc. | Formation of electrical interconnect lines by selective metal etch |
6261908, | Jul 27 1998 | GLOBALFOUNDRIES Inc | Buried local interconnect |
6271125, | Feb 18 1999 | Taiwan Semiconductor Manufacturing Company | Method to reduce contact hole aspect ratio for embedded DRAM arrays and logic devices, via the use of a tungsten bit line structure |
6287965, | Jul 28 1997 | SAMSUNG ELECTRONICS, CO , LTD | Method of forming metal layer using atomic layer deposition and semiconductor device having the metal layer as barrier metal layer or upper or lower electrode of capacitor |
6337274, | Dec 06 1999 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of forming buried bit line memory circuitry |
6346438, | Jun 30 1997 | Kabushiki Kaisha Toshiba | Method of manufacturing a semiconductor device |
6350679, | Aug 03 1999 | Micron Technology, Inc. | Methods of providing an interlevel dielectric layer intermediate different elevation conductive metal layers in the fabrication of integrated circuitry |
6365504, | Oct 15 1999 | TSMC-ACER Semiconductor Manufacturing Corporation; TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Self aligned dual damascene method |
6376380, | Aug 30 2000 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Method of forming memory circuitry and method of forming memory circuitry comprising a buried bit line array of memory cells |
6394883, | Sep 02 1998 | Round Rock Research, LLC | Method and apparatus for planarizing and cleaning microelectronic substrates |
6461225, | Apr 11 2000 | Bell Semiconductor, LLC | Local area alloying for preventing dishing of copper during chemical-mechanical polishing (CMP) |
6489234, | Oct 12 1999 | LAPIS SEMICONDUCTOR CO , LTD | Method of making a semiconductor device |
6498088, | Nov 09 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked local interconnect structure and method of fabricating same |
6720269, | Dec 08 1999 | Samsung Electronics Co., Ltd. | Semiconductor device having a self-aligned contact structure and methods of forming the same |
6724054, | Dec 17 2002 | Polaris Innovations Limited | Self-aligned contact formation using double SiN spacers |
6730570, | Sep 24 2002 | Samsung Electronics Co., Ltd. | Method for forming a self-aligned contact of a semiconductor device and method for manufacturing a semiconductor device using the same |
6867497, | Oct 12 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Integrated circuitry |
6876497, | Jan 07 2000 | Den Hua, Lee; Chi Luen, Wang; Chun Chien, Hong; Mao-Sheng, Chen | Color-simulating apparatus |
20010003663, | |||
20020072224, | |||
20050277264, | |||
20060073695, | |||
EP457131, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 27 2006 | Micron Technology, Inc. | (assignment on the face of the patent) | / | |||
Apr 26 2016 | Micron Technology, Inc | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001 ASSIGNOR S HEREBY CONFIRMS THE SECURITY INTEREST | 043079 | /0001 | |
Apr 26 2016 | Micron Technology, Inc | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT | 038954 | /0001 | |
Apr 26 2016 | Micron Technology, Inc | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 038669 | /0001 | |
Jun 29 2018 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Micron Technology, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 047243 | /0001 | |
Jul 03 2018 | MICRON SEMICONDUCTOR PRODUCTS, INC | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 047540 | /0001 | |
Jul 03 2018 | Micron Technology, Inc | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 047540 | /0001 | |
Jul 31 2019 | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | MICRON SEMICONDUCTOR PRODUCTS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 051028 | /0001 | |
Jul 31 2019 | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | Micron Technology, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 051028 | /0001 | |
Jul 31 2019 | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | Micron Technology, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 050937 | /0001 |
Date | Maintenance Fee Events |
Feb 13 2009 | ASPN: Payor Number Assigned. |
Jul 18 2012 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 04 2016 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Aug 12 2020 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 17 2012 | 4 years fee payment window open |
Aug 17 2012 | 6 months grace period start (w surcharge) |
Feb 17 2013 | patent expiry (for year 4) |
Feb 17 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 17 2016 | 8 years fee payment window open |
Aug 17 2016 | 6 months grace period start (w surcharge) |
Feb 17 2017 | patent expiry (for year 8) |
Feb 17 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 17 2020 | 12 years fee payment window open |
Aug 17 2020 | 6 months grace period start (w surcharge) |
Feb 17 2021 | patent expiry (for year 12) |
Feb 17 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |