A motion control system comprising a machine platform, at least one event destination, and an event handler. The machine platform carries out automated tasks and generates events. The event handler is configurable to receive at least one event from the machine platform and send the at least one event to the at least one event destination.

Patent
   7502662
Priority
Feb 09 2001
Filed
Mar 26 2007
Issued
Mar 10 2009
Expiry
Feb 11 2022
Assg.orig
Entity
unknown
0
286
EXPIRED
11. A motion system comprising:
a set of motion data;
a set of motion control devices capable of storing motion data;
a set of motion events;
a set of text events, where at least one text event is associated with at least one motion event;
a text event source capable of generating at least one text event;
a set of selectable components, where each selectable component is associated with at least one motion control device, and
implements at least one component function capable of exchanging motion data with the motion control device;
a module, where the module
calls at least one component function implemented by at least one selectable component, and
implements at least one module function capable of exchanging motion data with at least one selectable component; and
an event manager, where the event manager
receives at least one text event,
maps at least one text event to at least one module function, and
causes at least one component function to be called from the module to exchange motion data with at least one selectable component.
21. A motion system comprising:
a set of motion data;
a set of motion control devices capable of storing motion data;
a set of motion events;
a set of text events comprising at least one event descriptor that describes at least one motion event;
a text event source capable of causing the generation of at least one text base event;
a set of selectable components, where each selectable first component
is associated with at least one motion control device, and
implements at least one component function capable of exchanging motion data with at least one motion control device;
a module capable of
calling at least one component function implemented by at least one selectable component,
implementing at least one module function, and
exchanging motion data with a software application; and
an event manager capable of
receiving at least one text event,
mapping at least one text event to at least one module function, and
causing at least one module function to be called from the module to exchange motion data with one of the selectable components.
1. A motion system comprising:
a set of motion data;
a set of motion control devices capable of storing motion data;
a set of motion events;
a set of text events, where at least one text event corresponds to at least one of the motion events;
a text event source capable of generating at least one text event;
a set of selectable first components, where each selectable first component
is associated with at least one motion control device, and
implements at least one first component function capable of exchanging motion data with at least one motion control device;
a second module, where the second module
allows the selection of at least one first component,
calls at least one first component function implemented by at least one first component, and
implements at least one second component function that is capable of exchanging motion data with at least one first component; and
an event manager, where the event manager
receives at least one text event from the text event source,
maps at least one text event to at least one second component function, and
causes the second module to call at least one second component function that exchanges motion data with at least one first component.
2. A system as recited in claim 1, wherein the second component is capable of calling at least one first component function to receive motion data and convert the motion data into a motion device independent motion data.
3. A system as recited in claim 1, wherein the second component converts a motion data in a motion device independent format into a motion data that is compatible with at least one first component.
4. A system as recited in claim 1, wherein at least one first component is capable of reading motion data from at least one motion control device.
5. A system as recited in claim 1, wherein at least one first component is capable of writing motion data to at least one motion control device.
6. A system as recited in claim 1, further comprising motion data that, when exchanged with at least one second component, causes at least one motion control device to move an object.
7. A system as recited in claim 1, further comprising motion data that, when exchanged with at least one second component, causes at least one motion control device to move.
8. A system as recited in claim 1, in which the text event source is an element of a user interface.
9. A system as recited in claim 1, in which the text event source is a software element within an operating system.
10. A system as recited in claim 1, further comprising a user interface that allows the selection of at least one first component.
12. A system as recited in claim 11, wherein the module is capable of calling at least one component function to receive motion data and convert the motion data into a motion device independent motion data.
13. A system as recited in claim 11, wherein the module converts a motion device independent motion data into a motion data that is compatible with at least one selectable component and then exchanging the motion data with the at least one selectable component.
14. A system as recited in claim 11, wherein at least one selectable component is capable of reading motion data from at least one motion control device.
15. A system as recited in claim 11, wherein at least one selectable component that is capable of writing motion data to at least one motion control device.
16. A system as recited in claim 11, further comprising motion data that, when exchanged with at least one module, is capable of causing at least one motion control device to move an object.
17. A system as recited in claim 11, further comprising motion data that, when exchanged with at least one module, is capable of causing at least one motion control device to move.
18. A system as recited in claim 11, in which the text event source is an element of a user interface.
19. A system as recited in claim 11, in which the text event source is a software element within an operating system.
20. A system as recited in claim 11, further comprising a user interface that allows selection of at least one selectable component.
22. A system as recited in claim 21, wherein the module is capable of calling at least one component function to receive motion data and convert the motion data into a motion device independent motion data.
23. A system as recited in claim 21, wherein the module is capable of converting a device independent motion data into a motion data that is compatible with at least one selectable component and then exchanging the motion data with the at least one selectable component.
24. A system as recited in claim 21, wherein at least one selectable component is capable of reading motion data from at least one motion control device.
25. A system as recited in claim 21, wherein at least one selectable component is capable of writing motion data to at least one motion control device.
26. A system as recited in claim 21, further comprising motion data that is capable of causing at least one motion control device to move an object.
27. A system as recited in claim 21, further comprising motion data that is capable of causing at least one motion control device to move.
28. A system as recited in claim 21, in which the text event source is an element of a user interface.
29. A system as recited in claim 21, in which the text event source is a software element within an operating system.
30. A system as recited in claim 21, further comprising a user interface used for the selection of at least one selectable component.

This application is a continuation of U.S. patent application Ser. No. 11/368,231 filed on Mar. 3, 2006 now abandoned, which claims priority of U.S. Provisional Application Ser. No. 60/658,746 filed on Mar. 3, 2005, and the '231 application is a continuation-in-part of U.S. patent application Ser. No. 10/074,577 filed on Feb. 11, 2002, now U.S. Pat. No. 7,031,798, and which claims priority of U.S. Provisional Application Ser. No. 60/267,645 filed on Feb. 9, 2001. The contents of all related applications listed above are incorporated herein by reference.

The present invention relates to motion control systems and, more specifically, to an event management system optimized for the processing and distribution of events associated with a motion control device.

Electromechanical systems are used in numerous environments to translate electrical signals into mechanical movement. As examples, factory automation systems, toys, appliances, and the like all may use one or more electromechanical transducers that move in response to electrical control signals.

Typically, an application programmer familiar with a specific environment creates an application program defining a desired sequence of movements. U.S. Pat. Nos. 5,691,897, 5,867,385, and 6,209,037 to Brown et al. disclose systems and methods for generating, processing, and/or distributing control commands to one or more motion control devices based on such an application program.

The present invention may be embodied as a part of an overall motion control system as described in the Brown et al. patents and will be described herein in that context. However, as described below, the principles of the present invention may have broader application to other motion control systems and methods, and the scope of the present invention should be determined by the claims appended hereto and not the following detailed description.

The present invention may be embodied as a motion control system comprising a machine platform, at least one event destination, and an event handler. The machine platform carries out automated tasks and generates events. The event handler is configurable to receive at least one event from the machine platform and send the at least one event to the at least one event destination.

FIG. 1 is a module interaction map depicting a motion control system incorporating an event management system of the present invention;

FIG. 2 is a scenario map depicting the startup and initialization of the system of FIG. 1;

FIG. 3 is a scenario map depicting the process of injecting a motion event provider DLL into the address space of a target application;

FIG. 4 is a scenario map depicting the process of configuring motion events provided by each of one or more motion event providers 132;

FIG. 5 is a scenario map depicting the process of handling a motion event;

FIG. 6 is a scenario map depicting how a user may obtain new motion media and motion event providers 132 from the motion web site 136;

FIG. 7 is a scenario map depicting shut down of the system of FIG. 1;

FIG. 8 is a scenario map depicting the mapping of text to motion events;

FIG. 9 is a module interaction map depicting interactions of modules forming another example motion control system of the present invention;

FIG. 10 is a module interaction map depicting an event handling system constructed using a modular output model;

FIG. 11 is a use case depicting the configuration of an event handling component from an application;

FIG. 12 is a use case depicting the configuration of an event handling component from another component;

FIG. 13 is a use case depicting the initialization of an event handling component;

FIG. 14 is a use case depicting the manner in which the event handling component processes events;

FIG. 15 is a use case depicting the manner in which the event handling component processes commands;

FIG. 16 is a use case depicting the manner in which events and commands are processed in a daisy chain of event handling components;

FIG. 17 is a use case depicting the manner in which an event handling component passes configuration data to other event handling components in a daisy chain configuration;

FIG. 18 is a module layout depicting the interfaces exposed by the event handling component;

FIG. 19 depicts an example a user interface screen used to configure connection and start-up settings;

FIG. 20 depicts an example user interface screen used to configure event monitoring settings; and

FIG. 21 depicts an example user interface screen used to configure data collection settings.

Referring initially to FIG. 1, depicted therein is a motion control system 120 constructed in accordance with, and embodying, the principles of the present invention. The motion control system 120 is an event-based system used to control, configure, and query one or more motion based devices or machines such as indicated by reference character 122 in the drawing. The motion based devices or machines 122 will be referred to herein as the target device.

In the context of the motion control systems described herein, data is often associated with events. The term “data” (or data items) includes any numeric or string data values collected from a target machine or device in an analog or digital format that is made compatible for computer systems. For example, BIT, BYTE, WORD, DWORD, LONG, REAL, DOUBLE, FLOAT, STRING, ASCII STRING are a few data types that represent data items. Data may be collected from data sources by reading register values on the data source, reading shared memory provided by the data source, sending commands to the data source for which a data response is given containing the data requested, reading variables provided by the data source, reading and writing to variables in a sequence necessary to produce data values, querying data using a proprietary or standard data protocol, calling a function provided by the target data source, etc. The term “variable” as used herein refers to a data item that has both a name and optionally associated data. A data item may be a function call, a named data variable, a tag within a database, or the like. The terms “variable” and “data item” are used interchangeably to refer to a data point that includes one or more atomic data elements.

In the following discussion, the components or objects that form the motion control system 120 and the basic operation of the system 120 will first be described. After that will follow a discussion of the interaction between those objects and several detailed scenarios of typical actions of this system 120.

Referring initially to FIG. 1 of the drawing, it can be seen that the motion control system 120 comprises the motion based machine or device 122, a motion event manager 130, one or more motion event provider objects 132, a motion event interface 134, a motion web site 136, and a media creation tool 138.

The system 120 is adapted to be run on a general purpose computer platform comprising computer hardware and an operating system 140. The exemplary operating system 140 is a Windows variant and comprises a registry 142.

The web site 136 and media creation tool 138 provide access to one or more motion media files 144. The motion media files 144 contain what will be referred to herein as motion media.

The term “motion media” includes motion scripts, motion application programs, and/or individual motion instructions capable of causing the target device 122 to perform a desired motion operation comprising a discrete movement or sequence of movements.

The motion media comprises what will be referred to as motion commands. The term “motion commands” will be used herein to refer to both control commands and media commands associated with a desired motion operation. The term “control commands” as used herein refers to device-specific commands that may be directly run by a target device to obtain a desired motion operation.

The term “media commands” used herein refers to machine independent instructions that generically define a desired motion operation. Normally, media commands are converted into control commands before the target device executes the desired motion operation corresponding to a particular media command or set of media commands.

The term “application program” will be used to refer to a set of control and/or media commands associated with a sequence of discrete movements. In general, the term “application” refers to client software that uses the functionality of the example motion control systems described herein. An application is typically an executable, but may also be a DLL, component, or other module that takes advantage of the functionality of the motion control systems described herein.

The term “module” as used herein refers to a binary block of computer logic that contains functions, objects, components, ActiveX components, .NET source, HTML, XML and/or other computer code that can be executed in real-time or in script form. Several examples of a module include an executable EXE, a dynamic link library DLL, an OLE component or set of components housed within a DLL or EXE, an ActiveX Control, an HTML or XML based Control, a VB script source file, a Java Serverlet, Java Control, Java Object, .NET Package, etc.

The motion event manager 130 comprises a motion control component 150 and an event handling component 152. The motion event interface 134 further comprises a event provider configuration control 154 and a media view control 156. As used herein, the term “component” refers to a logical organization of computer logic designed to perform a set of operations. Several examples of a component are an OLE Component, an ActiveX Control, an HTML or XML based Control, an HTML or XML based object, a NET object, a Visual Basic based object, etc.

The motion control system 120 operates basically as follows. The motion event providers 132 generate what will be referred to as event tokens based on the occurrence of a predetermined event. The event token is associated with the predetermined event in advance and thus identifies the predetermined event. The event token may also contain additional information such as the source of the predetermined event, parameters associated with the predetermined event, and the like.

The event tokens are sent to the motion event manager 130. The motion event providers 132 and motion event manager 130 run in separate processes and could perhaps run on separate physical machines connected over a network. As used herein, the term “network” refers to a link between two or more computer systems and may be in the form of a packet based network, a streaming based network, broadcast based network, or peer-to-peer based network. Several network examples include a TCP/IP network, the Internet, an Intranet, a wireless network using WiFi, a wireless network using radio waves and/or other light based signals, etc.

The motion event providers 132 and motion event manager 130 thus use the system for the inter-process communication provided by the operating system to transmit the event tokens from the event providers 132 to the motion event manager 130.

The motion event manager 130 notifies the motion control component 150 when the event token is received and the identity of the event token. The action taken by the motion control component 150 upon receipt of an event token depends upon the nature of the event token. The received event token may contain or identify a particular control command, and the motion control component 150 can simply pass that control command to the target device 122. The received event token may contain or identify a particular media command, in which case the motion control component 150 may be required to convert the media command into a control command capable of being run by the target device 122. Another event token may start, stop, or otherwise control a separate application program run by the motion control component 150.

In the exemplary system 120, the association of motion media with event tokens is preferably made by the motion event manager 130. This association is typically represented by a table, spreadsheet, or other data storage means capable of defining relationships between event tokens and motion media. Upon receipt of each event token, the motion event manager 130 will identify the motion media previously associated with the received token and send the identified motion media to the motion control component 150 for control of the target device 122.

With the foregoing understanding of the basic operation of the system 120, the details of this exemplary motion control system 120 will now be described.

The motion event manager 130 handles the creation of each event provider 132 installed on the system by creating in-proc providers or injecting other providers into their target processes. The event manager 130 also catches events fired from each provider 132 and initiates the appropriate motion request for each event. In the exemplary system 120, the event manager 130 is the only object that communicates directly with the motion control component 150, as will be described in further detail below. The exemplary event manager 130 is accessible by double clicking its icon in the Windows System Tray in a conventional manner.

The purpose of the event handling component 152 is to handle the inter-process communications between the motion event manager 130 and the motion event providers 132. The exemplary event handling component 152 is or may be a conventional software object referred to as a message pump.

The motion event provider objects 132 are individually designed to monitor user configurable events from a given source. The exemplary system 120 employs two types of motion event providers 132: simple in-proc servers 132a,b hosted by the motion event manager 130 and specialty DLLs 132c,d that are injected into a target process to monitor event cases. Each motion event provider object 132 also contains an event configuration control 154 that, as will be described below, allows a user to configure all events supported by the motion event provider objects 132. The motion event provider objects 132 notify the motion event manager 130 of each event caught by the objects 132.

The motion event manager 130 and motion control component 150 operate together to allow interaction between the motion event providers 132 and the target device 122.

The motion control component 150 may be or incorporate parts of a software system as disclosed, for example, in U.S. Pat. Nos. 5,691,897 and 5,867,385. The systems disclosed in the '897 and '385 patents are capable of generating device-specific control commands based on hardware independent media commands written to a predetermined application programming interface.

As an alternative, the motion control component 150 may act as a conduit that passes device-specific control commands and query responses between the motion event providers 132 and the target device 122. A motion control component implemented in this manner would not convert between hardware independent media commands and device specific control commands.

A preferred implementation of the motion control component 152 would be to be for the component 152 to function in both a translation mode and in a pass-through mode. In the translation mode, the component 152 converts media commands into control commands. In the pass-through mode, the component 152 simply passes control commands from the motion event providers 132 to the target devices 122. In either mode, query responses are returned from the target devices 122 to the event provider 132 in an appropriate format.

The motion event configuration interface 134 is preferably a visual interface displayed on a screen to allow a user to configure all motion event providers 132 installed on the system 120. The exemplary interface 134 also provides access to the motion web site 136 where new motion media and motion event providers 132 may be downloaded and installed.

As will be described in more detail below, the configuration options allowed by the interface 134 include the ability to enable/disable event providers 132 and map motion media to particular events supported by each provider 132. The interface 134 also provides access to the motion web site 136, allowing for new motion media and motion event providers 132 to be downloaded and installed onto the current system.

Each motion event provider 132 contains a visual configuration control 158 that allows the user to configure the events supported by each provider 132. The exemplary configuration controls 158 use the media view control object 156 to gain access to the available motion media in the motion media file 144 that can be mapped to each available event.

These controls may also be configured to allow the user to add new, customized events to the motion event providers 132. The dynamic events can be defined using parameters such as text (usernames, messages, email, etc.), date/time, or any other parameter particular to an event provider's event source.

The media view control object 156 provides access to all installed motion media scripts as represented by the motion media file 144. Preferably, the media view control object 156 displays a conventional browse/select dialog to allow identification and selection of the available motion media. This object 156 is used by the event provider configuration controls 158 and allows the configuration controls 158 to remain independent of the motion media format.

The media creation tool application 138 allows the user to customize and/or create motion media. This application 138 preferably implements a graphical, easier to use, front-end user interface design.

The motion web site 136 provides a location for the user to download new motion media as well as new and/or updated motion event providers 132. The motion media is preferably stored in a single meta file. New motion media downloaded from the motion web site 136 will be added to this meta file.

The present invention is preferably embodied using the Windows registry; typically, a component category is created for each of the motion event providers 132, allowing the motion event manager 130 to enumerate all providers 132 installed on the system. Primary event sources 132 are user actions (in any active application supported via a motion event provider) and operating system tasks.

With the foregoing understanding of the modules that form the exemplary system 120, various scenarios in which these modules typically interact will now be described.

Referring now to FIG. 2, depicted therein is the scenario describing the startup process of the motion event manager 130 of the system 120. Each of the steps of this startup process will now be described with reference to FIG. 2.

The motion event manager 130 process 130 begins on system startup. The motion event manager 130 process 130 next queries the MOTION_EVENT_PROVIDER component category in the Windows Registry to enumerate all motion event providers 132 installed on the system.

Third, the registry entry of each of the event providers 132 contains startup information indicating if the particular event provider is either a standard in-proc provider or a specialty provider that is injected into a target process to monitor event conditions.

Fourth, the motion event manger 130 creates a new instance of each provider 132. If the event provider 132 is a specialty provider that is injected into a target application process, the event manger 130 will read the target-process information from the provider's registry entry, find the target process, and perform the DLL-injection. If the target process is not active, the motion event manager 130 will continually monitor the creation of new applications, and perform the injection when/if the requested application is launched.

Fifth, once the event providers 132 are created, the motion event manager 130 will send the appropriate initialization information to each provider 132, including callback information to allow the event providers 132 to post event messages back to the event manager 130.

Finally, the event provider 132 reads initialize message data and establish the necessary event syncs to monitor the events. The initialize message data includes a registry key identifying the location of the event configurations and preferences as last set by the motion event configuration interface 134 or the default installed set.

Referring now to FIG. 3, depicted therein is the DLL injection scenario map. This scenario describes the process of injecting a motion event provider DLL into the address space of a target application.

As shown in FIG. 3, the first step of this process is for the motion event manager 130 to determine which process into which the motion event provider 132 must be injected based on the registry entry of the provider 132.

Once the target process has been identified, the next step is for the event manager 130 to install a Windows message hook in the target process. This causes the event provider DLL to be loaded into the target address space of the target process. The event provider DLL has now been loaded into the required process, and will now wait for the “initialize” message from the motion event provider 132.

Referring now to FIG. 4, depicted therein is the motion event configuration scenario map. This scenario map describes the process of configuring motion events of each of the motion event providers 132.

First, the user launches the motion event configuration interface 134 from system tray interface of the motion event manager 130.

Each event provider object 132 supports a custom visual control 154 that can be used to edit the object's supported events. The event configuration interface 134 creates and hosts these visual controls 154 for the user.

Next, when the event provider configuration control 154 is created and initialized, it will receive the location in the Windows Registry 142 of its persisted event data, which will be loaded into the control 154.

Next, the user will select an event provider 132 to configure. Individual events may be mapped to motion actions, and particular events (as well as the entire event provider itself) may be deactivated if desired. As noted above, these event configuration controls 154 may also provide the means to add additional, customized events based on input user parameters (custom text strings, buddy chat names, email messages, etc).

When the user selects an event to configure, the event provider configuration control 154 will defer to the media view control object 156. The media view control object 156 displays all available motion media via a dialog box, allowing the user to make a selection.

Finally, once the user makes a motion media selection, the media view control object 156 returns data back to the event provider configuration control object 154 (including human-readable description text of the event for display as well as a data token which can later be used to identify media selection). The configuration control object 154 then persists this information to the Windows Registry 142.

Referring now to FIG. 5, depicted therein is a motion event scenario map. This scenario describes the process of handling a motion event.

The scenario depicted in FIG. 5 begins whenever an event occurs. The occurrence of an event may be caused from a user action, operating system event, or an event situation monitored in a third-party application.

The event provider 132 then fires a event token associated with this event to the event manager 130. The event token has previously been stored in the registry during the event configuration process. If the provider 132 requires queried data to be returned, the provider 132 will also pass the necessary callback data to the event manager 130.

The event manager 130 next receives the event and passes the requested media information to the motion control component 150. The motion control component 150 then executes the specified motion media on the target motion device 122.

Finally, if a query action was requested, the motion control component 150 will return the appropriate data. The motion event manger 130 will send the data through the specified event provider callback mechanism.

Depicted in FIG. 6 is a motion web site scenario map. The scenario of FIG. 6 describes how a user may obtain new motion media and motion event providers 132 from the motion web site 136.

This process may be started when users visit the motion web site 136 to browse currently available motion event providers 132 and new motion media. In FIG. 6, the reference character 144a is used to represent a motion media file stored locally by the system 120, while the reference character 144 represents a motion media file stored at a remote location.

Next, the user selects the desired provider/media download option, and the new software is installed into the motion event manager 130 including the motion control component 150.

The next time the motion event configuration interface 134 is launched, the user will be able to configure the new event provider 132 or motion media in the local motion media file 144a.

Alternatively, users may download new event providers 132 and motion media directly from within the motion event Configuration dialog interface. This configuration dialog will provide the following options to the user: Download new Motion Media and/or Download/install new motion event providers 132. The user or the motion event manager 130 may also check for new versions of currently installed motion media and/or event providers 132.

Next, the user selects the desired provide/media download or update option, and the configuration dialog interface object 134 automatically downloads and installs the new software from the media web site 136.

Finally, once the new software is installed the configuration dialog 134 will automatically update to provide access to the new components and/or media.

Referring now to FIG. 7, depicted therein is the system shutdown scenario map. This scenario describes the process of shutting down the exemplary event manager module 130 associated with the motion control component 150.

Upon operating system shutdown, the motion event manager 130 will prepare to terminate.

The event manager 130 next posts a shutdown message to each event provider 132 currently being managed by the manager 130. Specialty event providers 132 that have been injected into external processes may have already finished if the target process has been shutdown. In this case those event providers 132 would have already notified the event manager 130 that they are no longer available.

Each event provider 132 performs any required shutdown tasks.

Upon finishing any shutdown tasks, each provider 132 will notify the event manager 132 that the provider 132 is now finished.

Once the event manager 130 receives notifications that each of the event providers 132 managed thereby have been shutdown, the event manager 130 itself is now finished.

Referring now to FIG. 8, depicted therein is a scenario map illustrating the mapping of text to motion events. This scenario generally describes the mapping of text based event situations to motion.

The first step of this process is for a text based event situation to occur. This text could be one or more of the following: (a) a particular sub-string in an Instant Message or the entire message string itself; (b) an Instant Message sent from a target screen or ‘buddy’ name; (c) a text string converted from a speech-to-text engine installed on the user's machine; and/or (d) an email message meeting previously configured criteria (Sent From, Subject, message content, etc). In the case of an event created using a peer-to-peer networked application such as Instant Messenger-type process, text is entered at a remote source application and sent as a text message to a receiving application.

The motion event provider 132 monitoring the specific text based event catches the event, and performs any pre-processing of the text required to identify the particular event. In the peer-to-peer application described above, a DLL functioning as the event provider 132 is injected into the receiving application; the DLL event provider 132 intercepts the message received by the receiving application and treats the received message as an event.

Once an event has been identified, the event provider 132 will lookup the corresponding motion event token as previously configured. As generally described above, the motion event tokens are pre-loaded upon initialization. In the peer-to-peer example described above, the DLL functioning as the event provider 132 sends the text message as part of the event token to the event manager 130 using a process-to-process communication system as generally described above.

After the event token containing the text message is sent to the motion event manager 130, the event manager 130 determines the type of event represented by the received token.

If the event manager 130 determines that the received event token corresponds to a text event, the event manager 130 next parses the text parameter from the event token. The motion event manager 130 looks up the motion media associated with the event type and event text parameter. The appropriate motion media is then sent to the motion control component 150 for execution on the target motion device 122 as described above with reference to FIG. 5.

The process described above with reference to FIG. 8 can also occur in the reverse. In particular, the event manager 130 uses the motion control component 150 to continually query the target device 122 for state information. When the state information meets certain parameters, the control component 150 causes the event manager to ‘create’ a new event (such as a text event) and send it to an event provider 132.

The event provider 132 in turn then causes the receiving application to sent a message to a remote peer-to-peer application; again, the receiving and remote peer-to-peer applications may be Instant Messenger compatible applications.

An example of the use of the present system to verify motion status would be for the event manager 130 to continually or periodically query the target device 122 through the motion control component 150 for status parameters that indicate a fault condition. Once a fault condition occurs, the event manager 130 builds a text message that describes the fault and then sends the text message to a remote application, such as an Instant Messenger user, using process-to-process communication system and the peer-to-peer networked application.

The following Table A describes the interface specifications for components of the exemplary motion control system 120 described above using the exemplary motion control component 150.

TABLE A
component interface method(s)/description
motion event
manager 30
IXMCEventProviderMgt
EnumerateProviders used by
configuration dialog object to
get a list of all installed motion
event providers 132
EnableProvider( ) used to
enable/disable given event
providers. will be called from
the configuration dialog object
IXMCEventScheme
GetSchemes( ) used by
configuration dialog object to
get current list of schemes on the
system
AddScheme( ) - used by
configuration dialog object to
add a new scheme
RemoveScheme( ) - used by
configuration dialog object to
remove a given scheme
RenameScheme( ) - used by
configuration dialog object to
rename a given scheme
Event
configuration
controls 158
IXMCEventConfig
Initialize( ) - called by the
configuration dialog object
which hosts this control, used to
pass required init data, such as
1) current registry location
where event configuration data
may be loaded/persisted, 2)
interface to the media
view control 156, etc . . .
Media View
Control 156
IXMCMediaViewCtrl
method: SelectMedia( ) - called
by each event configuration
control. This method will dis-
play a dialog to visualize all
motion media available on the
system and return a tokenized
data param that can later identify
the media item selected

In the following discussion, the details of a number of the exemplary components of the system 120 will now be described.

The Windows Registry 142 is used to persist event management with motion control configuration data.

Data associated with the motion event providers 132 is persisted to the Windows Registry 142 primarily to accommodate event provider DLLs that need to be injected into a target process, an environment where those DLLs may not be able to rely on standard COM storage alternatives.

At runtime, when the motion event manager 130 initializes an event provider, the provider will receive a location in the registry where it should read its previously configured event data.

At design time, when hosted within the motion event configuration interface 134, the event configuration controls 156 of the event providers 132 receive the registry location, and will persist configuration changes to that location.

Event providers will persist both standard (hard coded) and custom events to their registry storage location. Associated with each event will be the configured motion event token data, which the provider will use when firing event notifications back to the motion event manager 130.

The motion event manager 130 manages all registry locations for the event provider objects.

The event manager provides a mechanism to support different event schemes. This allows configurations unique for several different users, situations, or motion devices. When a new scheme is selected via the motion event configuration interface 134, the event manager 130 will pass the new scheme registry location to each event provider object 132, allowing access to the new scheme data. Each scheme will be located in a unique sub key under the primary event manager registry location.

The user interface components 154 and 156 of the system 120 may be implemented in many different forms. The motion event configuration control 154 is used to configure all motion event providers 132 installed on the system, as well as to provide access to the motion web site 136 where new motion media and motion providers may be downloaded and installed. The interface of the media creation tool 138 is a preferably graphical representation of the motion device or system, where simple drag-drop, click, and record operations will facilitate the creating and modification of motion media.

The system 120 is designed to be easily extendible via new motion event provider and motion media components. The system 120 is also capable of supporting any number of additional event sources with the addition of new motion event providers 132 by registering these new providers with the system 120. These event providers 132 can link to virtually any event source to a target system 122.

The motion media formats can be modified and extended without requiring changes to any event provider objects. For example, a XMCMediaCtrl object proxies the raw motion media format to the event providers. Accordingly, once the XMCMediaCtrl component is updated to handle any new media formats, the event providers 132 may, by design, make use of the changes.

Instead of triggering entire motion programs as described above with reference to FIG. 6, a motion program or media set may be streamed to the device 122 through the system 120. Whether or not and how the media plays may be controlled by captured events. For example, a media player may fire events based on different musical notes or tones. When such events are received, one media stream may be selected over another, thus causing the motion device 122 to perform different actions. This may also occur with the standard motion programs described above.

Very large motion programs may be downloaded in partial form and then either downloaded in full over time or as certain specified events occur in the system.

Similar to streaming media support, single motion operations may also be supported in which a specified event causes a single motion operation to take place immediately. One example of this would be an event that causes movement of one axis in the clockwise direction.

Referring now to FIG. 9, depicted therein is a second example of a motion control system 220 constructed in accordance with, and embodying, the principles of the present invention. The motion control system 220 comprises a machine platform 222 and an event notification system 224.

The machine platform 222 may be implemented using a controller neutral platform technology as described, for example, in U.S. Pat. Nos. 5,691,897, 5,867,385, 6,209,037, 6,480,896, 6,513,058, 6,516,236, 6,542,925 and/or 6,571,141, which are incorporated herein by reference. However, the machine platform 222 is or may be any motion control system, whether controller dependent or controller neutral, that comprises a machine converts motion commands into movement of an object.

In the context of the present application, the term “controller” refers to the hardware or software that contains the logic used to run the machine. Typically the controller one or more of a PLC, CNC Controller, or Motion Controller. The controller contains the main control loop used to position, monitor, or otherwise direct a machine to carry out useful automated tasks.

The term “machine” is used herein to refer to a physical machine or device asset used to perform a specified task. For example, a machine may be a CNC Mill used to shape metal, a pick-n-place machine used to position parts on a circuit board, a robotic machine used to perform surgery, a medical data input device used to collect the vitals from a human being (i.e. blood glucose meter, asthma meter, etc), a gaming device used when playing a game, a robotic toy, an animatronics figure, a robotic machine used to deliver goods to a warehouse or to people, an automobile, truck or farm vehicle, a boat or ship that maneuvers in water, a airplane, jet, helicopter and/or spacecraft. Any self powered machine or device (mobile or not) that is either directly controlled by humans or automatically controlled via a computer based system falls within the definition of “machine” as used herein. The term “device” as used herein is essentially synonymous with the term “machine,” but may be used in reference to a machine with a relatively small footprint.

The example event notification system 224 comprises a main event handler 230, one or more event handler applications 232, and one or more event handler property pages 234. The example main event handler 230 comprises a data queue 236.

The main event handler 230 is a component that is in communication with the machine platform 222 such that the main event handler 230 receives one or more events from the machine platform 222. The example data queue 236 within the main event handler 230 is a standard data queue that employs first-in/last-out technology. Optionally, the data queue 236 may be implemented as a priority queue that allows the items in the queue to be organized based on given priorities associated with the data contents of each item in the queue. The data queue 236 may optionally use a timing scheme that ensures that all items within the queue are processed within a given time frame, such that no items within the queue are ‘starved-out’ when a high frequency of higher priority items are received.

The event handler application 232 is used to configure and run the main event handler 230. The example event handler application 232 is a Windows System Tray application. The event handler application 232 is optional, and the main event handler 230 may be run and configured using other systems and methods. The event handler property page 234 is used to configure the settings of the main event handler 230 by presenting a user interface that allows the user to see the settings of the main event handler 230 and/or to change these settings.

The main event handler 230 is also in communication with one or more possible event destinations such as an upstream event handler 240 and/or a downstream event handler 242.

The example upstream event handler 240 is a module similar to the main event handler 230 that serves data to the main event handler 230. The example downstream event handler 242 is also a module similar to the main event handler 230, but one that receives data from the main event handler 230. From the perspective of the upstream event handler 240, the main event handler 230 is a downstream event client. From the perspective of the downstream event handler 242, the main event handler 230 is an upstream event client.

The main event handler 230 may also be in communication with one or more event destinations through an intermediate destination such as a shared memory system 250, a memory queue 252, and/or a network protocol 254. The shared memory system 250 is a block of memory that is accessible to different modules and/or applications. The example memory queue 252 uses Microsoft Message Queue (MSMQ) technology or a similar technology. MSMQ allows for communication with other modules and/or applications using a delayed messaging technology called Message Queuing. The example network protocol 254 is formed using TCP/IP or UDP broadcast protocols as a mechanism of sending output data to another target. The TCP/IP protocol specifies specific data target(s), and the UDP protocol broadcasts data to all nodes on a given network.

The main event handler 230 delegates one or more events received from the machine platform 222 to one or more event destinations such as the upstream event handler 240 and/or the downstream event handler 242. In addition or instead, the main event handler 230 may delegate one or more events received from the machine platform 222 to additional event destinations using one or more of the intermediate destinations such as the shared memory system 250, the memory queue 252, and/or the network protocol 254.

The main event handler 230 may further be in communication with an alternate event source such as a data transport system 260. The data transport system may be implemented using the data router technology described in co-pending U.S. patent application Ser. No. 10/844,025, which is incorporated herein by reference. The data transport system 260 routes data outputs to various output sources, one of which may be the main event handler 230.

If the motion control system 220 employs the data transport system 260, the main event handler 230 may also be configured to delegate events from the data transport system 260 to the event destinations such as the upstream client 240 and/or the downstream event handler 242 and/or to intermediate destinations such as the shared memory system 250, the memory queue 252, and/or the network protocol 254.

The event notification system 224 may use an event handler, such as the main event handler 230, which is internally configured to handle communications with the event destinations and/or intermediate destinations as shown in FIG. 9. Alternatively, the motion control system 320 may use an event notification system 224a having a modular main event handler 230a as depicted in FIG. 10. The modular event handler 230a is a more modular design where each output is modularized, thus giving the event handler 230a the capability to select from a list of destination modules either programmatically or through a user interface.

In particular, the example modular main event handler 230a further comprises at least one event communication component 270 configured to handle the details of communicating with one or more of the event destinations and intermediate destinations. FIG. 10 shows that the modular main event handler 230a is in communication with the following event communication components: a component 270a configured to communicate using e-mail or SMTP protocols; a component 270b configured to access shared memory such as the shared memory system 250; a component 270c configured to communicate with a network protocol such as the network protocol 254; a component 270d configured to communicate with a memory queue such as the memory queue 252; a component 270e configured to communicate with a peer-to-peer communication system such as Instant Messenger; a component 270f configured to communicate using XML messaging; a component 270g configured to communicate using envelope based communication services such as SOAP; and/or other communications components 270h.

More than one event communication component 270 of the same type may be used simultaneously. For example, the event handler 230a may use two event client components configured to communicate with a network protocol where each component is capable of sending data to a different destination network address.

FIG. 11 depicts the steps that take place when configuring the system 220 using an application such as the event handler application 301 described above. Initially, in a first step the event handler application 232 queries the event handler 230 for its event handler property page or pages 234. Once received, the event handler property page or pages 234 are displayed to the user. In a second step, configuration changes are saved to the main event handler 230 by changing the properties and/or calling methods of the event handler 230.

FIG. 12 depicts the steps that occur when configuring the event handler 230 from another component. In a first step, the other component, such as the data transport 260, queries the event handler 230 for its event handler property page(s) 234, which, once received, are displayed to the user. For example, this may occur via a property page of the calling component. In a second step, configuration changes are saved to the event handler 230 by changing the properties of the event handler 230 and/or calling methods on the event handler 230. When configuring the event handler 230, each output may be enabled or disabled. Later, when processing data, data is only sent to each enabled output.

Once configured, the event handler 230 must be initialized to prepare it for use. FIG. 13 depicts the steps that take place when initializing the event handler 230. First, a component, such as the data transport 260 and/or the event handler application 232, directs the event handler 230 to initialize itself. Next, the event handler 230 uses its internal properties, which were previously configured during the configuration stage, to connect to a machine platform 222 or an upstream event client 240, and subscribe to the data items specified in the configuration data.

In practice, the data items specified in the configuration data must be data that are published by the machine platform 222, or failures may occur. As used herein, the term “publish” (or publish/subscribe) refers to a method of receiving data updates where the client subscribes to data published by the server. For example, a server may have three data items available for subscriptions: A, B, C. The client may then subscribe to any of these data items upon which the client may receive data updates based upon certain criteria such as the data value of the subscribed data item changing, a time period passing, or some other event occurring in the system such as a trigger variable firing, etc. The term “trigger variable” refers to variable or data item that causes the registered actions to be carried out when the variable or data item's event conditions are met.

Once configured and initialized the event handler 230 is ready to receive events for each of the subscribed data items. FIG. 14 depicts the steps that take place when processing events. First, the event is received from an upstream component such as the machine platform 222 and/or an upstream event handler 240 that is daisy chained to the main event handler 230.

Upon receiving the event, the data is optionally placed at the back of the internal data queue 236. If a queue is not used, the data is immediately sent to all event destinations, such as shared memory system 250 or the network protocol 254, that are in an enabled state for that event. If the internal data queue 236 is used, data items are pulled off the data queue according to the rules for that queue and sent to all outputs that are in an enabled state for that event. As described above, the data queue 236 may be a first-in/last-out queue, a priority queue, and/or a queue implementing a timing scheme.

In addition to processing events, the event handler 230 may also process commands via API calls to one of its interfaces. For example, the data transport 260 may direct the event handler 230 to send data to an event destination by calling an API of the event handler 230. FIG. 15 depicts the steps that occur when processing a command using API calls. First, the remote component such as the data transport 260 may call an event handler API through which the data is passed. When called, the API may optionally place the data into an internal data queue 236. If a data queue is not used, the data is passed directly to all outputs, such as the shared memory system 250 or the network protocol 254, that are in an enabled state for a given event.

Optionally, the main event handler 230 may be daisy chained with one or more upstream event handlers 240 and/or one or more downstream event handlers 242. In this case, data is received from upstream event handlers 240 and/or sent to downstream event handlers 242. FIG. 16 depicts the steps that occur when processing events or commands in a daisy chained configuration.

First, if an event handler is connected upstream to the main event handler 230, the data is received from that upstream event handler 240 as an event and/or as an API call. If an upstream event handler 240 is not used, data may be received in the normal manner either via an event or API call. Next, upon receiving the data as an event and/or as an API call, the data may be placed at the back of an internal data queue 236 if used. If a data queue is not used, the data is sent directly to all outputs (such as shared memory system 250 or network protocol 254) that are in an enabled state.

Third, when using the internal data queue 236, the data is pulled from the data queue and sent to all enabled outputs. Again, the data queue may be a first-in/last-out queue, a priority queue, and/or a queue implementing a timing scheme.

Fourth, if a shared memory 306 output is used and is enabled, the data is sent to a shared memory block.

Fifth, if a network protocol 254 is used and is enabled, the data is sent to zero, one, or more event destinations previously configured for this output in the case of a TCP/IP network. As described above, the data may be sent as a UDP broadcast to all nodes on a network or group of networks. TCP/IP may also be used to send the data via a tunneling mechanism, such as is used within a Virtual Private Network (like those implemented with Microsoft RRAS), from the current event handler 230 to another event handler 230 (or even to a group of event handlers 230), where the receiving component receives the TCP/IP or UDP data and then translates it into an event or API input.

Sixth, if a message queue 252, such as a MSMQ, event destination is used and enabled, the data is sent via the message queue 252 to another application or component, or even to another event handler 230 (or group of components).

Seventh, if one or more upstream event handlers 240 and/or one or more downstream event handlers 242 are used and enabled, the main event handler 230 sends data directly to any such event handlers 24- and/or 242.

As an optional eighth step, a downstream event handler 242 may be configured to communicate with the upstream event handler 230 via the shared memory 306 and/or other standard synchronization events such as the event object supported within Win32.

When daisy chaining event handlers, it may also be important to pass configuration data (and other data) between the event handler components. When configuring any such event handler components as depicted in FIG. 15, the downstream event handler 242 may pass configuration information on to the main event handler 230. For example, when subscribing to data, any downstream event handler will notify any upstream event handler of all data items that are to be subscribed. The subscribing data may be continually passed along the daisy chain to modify any upstream event handlers and/or directly notify the machine platform 222, if it is connected directly to the machine platform 222.

The event handler 230 is preferably a modular system made up of a set of components (i.e. each component is based on a component technology such as OLE/COM from Microsoft Corporation). Optionally, each component may use a separate ‘parallel’ ActiveX component and/or a property page component to implement all user interface aspects of the main component. Each ActiveX and/or property page component may be implemented either within the main component module or separately in its own module. Bundling each object within one module is not required as they may be located at any location (i.e. across a network, and so forth), but doing so may optimize all communication between modules. How and where components are implemented is a logistical decision. Once components are built and deployed to the field, it is difficult to update a single component if all components are implemented within a single DLL or EXE module.

FIG. 18 depicts an example of the interfaces exposed by the example event handler components. In the example motion control system 220, all components making up the system 220 at a minimum implement a single interface—the IXMCDirect interface. Optionally, if they are to receive events from other components, the event handler components 230, 240, and 242 implement the IXMCDirectSink interface as well. And finally, the event handler components 230, 240, and 242 may optionally implement the IXMCaCNCEventDataSink interface if they are to receive events directly from the machine platform 222. The IXMCDirect, IXMCDirectSink, and IXMCaCNCEventDataSink interfaces will be described in further detail below.

OLE Categories are used to determine how many components fall into a certain group of components. Currently, components used to form the event handler components use what will be referred to herein as the XMC Data Router components. The XMC Data Router components are general data router components support the general read, write, and configure API.

The IXMCDirect interface is used for most communications between all components making up the event handler 230. The following methods make up this interface (as specified in the standard OLE/COM IDL format).

The IXMCDirect interface is made up of the following functions.

A more detailed description of each method implemented by the object is described below.

IXMCDirect::GetProperty
Syntax HRESULT GetProperty( LPCTSTR pszPropName,
  LPXMC_PARAM_DATA rgData,
  DWORD dwCount );
Parameters LPCTSTR pszPropName - string name of the property to
query.
LPXMC_PARAM_DATA rgData - array of
XMC_PARAM_DATA types that specify each parameter
corresponding to the property. For example, a certain
property may be made up of a number of elements - in this
case an array of XMC_PARAM_DATA items is returned,
one for each element making up the property. In most
cases, a property is made up of a single element, thus a
single element array is passed to this method. For more
information on the XMC_PARAM_DATA type, see
below.
DWORD dwCount - number of
XMC_PARAM_DATA elements in the rgData array.
Return HRESULT - NOERROR on success, or error code on
Value failure.

The IXMCDirect::GetProperty method is used to query the property corresponding to the property name ‘pszPropName’. Each component defines the properties that it supports.

IXMCDirect::SetProperty
Syntax HRESULT SetProperty( LPCTSTR pszPropName,
  LPXMC_PARAM_DATA rgData,
  DWORD dwCount );
Parameters LPCTSTR pszPropName - string name of the property to
set.
LPXMC_PARAM_DATA rgData - array of
XMC_PARAM_DATA types that specify each parameter
corresponding to the property. For example, a certain
property may be made up of a number of elements - in this
case an array of XMC_PARAM_DATA items is returned,
one for each element making up the property. In most
cases, a property is made up of a single element, thus a
single element array is passed to this method. For more
information on the XMC_PARAM_DATA type,
see below.
DWORD dwCount - number of
XMC_PARAM_DATA elements in the rgData array.
Return HRESULT - NOERROR on success, or error code on
Value failure.

This IXMCDirect::SetProperty method is used to set a property in the component corresponding to the ‘pszPropName’ property. For the set of properties supported by the component, see the specific component description.

IXMCDirect::InvokeMethod
Syntax HRESULT InvokeMethod( DWORD dwMethodIdx,
  LPXMC_PARAM_DATA rgData,
  DWORD dwCount );
Parameters DWORD dwMethodIdx - number corresponding to the
specific method to invoke. For more information on the
method indexes available, see the set of namespaces
defined for the component.
LPXMC_PARAM_DATA rgData [optional] - array of
XMC_PARAM_DATA types that specify each parameter
for the method called. For more information on the
XMC_PARAM_DATA type, see below.
NOTE: if no parameters exist for the method called, a value
of NULL must be passed in.
DWORD dwCount [optional] - number of
XMC_PARAM_DATA elements in the rgData array.
NOTE: if no parameters exist for the method called, a value
of 0 (zero) must be passed in for this parameter.
LPXMC_PARAM_DATA rgData [optional] - namespace
associated with the instance of the custom extension
module added.
Return HRESULT - NOERROR on success, or error code on
Value failure.

The IXMCDirect::InvokeMethod method is used to call a specific method implemented by the component. For more information on the methods supported, see the description of the specific component.

The IXMCDirectSink interface is an event reception point on which one component can send event data to another. The component implementing this interface is the event receiver, and the event source calls the interface passing to it event data.

The IXMCDirectSink interface is made up of the following functions:

A more detailed description of each method implemented by the object is described below.

IXMCDirectSink::OnEvent
Syntax HRESULT OnEvent( long IApiIdx, SAFEARRAY** ppSA );
Para- long IApiIdx - index associated with the event type . . .
meters
SAFEARRAY** ppSA - pointer to a pointer to a
SAFEARRAY containing an array of
XMC_PARAM_DATA structures. For more information
on the XMC_PARAM_DATA type, see below.
Return HRESULT - NOERROR on success, or error code on
Value failure.
Notes The SAFEARRAY passed to this method contains an array
of XMC_PARAM_DATA structures. This array has the
following entries:
rgData[0] LONG IConnection Cookie - unique cookie associated with
this connection to the XMC Motion Server (returned when
calling the InitializeHardware method on the XMC Motion
Server).
rgData[1] DWORD dwSubscription Cookie - unique cookie associated
with the subscription for which this event has fired. This
cookie is returned when making the subscription.
rgData[2] DWORD dwDataCookie - unique cookie associated with
the specific data change that triggered the event. This
cookie is generated within the XMC Motion Server.
rgData[3] LPCTSTR pszItemName - name of the item or variable for
which the subscription is associated.
rgData[4] double dfTimeStamp - number of milliseconds passed from
the time that the event pump, implemented by the XMC
Motion Server, was first started.
rgData[5] DWORD dwDataCount - number of data values associated
with the event (i.e. the number of structure elements that
follow).
rgData[6 + Number or String - actual data values associated with the
n] event.

The IXMCDirectSink::OnEvent method is called by the event source and passed the event data in a SAFEARRAY form for easy marshalling across process boundaries.

IXMCDirectSink::OnError
Syntax HRESULT OnError( long IApiIdx, SAFEARRAY** ppSA );
Para- long IApiIdx - index associated with the event type . . .
meters
SAFEARRAY** ppSA - pointer to a pointer to a
SAFEARRAY containing an array of
XMC_PARAM_DATA structures. For more information
on the XMC_PARAM_DATA type, see below.
Return HRESULT - NOERROR on success, or error code on
Value failure.
Notes The SAFEARRAY passed to this method contains an array
of XMC_PARAM_DATA structures. This array has the
following entries:
rgData[0] LONG IConnectionCookie - unique cookie associated with
this connection to the XMC Motion Server (returned when
calling the InitializeHardware method on the XMC Motion
Server).
rgData[1] DWORD dwSubscriptionCookie - unique cookie associated
with the subscription for which this event has fired. This
cookie is returned when making the subscription.
rgData[2] DWORD dwDataCookie - unique cookie associated with
the specific data change that triggered the event. This
cookie is generated within the XMC Motion Server.
rgData[3] LPCTSTR pszItemName - name of the item or variable for
which the subscription is associated.
rgData[4] double dfTimeStamp - number of milliseconds passed from
the time that the event pump, implemented by the XMC
Motion Server, was first started.
rgData[5] HRESULT hrResult - result code of the error for which the
event is associated.
rgData[6] LPCTSTR pszError - string description of the error.
rgData[7] LONG ISrcError - error code describing the source of the
error. For example, this may be an error code returned by
a computer controlled piece of hardware.
rgData[8] LPCTSTR pszSrcError - string describing the source error.

The IXMCDirectSink::OnError method is called by the event source when an error occurs and passed the event error data in a SAFEARRAY form for easy marshalling across process boundaries.

In order to receive events directly from the machine platform 222, the event handler 230 also supports the IXMCaCNCEventDataSink interface as specified in the machine platform 222 product sold by ROY-G-BIV Corporation.

[
object,
uuid(15D1A3C6-9948-47c7-AFC1-3932AF4518D7),
dual,
helpstring(“IXMCaCNCEventDataSink Interface”),
pointer_default(unique),
oleautomation
]
interface IXMCaCNCEventDataSink : IDispatch
{
[id(1), helpstring(“method OnData”)]
HRESULT OnData( [in] long IConnectionCookie,
[in] long ISubscriptionCookie,
[in] long lDataCookie,
[in] BSTR bstrName,
[in, out] SAFEARRAY (VARIANT) *
pvData,
[in] double dfTimeStamp );
[id(2), helpstring(“method OnError”)]
HRESULT OnError( [in] long IConnectionCookie,
[in] long ISubscriptionCookie,
[in] long lDataCookie,
[in] BSTR bstrName,
[in] long hrErr,
[in] BSTR bstrErr,
[in] long lSrcErr,
[in] BSTR bstrSrcErr );
};

Referring now to FIG. 19 of the drawing, depicted there in is an example of the IXMCaCNCEventDataSink OLE Interface.

The following methods make up the IXMCaCNCEventDataSink interface.

Event Name Description
OnData This event is called on the client application each time the
event conditions are met for a given enabled subscription.
OnError This event is called on the client application each time an
error occurs while processing a subscription.

OnData Event
Syntax //C++
HRESULT OnData( [in] long IConnectionCookie,
[in] long ISubscriptionCookie,
[in] long IDataCookie,
[in] BSTR bstrName,
[in, out] SAFEARRAY(VARIANT)* pvData,
[in] double dfTimeStamp)
‘OLE Automation
Event OnData( IConnectionCookie As Long,
ISubscriptionCookie As Long,
IDataCookie As Long,
bstrName As String,
pvData( ) As Variant,
dfTimeStamp As Double )
Parameters IConnectionCookie As Long - this is the connection cookie
returned by the call to InitializeHardware. Each connection
cookie is unique to each application.
ISubscriptionCookie As Long - this is the subscription
cookie returned by the call to SubscribeVariable.
IDataCookie As Long - this is the data cookie that is unique
to each operation made by the internal data processing
performed by XMC. For example each unsolicited read
made by XMC is associated a unique data cookie.
bstrName As String - this is the name of the subscribed
variable for which the event data is associated.
pvData( ) As Variant - this is the actual data for the event
and is in the following form:
pvData(0) = number of elements.
pvData(1 + n) = data values.
dfTimeStamp As Double - this is the timestamp of the data
specified in milliseconds from the start of the XMC Motion
Server.

The OnData event is called each time the event condition for an enabled subscription is met for a subscription configured by a client application. Deadlock can occur when running in multi-application mode and calls to other XMC API are made from within this event hander or another event raised by this event handler. To avoid this situation, applications that implement this method should copy all data from this method into a temporary buffer and immediately return without calling other XMC API.

OnError Event
Syntax // C++
HRESULT OnError( [in] long IConnectionCookie,
[in] long ISubscriptionCookie,
[in] long IDataCookie,
[in] BSTR bstrName,
[in] HRESULT hrErr,
[in] BSTR bstErr,
[in] long ISrcErr,
[in] BSTR bstrSrcErr,
[in] double dfTimeStamp )
‘OLE Automation
Event OnError( IConnectionCookie As Long,
ISubscriptionCookie As Long,
IDataCookie As Long,
bstrName As String,
hrErr As Long,
bstrErr As String,
ISrcErr As Long,
bstrSrcErr As String,
dfTimeStamp As Double )
Parameters IConnectionCookie As Long - this is the connection cookie
returned by the call to InitializeHardware. Each connection
cookie is unique to each application.
ISubscriptionCookie As Long - this is the subscription
cookie returned by the call to SubscribeVariable.
IDataCookie As Long - this is the data cookie that is unique
to each operation made by the internal data processing
performed by XMC. For example each unsolicited read
made by XMC is associated a unique data cookie.
bstrName As String - this is the name of the subscribed
variable for which the event data is associated.
hrErr As Long - this is the operating system error received.
bstrErr As String - this is a string describing the operating
system error received.
ISrcErr As Long - this is the source error received that
describes the error information in the context of the target
control system. This error value is only provided when
available.
bstrSrcErr As String - this is a string description of the
source error received (when available).
dfTimeStamp As Double - this is the timestamp of the data
specified in milliseconds from the start of the XMC Motion
Server.

The OnError event is called each time an error occurs for a subscription configured by a client application. Applications that implement this method should immediately copy the data received in a temporary buffer and or array and immediately return so as to not cause deadlock within their application. Deadlock can occur when running in multi-application mode and calls to other XMC API are made from within this event handler or another event raised by this event handler.

The Methods and properties exposed by the XMC Event Client component will now be described in further detail.

This section describes the general component properties of each property supported by the event handler 230 component.

TARGETMACHINE rgData[0] - (string); name of the target
machine for which the XMC Event Client
component is to connect up to and receive
data from.
OPTIONS rgData[0] - (DWORD); options describing
how the XMC Event Client is to operate.
The following options are supported.
OF_AUTOLOAD_ENABLED - when
specified, the component automatically
loads the configuration settings specified in
the configuration file specified in the
CONFIGFILE property.
OF_AUTOSTART_ENABLED - when
specified, the component automatically
connects and starts monitoring data items
that are specified.
OF_MAPVARIABLES_ENABLED - when
specified, the variables listed in the variable
mapping file specified in VARMAPFILE
property are loaded.
OF_QUEUE_EVENT_ENABLED - when
specified, all data received through an event
are placed at the back of the data queue.
OF_QUEUE_API_CALLS_ENABLED -
when specified, all data received on the
Write API are placed at the back of the data
queue.
OF_WAIT_FOR_DATA_RECEIVED -
when specified, the component waits until an
external application signals the data ready
event before placing more data in the
output(s).
OF_DELETE_OLD_QUEUE_ITEMS -
when specified, data items within the data
queue that have been in the data queue for a
time period longer than the amount specified in
the DATAOLDTIMEOUT property are
purged from the data queue.
OF_COLLECT_DATA_ALWAYS - when
specified, data items are subscribed in such
a way that updates are always sent, even
when the data items does not change.
QUEUEMAXSIZE rgData[0] - (DWORD); specifies the
maximum number of items allowed in the
data queue. Items received after this
maximum value is reached are ignored.
DATARE- rgData[0] - (DWORD); specifies the amount
CEIVEDTIMEOUT of time to wait for an application to signal
the data ready event. If this value is
surpassed, the data in the front of the data
queue is sent to the outputs.
DATAOLDTIMEOUT rgData[0] - (DWORD); specifies how long
data items are allowed to remain in the data
queue before being purged.
CONFIGFILE rgData[0] - (string); specifies the name of
the file from which all auto-load
configuration settings are read.
VARMAPFILE rgData[0] - (string); specifies the name of
the file from which all variable mappings are
loaded.
VAR_MONI- rgData[0] - (DWORD); specifies the total
TOR_COUNT number of variables to monitor.
VAR_MONITOR rgData[0] - (string); specifies the name of
the ‘n’th variable to monitor.
VAR_READ_COUNT rgData[0] - (DWORD); specifies the total
number of variables to read.
VAR_READ rgData[0] - (string); specifies the name of
the ‘n’th variable to read.
rgData[1] - (string); specifies the name of
the ‘m’th variable to monitor for which this
variable is associated.

This section describes the general component methods supported by the majority of the components. For the specific list of methods supported by any given component, see the section describing that given component.

XMC_DE_BROWSE_GET_COUNT
Index 8020
Data In None
Data Out rgData[0] - (number) DWORD, number of browse elements.

The XMC_DE_BROWSE_GET_COUNT method returns the number of data items in the browse set supported by the component.

XMC_DE_BROWSE_GET_ITEMS
Index 8021
Data In rgData[0] - (number) DWORD, maximum number of
elements to collect.
Data Out rgData[0] - (number) number of elements collected, total
number of elements will equal (rgData[0] * 2 + 1).
rgData[1] - (string) name of the first browse element.
rgData[2] - (number) adt of the first browse element.
rgData[1 + n*2] - (string) name of the n'th browse element.
rgData[2 + n*2] - (number) adt of the n'th browse element.

The XMC_DE_BROWSE_GET_ITEMS method returns the number of data items in the browse set supported by the component.

XMC_DE_SYSTEM_CONNECT_CMPNT
Index 8000
Data In rgData[0] - (number) DWORD, type of component. The
type of component is a value that is server specific. For
component type information, see the description for this
method under each server's description.
rgData[1] - (string) LPTSTR, component class id as an
ASCII string.
Data Out None.

The XMC_DE_SYSTEM_CONNECT_CMPNT method is used to connect one server to another so that they may interact with one another.

XMC_DE_SYSTEM_DISCONNECT_CMPNT
Index 8001
Data In rgData[0] - (number) DWORD, type of component. The
type of component is a value that is server specific. For
component type information, see the description for this
method under each server's description.
rgData[1] - (string) LPTSTR, component class id as an
ASCII string.
Data Out None.

The XMC_DE_SYSTEM_DISCONNECT_CMPNT method is used to disconnect one server to another so that they stop interacting with one another.

XMC_DE_DATA_PROCESS
Index 8063
Data In rgData[0] - (number) DWORD, number of data items input.
rgData[1 + n*2] - (string) LPCTSTR, name of the data item
input.
rgData[2 + n*2] - (number or string), value of the data item.
Data Out rgData[0] - (number) DWORD, number of data items output.
rgData[1 + n*2] - (string) LPCTSTR, name of the data item
output.
rgData[2 + n*2] - (number) value of the data item.

The XMC_DE_DATA_PROCESS method is called by a client to process data where a data set is input, processed in some way by the server, and then the resulting data is returned as output.

XMC_DE_DATA_PROCESS_CONFIGURE
Index 8062
Data In rgData[0] - (number) DWORD, flag describing the type of
data to be returned when processing data. The following
flags are supported:
XMC_DE_READ_DATA_FLAG_TIMESTAMP - requests
that the time stamp recorded when processing the data is
returned.
NOTE: by default, the data item value is always returned.
Data None.
Out

The XMC_DE_DATA_PROCESS_CONFIGURE method is used to configure what type of data is returned when processing a given data item. For example in the server may be configured to return the minimal amount of data on each read (i.e. just the data item value), or the server may be requested to return more substantial data.

XMC_DE_DATA_READ
Index 8061
Data In rgData[0] - (string) LPCTSTR, name of the data item to
read.
Data Out rgData[0] - (number or string), data item value.
rgData[1] - (OPTIONAL number) DWORD, data item time-
stamp as a system time value.
NOTE: Since the last items are optional, only those items
specified when configuring the data to receive are actually
sent.

The XMC_DE_DATA_READ method is called by a client application to poll for data from the server. As used herein, the term “poll” refers to the process of continually reading a data item so that the most recent value of the data is always on hand.

XMC_DE_DATA_READ_CONFIGURE
Index 8060
Data In rgData[0] - (number) DWORD, flag describing the type of
data to be returned on each read. The following flags are
supported:
XMC_DE_READ_DATA_FLAG_TIMESTAMP - requests
that the time stamp recorded when reading the data is
returned.
NOTE: by default, the data item value is always returned.
Data None.
Out

The XMC_DE_DATA_READ_CONFIGURE method is used to configure what type of data is returned when reading a given data item. For example in the server may be configured to return the minimal amount of data on each read (i.e. just the data item value), or the server may be requested to return more substantial data.

XMC_DE_DATA_WRITE
Index 8064
Data In rgData[0] - (number) DWORD, number of data items.
rgData[1 + n*2] - (string) LPCTSTR, name of the data item.
rgData[2 + n*2] - (number or string), value of the data item.
Data Out None.

The XMC_DE_DATA_WRITE method is used to write data to a server.

XMC_DE_EVENT_ENABLE
Index 2892
Data In rgData[0] - (number) DWORD, cookie (unique identifier)
associated with the subscription. This value is returned to
the client when calling the subscription XMCAPI above.
NOTE: using a cookie value of zero (0) will enable/disable
ALL items subscribed to the server.
rgData[1] - (number) BOOL, TRUE to enable the
subscription(s), FALSE to disable the subscription(s). Only
enabled subscriptions actually fire events.
Data Out None.

The XMC_DE_EVENT_ENABLE method enables/disables a previously subscribed data item in the subscription list maintained by the server. Only enabled subscriptions actually fire.

XMC_DE_EVENT_RECEIVE_DATA
Index 8045
Data In rgData[0] - (number) DWORD, subscription cookie
corresponding to the subscribed data item.
rgData[1] - (number or string), data item value.
rgData[2] - (OPTIONAL number) DWORD, data item time-
stamp as a system time value.
rgData[3] - (OPTIONAL string) LPSTR, data item ASCII text
name.
rgData[4] - (OPTIONAL number) DWORD, data item unique
cookie.
NOTE: Since the last three items are optional, only those
items specified when configuring the data to receive are
actually sent. If, for example, one or more data items are
NOT requested, then the items are returned in slots shifted
up toward rgData[1]. For example if only the data item name
is requested in addition to the default data items, the data
returned would look like the following:
rgData[0] - (number) DWORD, subscription cookie.
rgData[1] - (number or string), data item value.
rgData[2] - (string) LPSTR, data item name.
Data Out None.

The XMC_DE_EVENT_RECEIVE_DATA method is called by the server (and implemented by the client) when each subscribed event fires.

XMC_DE_EVENT_RECEIVE_DATA_CONFIGURE
Index 8044
Data In rgData[0] - (number) DWORD, flag describing the type of
data to be returned on each event. The following flags are
supported:
XMC_DE_EVENT_DATA_FLAG_TIMESTAMP - requests
that the time stamp recorded when reading the data is
returned.
XMC_DE_EVENT_DATA_FLAG_NAME - requests that
the data items ASCII text name be returned.
XMC_DE_EVENT_DATA_FLAG_DATA_COOKIE -
requests that the unique data item cookie corresponding to
the read made for the data item be returned.
NOTE: by default, the subscription cookie and data item
value are always returned.
Data None.
Out

The XMC_DE_EVENT_RECEIVE_DATA_CONFIGURE method is used to configure what type of data is returned on each event that is fired. For example in the server may be configured to send the minimal amount of data on each event (i.e. subscription cookie and data item value), or the server may be requested to return more substantial data.

XMC_DE_EVENT_SUBSCRIBE
Index 2890
Data rgData[0] - (number) DWORD, flags describing the initial
In state of the subscription. The following flags are supported:
XMC_DE_EVENT_FLAG_ENABLED - subscription is
immediately enabled upon subscription.
XMC_DE_EVENT_FLAG_DISABLED - subscription is
disabled upon making the subscription. The Enable function
must be called to enable the subscription.
rgData[1] - (number) DWORD, number of subscription
criteria rules.
rgData[2 + (2*n)] - (number) DWORD, event condition type
where the following types are supported:
XMC_CNC_EVENTCONDITION_DATA_CHANGE - any
data changes in the data type above will trigger the event.
XMC_CNC_EVENTCONDITION_DATA_EQUAL
XMC_CNC_EVENTCONDITION_DATA_LESSTHAN
XMC_CNC_EVENTCONDITION_DATA_GREATERTHAN
XMC_CNC_EVENTCONDITION_DATA_AND
XMC_CNC_EVENTCONDITION_DATA_OR
Each of the conditions above are used in a combined
manner. Where the logical condition (=, <, >) are applied for
each type respectively.
For example, in an array that contains the following items:
rgData[2] = 4 (4 condition values)
rgData[3] = XMC_CNC_EVENTCONDITION_EQUAL
rgData[4] = 3.0
rgData[5] = XMC_CNC_EVENTCONDITION_LESSTHAN
rgData[6] = 3.0
rgData[7] = XMC_CNC_EVENTCONDITION_OR
rgData[8] = 1.0
rgData[9] =
XMC_CNC_EVENTCONDITION_GREATHERTHAN
rgData[10] = 5.0
the array would be evaluated using the following logic:
If (DATA <= 3.0 OR DATA > 5.0) then Trigger Event
rgData[3 + (2*n)] - (number) double, the value for the
condition. See above.
Data rgData[0] - (number) DWORD, cookie (unique identifier)
Out representing the subscription.

The XMC_DE_EVENT_SUBSCRIBE method subscribes to a given data item activating the event interface when the subscription criteria are met for the data item. All subscribing components must use the IXMCDirect interface to receive events received from the server for which they are subscribed.

XMC_DE_EVENT_UNSUBSCRIBE
Index 2891
Data In rgData[0] - (number) DWORD, cookie (unique identifier)
associated with the subscription. This value is returned to
the client when calling the subscription XMCAPI above.
NOTE: using a cookie value of zero (0) will unsubscribe ALL
items subscribed to the server.
Data Out None.

The XMC_DE_EVENT_UNSUBSCRIBE method removes a previously subscribed data item from the subscription list maintained by the server.

XMC_DE_SYSTEM_INITIALIZEHW
Index 500
Data In None
Data Out None.

The XMC_DE_SYSTEM_INITIALIZEHW method is used to initialize any hardware systems associated with the component.

XMC_DE_SYSTEM_SHUTDOWNHW
Index 501
Data In None.
Data Out None.

The XMC_DE_SYSTEM_SHUTDOWNHW method is used to shutdown any hardware systems associated with the component.

The event handler 230 component implements the following general methods listed in the General Component Methods section above.

Not
Im- Im-
ple- ple-
ment- ment-
Method ed ed
XMC_DE_BROWSE_GET_COUNT X
XMC_DE_BROWSE_GET_ITEMS X
XMC_DE_DATA_PROCESS X
XMC_DE_DATA_PROCESS_CONFIGURE X
XMC_DE_DATA_READ X
XMC_DE_DATA_READ_CONFIGURE X
XMC_DE_DATA_WRITE X
XMC_DE_EVENT_ENABLE X
XMC_DE_EVENT_RECEIVE_DATA X
XMC_DE_EVENT_RECEIVE_DATA_CONFIGURE X
XMC_DE_EVENT_SUBSCRIBE* X
XMC_DE_EVENT_UNSUBSCRIBE* X
XMC_DE_SYSTEM_CONNECT_CMPNT X
XMC_DE_SYSTEM_DISCONNECT_CMPNT X
XMC_DE_SYSTEM_INITIALIZEHW X
XMC_DE_SYSTEM_SHUTDOWNHW X

The following methods have special notes for this component. The XMC_DE_EVENT_SUBSCRIBE method is only needed when daisy chaining components together. The XMC_DE_EVENT_UNSUBSCRIBE method is only needed when daisy chaining components together.

The visual elements presented by the event handler 230 component, namely the event handler property pages 234, will now be described in further detail.

The example property page depicted in FIG. 19 allows the user to set-up the connection settings used to connect to the target machine from which data will be received. In addition, this property page allows the user to configure how the component is connected and starts-up when it is first run.

As shown in FIG. 19, the following user interface elements form the connection and start-up property page 320. A “target machine” field 322 identifies the target machine 222 from which data is to be received using the TARGETMACHINE method. A “connect” button 324 tests the connection with the target machine using a CONNECT method. A “disconnect” button 326 disconnects the system 224 from the target machine 222 using the DISCONNECT method.

A “map variables” check box 328 specifies whether or not to load mapped variables from a file when connecting using OPTIONS, (OF_MAPVARIABLES_ENABLED), and VARMAPFILE properties. When checked, a dialog appears allowing the user to select the file to load mapped variables from.

An “enable auto load” check box 330 specifies whether or not the auto load feature should be enabled and, when enabled, from which file to load the settings from as identified in a “file” field 332 using OPTIONS, (OF_AUTOLOAD_ENABLED), CONFIGFILE properties.

An “enable auto start” check box 334 specifies whether or not to enable auto start using OPTIONS (OF_AUTOSTART_ENABLED) properties.

An event monitoring property page 340 depicted in FIG. 20 allows the user to configure which variables are to be monitored. The event monitoring property page 340 comprises the following interface elements.

A “variables” box 342 contains a list of all variables that are available for monitoring. A “test” button 344 directs the application to test a selected (highlighted) variable by reading it using a READ method. An “attributes” 346 button retrieves the attributes of the selected (highlighted) variable using the READ(‘attrib’) method.

A “variables” (to monitor) box 350 contains a list of all variables that have been selected for monitoring using VAR_MONITOR_COUNT and VAR_MONITOR_properties.

A first “add . . . ” button 352 directs the event handler 330 to add a variable from the “variable” list in the box 342 to the “variables (to monitor)” list in the box 350. A first “remove” button 354 directs the event handler 330 to remove the selected variable from the “variables (to monitor)” list in the box 350. When a first “all” check box 356 is checked, pressing the first “remove” button 354 directs the event handler 330 to remove all variables from the “variables (to monitor)” list box 350.

A “variables (to read)” box 360 contains a list of all variables that have been selected for reading using VAR_READ_COUNT and VAR_READ_properties. A second “add . . . ” button 362 directs the event handler 330 to add a variable from the “variable” list in the box 342 to the “variables (to read)” list in the box 360. A second “remove” button 354 directs the event handler 330 to remove the selected variable from the “variables (to read)” list in the box 360. When a second “all” check box 366 is checked, pressing the second “remove” button 364 directs the event handler 330 to remove all variables from the “variables (to read)” list box 360.

Referring now to FIG. 21, depicted therein is an example of a data collection property page 370 that allows the user to specify how the variable data is collected. The data collection property page 370 comprises the following user interface elements.

A “queue event results up to:” check box 372 and associated edit field 374 specify the maximum number of items to be placed in the optional data queue 236 using the following properties: OPTIONS (OF_QUEUE_API_CALLS_ENABLED), OPTIONS (OF_QUEUE_EVENTS_ENABLED), and QUEUEMAXSIZE.

A “wait for data received event:” check box 374 and associated edit field 374 specify the amount of time to wait for the recipient of the data to respond by signaling the data ready event using the following properties:

OPTIONS (OF_WAIT_FOR_DATA_RECEIVED) and DATARECEIVEDTIMEOUT method.

A “delete old items after:” check box 380 and associated edit field 372 specify the amount of time that data items may remain in the queue after which they are purged, using the following properties: OPTIONS (OF_DELETE_OLD_QUEUE_ITEMS) and DATAOLDTIMEOUT method.

The “collect data always” check box 384 specifies whether or not data should always be collected, even when the data does not change, using the following properties: OPTIONS (OP_COLLECT_DATA_ALWAYS).

The present invention may be embodied in forms other than those described above. The scope of the present invention should thus be determined with reference to the following claims and not the foregoing exemplary detailed description.

This Appendix A contains the definitions of all special types used by the methods and properties of each component making up the example XMC Program Engine system that may form a part of the present invention.

XMC_PARAM_DATA Structure

All methods exposed by each component in the XMC Program Engine system use the standard XMC parameters set to describe data used to set and query properties as well as invoke methods. The standard parameters are in the following format:

pObj→InvokeMethod(LPXMC_PARAM_DATA rgData, DWORD dwCount);

Each element in the rgData array corresponds to a parameter, with the first element in the array corresponding to the first parameter. The XMC_PARAM_DATA structure can contain either a numerical or a string value and is defined as follows:

The ‘adt’ member of the XMC_PARAM_DATA structure describes the data contained within the XMC_PARAM_DATA structure. The values are described below:

LNG_PARAM_DATATYPE Description
LNG_ADT_NUMBER Use this value when passing a
numerical value via the ‘adt’ member of
the XMC_PARAM_DATA structure.
LNG_ADT_STAT_STRING Use this value when passing a static
string value via the ‘psz’ member of the
XMC_PARAM_DATA structure.
Static strings do not need to be freed
from memory.
LNG_ADT_MEM_STRING Use this value when passing a string
value via the ‘psz’ member of the
XMC_PARAM_DATA structure.
LNG_ADT_MEM_STRING denotes
that the string must be freed from
memory during cleanup.
LNG_ADT_NOP This value is used to ignore items
within the XMC_PARAM_DATA
array. When specifies, this parameter is
not used.

Boolean Types

When querying and setting boolean TRUE/FALSE values, any non-zero value is considered TRUE, whereas a zero value is considered FALSE.

Brown, David W., Stein, Skylar

Patent Priority Assignee Title
Patent Priority Assignee Title
4159417, Oct 28 1977 EMPRUVE, INC Electronic book
4199814, Oct 12 1977 AMAF INDUSTRIES, INC , A CORP OF DE Computer numerical control machine tool
4418381, Jan 23 1981 Bristol Babcock Inc. Single loop control system
4422150, May 23 1980 The Boeing Company Machine tool controller and part inspection monitor
4494060, Mar 02 1983 Chemical Bank Axis controller for robotic actuator
4531182, Dec 28 1970 Machine control system operating from remote commands
4688195, Jan 28 1983 Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED A CORP OF DE Natural-language interface generating system
4713808, Nov 27 1985 PROTOCOL-IP COM, L L C Watch pager system and communication protocol
4750888, Dec 15 1983 GIRAVIONS DORAND, A FRENCH CORPORATION Method and device for training in the operation of moving vehicles
4767334, Nov 19 1985 Educational and recreational toy vehicle
4769771, Jan 20 1984 U S PHILIPS CORPORATION, 100 EAST 42ND STREET, NEW YORK, N Y , A CORP , OF DE Multiprocessor system comprising a plurality of data processors which are interconnected by a communication network
4782444, Dec 17 1985 International Business Machine Corporation Compilation using two-colored pebbling register allocation method such that spill code amount is invariant with basic block's textual ordering
4800521, Sep 21 1982 Xerox Corporation Task control manager
4809335, Oct 24 1985 Speech unit for dolls and other toys
4815011, Jan 25 1986 Fanuc Ltd. Robot control apparatus
4829419, Nov 24 1969 Microcomputer control of machines
4840602, Feb 06 1987 Hasbro, Inc Talking doll responsive to external signal
4846693, Jan 08 1987 Smith Engineering Video based instructional and entertainment system using animated figure
4852047, Apr 14 1987 NC ACQUISITION CORP Continuous flow chart, improved data format and debugging system for programming and operation of machines
4855725, Nov 24 1987 NUVOMEDIA, INC Microprocessor based simulated book
4857030, Feb 06 1987 Hasbro, Inc Conversing dolls
4887966, Jun 30 1988 Flight simulation control apparatus
4897835, Nov 27 1985 Seiko Instruments Inc High capacity protocol with multistation capability
4901218, Aug 12 1987 Renishaw Controls Limited Communications adaptor for automated factory system
4912650, Jul 10 1986 Fanuc Ltd. Off-line control execution method
4923428, May 05 1988 CAL R & D, Inc. Interactive talking toy
4937737, Jun 17 1985 International Business Machines Corporation Process transparent multi storage mode data transfer and buffer control
4987537, May 31 1987 NEC Electronics Corporation Computer capable of accessing a memory by supplying an address having a length shorter than that of a required address for the memory
5005134, Apr 30 1987 Fanuc Ltd. Numerical control apparatus with simultaneous function execution
5005135, Mar 22 1989 Siemens Energy & Automation, INC Dynamic correction of servo following errors in a computer-numerically controlled system and fixed cycle utilizing same
5014208, Jan 23 1989 SIEMENS CORPORATE RESEARCH, INC , A CORP OF DE Workcell controller employing entity-server model for physical objects and logical abstractions
5020021, Jan 14 1985 Hitachi, Ltd. System for automatic language translation using several dictionary storage areas and a noun table
5095445, Mar 20 1987 Canon Kabushiki Kaisha Data communication system capable of communicating on-line with communication terminal equipment of a plurality of types
5120065, Feb 08 1991 HASBRO, INCORPORATED, PAWTUCKET, RHODE ISLAND A CORP OF RHODE ISLAND Electronic talking board game
5126932, Jun 17 1988 Siemens Corporate Research, Inc Method and apparatus for executing a program in a heterogeneous multiple computer system
5168441, May 30 1990 ALLEN-BRADLEY COMPANY, INC , A CORP OF WI Methods for set up and programming of machine and process controllers
5175684, Dec 31 1990 TRANS-LINK INTERNATIONAL CORP Automatic text translation and routing system
5175817, Nov 20 1989 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Data representation protocol for communications between different networks
5175856, Jun 11 1990 SILICON GRAPHICS INTERNATIONAL, CORP Computer with integrated hierarchical representation (IHR) of program wherein IHR file is available for debugging and optimizing during target execution
5204599, Jan 18 1991 Siemens Aktiengesellschaft Contour compensation method for numerically controlled machines
5230049, Nov 29 1988 International Business Machines Corporation; INTERNATIONAL BUSINESS MACHINES CORPORATION, A CORP OF NY Program source code translator
5245703, Jun 27 1988 BULL, S A Data processing system with multiple communication buses and protocols
5247650, Aug 30 1989 TECHTEAM GOVERNMENT SOLUTIONS, INC System for combining originally software incompatible control, kinematic, and discrete event simulation systems into a single integrated simulation system
5291416, Mar 08 1991 HURCO COMPANIES, INC Event feedback for numerically controlled machine tool and network implementation thereof
5368484, May 22 1992 WARNER BROS ENTERTAINMENT INC Vehicle simulator with realistic operating feedback
5377258, Aug 30 1993 National Medical Research Council Method and apparatus for an automated and interactive behavioral guidance system
5382026, Sep 23 1991 OL SECURITY LIMITED LIABILITY COMPANY Multiple participant moving vehicle shooting gallery
5390304, Sep 28 1990 Texas Instruments, Incorporated; Texas Instruments Incorporated Method and apparatus for processing block instructions in a data processor
5390330, Feb 11 1993 SILICON GRAPHICS INTERNATIONAL, CORP Control system and method for direct execution of software application information models without code generation
5392207, Aug 20 1993 ALLEN-BRADLEY COMPANY, INC Programmable motion controller with graphical programming aid
5392382, Dec 01 1992 Automated plan synthesizer and plan execution method
5400345, Mar 06 1992 Pitney Bowes Inc. Communications system to boundary-scan logic interface
5402518, Jul 22 1992 Acacia Research Group LLC Sound storage and sound retrieval system having peripheral with hand operable switches
5405152, Jun 08 1993 DISNEY ENTERPRISES, INC Method and apparatus for an interactive video game with physical feedback
5412757, Nov 28 1990 Kabushiki Kaisha Toshiba Fuzzy control system
5413355, Dec 17 1993 Electronic educational game with responsive animation
5418964, Dec 12 1991 International Business Machines Corporation System and method for parent class shadowing in a statically linked object hierarchy
5438529, Jan 26 1994 IMMERSION CORPORATION DELAWARE CORPORATION Percussion input device for personal computer systems
5450079, Apr 13 1992 Wistron Corporation Multimodal remote control device having electrically alterable keypad designations
5453933, Sep 08 1993 HURCO COMPANIES, INC CNC control system
5459382, Dec 02 1992 Immersion Corporation Method and system for providing a tactile virtual reality and manipulator defining an interface device therefor
5465215, Jul 07 1994 SIEMENS INDUSTRY, INC Numerical control method and apparatus
5483440, Jun 07 1993 Hitachi, Ltd. Remote control apparatus and control method thereof
5485545, Jun 20 1991 Mitsubishi Denki Kabushiki Kaisha Control method using neural networks and a voltage/reactive-power controller for a power system using the control method
5491813, Feb 12 1990 International Business Machines Corporation Display subsystem architecture for binding device independent drivers together into a bound driver for controlling a particular display device
5493281, Sep 23 1992 DISNEY ENTERPRISES, INC Method and apparatus for remote synchronization of audio, lighting, animation and special effects
5511147, Jan 12 1994 UTI Corporation Graphical interface for robot
5541838, Oct 26 1992 Sharp Kabushiki Kaisha Translation machine having capability of registering idioms
5576727, Jul 16 1993 IMMERSION CORPORATION DELAWARE CORPORATION Electromechanical human-computer interface with force feedback
5577253, Feb 27 1991 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Analyzing inductive expressions in a multilanguage optimizing compiler
5596994, Aug 30 1993 Automated and interactive behavioral and medical guidance system
5600373, Jan 14 1994 FOTO-WEAR, INC Method and apparatus for video image compression and decompression using boundary-spline-wavelets
5604843, Dec 23 1992 Microsoft Technology Licensing, LLC Method and system for interfacing with a computer output device
5607336, Dec 08 1992 JAKKS PACIFIC, INC Subject specific, word/phrase selectable message delivering doll or action figure
5608894, Mar 18 1994 Fujitsu Limited Execution control system
5613117, Feb 27 1991 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Optimizing compiler using templates corresponding to portions of an intermediate language graph to determine an order of evaluation and to allocate lifetimes to temporary names for variables
5617528, Feb 04 1994 Datacard Corporation Method and apparatus for interactively creating a card which includes video and cardholder information
5618179, May 22 1992 WARNER BROS ENTERTAINMENT INC Driver training system and method with performance data feedback
5623582, Jul 14 1994 IMMERSION CORPORATION DELAWARE CORPORATION Computer interface or control input device for laparoscopic surgical instrument and other elongated mechanical objects
5625820, Sep 30 1992 International Business Machines Corporation System managed logging of objects to speed recovery processing
5625821, Aug 12 1991 International Business Machines Corporation Asynchronous or synchronous operation of event signaller by event management services in a computer system
5636994, Nov 09 1995 GLORIOUS VIEW CORPORATION Interactive computer controlled doll
5652866, Apr 05 1994 Genesys Telecommunications Laboratories, Inc Collaborative working method and system for a telephone to interface with a collaborative working application
5655945, Oct 19 1992 Microsoft Technology Licensing, LLC Video and radio controlled moving and talking device
5659753, Feb 27 1991 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Interface for symbol table construction in a multilanguage optimizing compiler
5666161, Apr 26 1993 GOOGLE LLC Method and apparatus for creating less amount of compressd image data from compressed still image data and system for transmitting compressed image data through transmission line
5666264, May 13 1996 NC ACQUISITION CORP Industrial computer workstation
5670992, Aug 25 1989 Sony Corporation Portable graphic computer apparatus
5691897, May 30 1995 AUTOMATION MIDDLEWARE SOLUTIONS, INC Motion control systems
5691898, Sep 27 1995 IMMERSION CORPORATION DELAWARE CORPORATION Safe and low cost computer peripherals with force feedback for consumer applications
5692195, Aug 31 1994 International Business Machines Corporation Parent class shadowing
5701140, Jul 12 1994 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for providing a cursor control interface with force feedback
5704837, Mar 26 1993 Namco Bandai Games INC Video game steering system causing translation, rotation and curvilinear motion on the object
5707289, Oct 21 1994 Pioneer Electronic Corporation Video game system having terminal identification data
5724074, Feb 06 1995 Microsoft Technology Licensing, LLC Method and system for graphically programming mobile toys
5733131, Jul 29 1994 Seiko Instruments Inc Education and entertainment device with dynamic configuration and operation
5734373, Jul 16 1993 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for controlling force feedback interface systems utilizing a host computer
5737523, Mar 04 1996 Oracle America, Inc Methods and apparatus for providing dynamic network file system client authentication
5739811, Jul 16 1993 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for controlling human-computer interface systems providing force feedback
5746602, Feb 27 1996 Hasbro, Inc PC peripheral interactive doll
5752880, Nov 20 1995 Hasbro, Inc Interactive doll
5754855, Apr 21 1994 International Business Machines Corporation System and method for managing control flow of computer programs executing in a computer system
5764155, Apr 03 1996 General Electric Company Dynamic data exchange server
5766077, May 26 1995 BANDAI NAMCO GAMES INC Game apparatus with controllers for moving toy and character therefor
5772504, Sep 12 1995 KONAMI DIGITAL ENTERTAINMENT CO , LTD Driving game machine
5790178, Jul 15 1991 Hitachi, Ltd. Picture codec for teleconference equipment, which forms and displays picture-in-frame including at least two of received motion picture, a received still picture and a self motion picture in an optional combination
5800268, Oct 20 1995 I2CORP COM Method of participating in a live casino game from a remote location
5801946, Oct 19 1995 Kawasaki Motors Mfg. Co. Assembly prompting system
5802365, May 05 1995 Apple Inc Dynamic device matching using driver candidate lists
5805785, Feb 27 1996 International Business Machines Corporation Method for monitoring and recovery of subsystems in a distributed/clustered system
5818537, Dec 28 1993 Canon Kabushiki Kaisha Image processing method and apparatus for converting between data coded in different formats
5821920, Jul 14 1994 IMMERSION MEDICAL, INC Control input device for interfacing an elongated flexible object with a computer system
5821987, Jun 23 1992 VIDEOPHONE TECHNOLOGIES, L L C Videophone for simultaneous audio and video communication via a standard telephone line
5822207, Sep 03 1996 AMADA AMERICA, INC ; Amada Company, Ltd Apparatus and method for integrating intelligent manufacturing system with expert sheet metal planning and bending system
5825308, Nov 26 1996 IMMERSION CORPORATION DELAWARE CORPORATION Force feedback interface having isotonic and isometric functionality
5828575, Jul 31 1996 Amada Company, Limited Apparatus and method for managing and distributing design and manufacturing information throughout a sheet metal production facility
5836014, Feb 27 1991 Hewlett Packard Enterprise Development LP Method of constructing a constant-folding mechanism in a multilanguage optimizing compiler
5846132, Apr 10 1996 Rovi Technologies Corporation Interactive system allowing simulated or real time participation in a league
5848415, Dec 18 1996 GOOGLE LLC Selective multiple protocol transport and dynamic format conversion in a multi-user network
5852441, Dec 13 1994 Microsoft Technology Licensing, LLC Shell extensions for an operating system
5855483, Nov 21 1994 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Interactive play with a computer
5867385, May 30 1996 AUTOMATION MIDDLEWARE SOLUTIONS, INC Motion control systems
5873765, Jan 07 1997 Mattel, Inc Toy having data downloading station
5889670, Oct 24 1991 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for tactilely responsive user interface
5889672, Oct 24 1991 IMMERSION CORPORATION DELAWARE CORPORATION Tactiley responsive user interface device and method therefor
5889924, Mar 23 1994 Kabushiki Kaisha Yaskawa Denki Industrial robots controller
5890963, Sep 30 1996 AILIVE HOLDING CORPORATION; YEN, WEI System and method for maintaining continuous and progressive game play in a computer network
5907704, Apr 03 1995 Q LIQUIDATING TRUST Hierarchical encapsulation of instantiated objects in a multimedia authoring system including internet accessible objects
5907831, Apr 04 1997 HANGER SOLUTIONS, LLC Computer apparatus and methods supporting different categories of users
5914876, Jun 23 1989 Mitsubishi Denki Kabushiki Kaisha Numerical controller having expanded control word set
5920476, Nov 21 1996 PRODUCTION RESOURCE GROUP, L L C Computer controlled movement of stage effects and stage installation employing same
5921780, Jun 28 1996 Racecar simulator and driver training system and method
5924013, Sep 03 1997 Method and apparatus for transmitting motion picture cinematic information for viewing in movie theaters and ordering method therefor
5956484, Dec 13 1995 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for providing force feedback over a computer network
5959613, Dec 01 1995 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for shaping force signals for a force feedback device
5960085, Apr 14 1997 SOUTHWEST TECHNOLOGY INNOIVATIONS LLC Security badge for automated access control and secure data gathering
5977951, Feb 04 1997 MUSICQUBED INNOVATIONS, LLC System and method for substituting an animated character when a remote control physical character is unavailable
5984499, Sep 12 1997 HURCO COMPANIES, INC Method and apparatus for a numerical control system for processing multiple job streams
5991528, Nov 05 1997 ROCKWELL AUTOMATION TECHNOLOGIES, INC Expert manufacturing system
6012961, May 14 1997 Design Lab, LLC Electronic toy including a reprogrammable data storage device
6020876, Apr 14 1997 IMMERSION CORPORATION DELAWARE CORPORATION Force feedback interface with selective disturbance filter
6028593, Dec 01 1995 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for providing simulated physical interactions within computer generated environments
6031973, Jul 05 1996 Seiko Epson Corporation Robot and its controller method
6038603, Mar 25 1997 Oracle International Corporation Processing customized uniform resource locators
6046727, Jul 16 1993 Immersion Corporation Three dimensional position sensing interface with force output
6057828, Jan 18 1995 Immersion Corporation Method and apparatus for providing force sensations in virtual environments in accordance with host software
6061004, Nov 26 1995 Immersion Corporation Providing force feedback using an interface device including an indexing function
6065365, May 08 1997 CNH America LLC; BLUE LEAF I P , INC Control lever assembly
6070010, Jul 25 1997 International Business Machines Corporation System and method of local data alignment for stack memory
6078308, Dec 13 1995 IMMERSION CORPORATION DELAWARE CORPORATION Graphical click surfaces for force feedback applications to provide user selection using cursor interaction with a trigger position within a boundary of a graphical object
6078968, Dec 17 1997 VICOM SYSTEMS, INC Platform-independent communications protocol supporting communications between a processor and subsystem controller based on identifying information
6080063, Jan 06 1997 VK SERVICES, LLC Simulated real time game play with live event
6083104, Jan 16 1998 Silverlit Limited Programmable toy with an independent game cartridge
6090156, May 22 1997 International Business Machines Corporation System for local context spilling for graph coloring register allocators
6100874, Nov 17 1995 IMMERSION CORPORATION DELAWARE CORPORATION Force feedback mouse interface
6101425, Nov 26 1997 Allen-Bradley Company, LLC Multiple connection networked man-machine interfaces for computer numerical controls
6101530, Dec 13 1995 Immersion Corporation Force feedback provided over a computer network
6104158, Dec 02 1992 Immersion Corporation Force feedback system
6125385, Nov 14 1997 Immersion Corporation Force feedback implementation in web pages
6128006, Mar 26 1998 IMMERSION CORPORATION DELAWARE CORPORATION Force feedback mouse wheel and other control wheels
6131097, Dec 02 1992 Immersion Corporation Haptic authoring
6133867, Jan 02 1998 Integrated air traffic management and collision avoidance system
6139177, Dec 03 1996 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Device access and control using embedded web access functionality
6144895, Nov 26 1997 Allen-Bradley Company, LLC System and method for networking a computer numerical control with a workstation
6147647, Sep 09 1998 Qualcomm Incorporation Circularly polarized dielectric resonator antenna
6161126, Dec 13 1995 IMMERSION CORPORATION DELAWARE CORPORATION Implementing force feedback over the World Wide Web and other computer networks
6166723, Nov 17 1995 IMMERSION CORPORATION DELAWARE CORPORATION Mouse interface device providing force feedback
6169540, Dec 01 1995 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for designing force sensations in force feedback applications
6173316, Apr 08 1998 ACCESS CO , LTD Wireless communication device with markup language based man-machine interface
6191774, Nov 26 1996 IMMERSION CORPORATION A DELAWARE CORPORATION Mouse interface for providing force feedback
6195592, Oct 24 1991 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for providing tactile sensations using an interface device
6201996, May 29 1998 Control Technology Corporationa Object-oriented programmable industrial controller with distributed interface architecture
6209037, Dec 04 1997 AUTOMATION MIDDLEWARE SOLUTIONS, INC Motion control systems using communication map to facilitating communication with motion control hardware
6216173, Feb 03 1998 Redbox Technologies Limited Method and apparatus for content processing and routing
6219032, Dec 01 1995 IMMERSION CORPORATION DELAWARE CORPORATION Method for providing force feedback to a user of an interface device based on interactions of a controlled cursor with graphical elements in a graphical user interface
6219033, Jul 16 1993 IMMERSION CORPORATION DELAWARE D B A IMMERSION CORPORATION Method and apparatus for controlling force feedback interface systems utilizing a host computer
6232891, Nov 26 1996 Immersion Corporation Force feedback interface device having isometric functionality
6233545, May 01 1997 Universal machine translator of arbitrary languages utilizing epistemic moments
6242880, Sep 08 1998 HURCO COMPANIES, INC Tolerance based motion control system
6243078, Sep 17 1998 IMMERSION CORPORATION DELAWARE CORPORATION Pointing device with forced feedback button
6246390, Jan 18 1995 IMMERSION CORPORATION DELAWARE D B A IMMERSION CORPORATION Multiple degree-of-freedom mechanical interface to a computer system
6247994, Feb 11 1998 Rokenbok Toy Company System and method for communicating with and controlling toy accessories
6252579, Aug 23 1997 IMMERSION CORPORATION DELAWARE CORPORATION Interface device and method for providing enhanced cursor control with force feedback
6252853, Jul 24 1998 Hitachi, Ltd. Switching router and a datagram transfer system
6259382, Sep 25 1998 Immersion Corporation Isotonic-isometric force feedback interface
6271833, Sep 27 1995 IMMERSION CORPORATION DELAWARE D B A IMMERSION CORPORATION Low cost force feedback peripheral with button activated feel sensations
6278439, Dec 01 1995 Immersion Corporation Method and apparatus for shaping force signals for a force feedback device
6285351, Apr 25 1997 IMMERSION CORPORATION DELAWARE CORPORATION Designing force sensations for computer applications including sounds
6286133, Jul 31 1997 International Business Machines Corporation Method and apparatus for strategic compilation of source programs into two or more target languages
6288705, Aug 23 1997 Immersion Corporation Interface device and method for providing indexed cursor control with force feedback
6288716, Jun 25 1997 Samsung Electronics, Co., Ltd Browser based command and control home network
6290565, Jul 21 1999 GALYEAN, TINSLEY A ; GALYEAN, SHERI; MEGA FUN CO, LLC; STATIC-FREE MEDIA, LLC Interactive game apparatus with game play controlled by user-modifiable toy
6290566, Aug 27 1997 Hasbro, Inc Interactive talking toy
6292170, Apr 25 1997 IMMERSION CORPORATION DELAWARE CORPORATION Designing compound force sensations for computer applications
6292174, Aug 23 1997 Immersion Corporation Enhanced cursor control using limited-workspace force feedback devices
6292712, Jan 29 1998 Northrop Grumman Systems Corporation Computer interface system for a robotic system
6292714, May 12 2000 Fujitsu Limited Robot cooperation device, and robot cooperation program storage medium
6295530, May 15 1995 Ablaise Limited Internet service of differently formatted viewable data signals including commands for browser execution
6300936, Nov 14 1997 IMMERSION CORPORATION DELAWARE CORPORATION Force feedback system including multi-tasking graphical host environment and interface device
6300937, Jul 16 1993 IMMERSION CORPORATION DELAWARE D B A IMMERSION CORPORATION Method and apparatus for controlling force feedback for a computer interface device
6301634, Jul 05 1996 Seiko Epson Corporation Real time control method for a robot controller
6304091, Feb 10 1998 IMMERSION CORPORATION DELAWARE CORPORATION Absolute position sensing by phase shift detection using a variable capacitor
6305011, Jan 16 1996 Sun Microsystems, Inc. Tip technology and its application to sparcompiler pascal
6309275, Apr 09 1997 IETRONIX, INC Interactive talking dolls
6310605, Apr 14 1997 Immersion Corporation Force feedback interface with selective disturbance filter
6317116, Dec 13 1995 Immersion Corporation Graphical click surfaces for force feedback applications to provide selection of functions using cursor interaction with a trigger position of a graphical object
6317871, Jul 18 1997 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P System for ensuring the accuracy of file structures in a source-to-source computer program translator
6319010, Apr 10 1996 Hasbro, Inc PC peripheral interactive doll
6343349, Nov 14 1997 IMMERSION CORPORATION DELAWARE D B A IMMERSION CORPORATION Memory caching for force feedback effects
6345212, Nov 20 1998 HURCO COMPANIES, INC Automatic variable linkage mechanism for integrating third party software components
6353850, Dec 13 1995 Immersion Corporation Force feedback provided in web pages
6366272, Dec 01 1995 Immersion Corporation Providing interactions between simulated objects using force feedback
6366273, Jul 12 1994 Immersion Corp. Force feedback cursor control interface
6366293, Sep 29 1998 Rockwell Software Inc.; Allen-Bradley Company, LLC Method and apparatus for manipulating and displaying graphical objects in a computer display device
6374195, Jun 29 1999 FCA US LLC System for monitoring and tracking tool and tool performance
6374255, May 21 1996 Immersion Corporation Haptic authoring
6400996, Feb 01 1999 Blanding Hovenweep, LLC; HOFFBERG FAMILY TRUST 1 Adaptive pattern recognition based control system and method
6401005, Sep 27 1999 Rockwell Automation Technologies, Inc. Programmable synchronous and asynchronous block execution for a computer numerical control
6425118, Jul 18 1997 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P System for automatically generating tests to ensure binary compatibility between software components produced by a source-to-source computer language translator
6430471, Dec 17 1998 MONEUAL, INC Control system for controlling a mobile robot via communications line
6439956, Nov 13 2000 Intec, Inc RC car device
6442451, Dec 28 2000 Intellectual Ventures II LLC Versatile robot control system
6463404, Aug 08 1997 British Telecommunications public limited company Translation
6470377, Dec 19 1997 Rockwell Automation Technologies, Inc. Networked file operations for computer numerical controls
6473824, Oct 14 1998 International Business Machines Corporation Dynamic association of input/output device with application programs
6480896, Oct 27 1999 Roy-G-Biv Corporation Systems and methods for generating and communicating motion data through a distributed network
6497606, Apr 09 1997 Interactive talking dolls
6513058, May 30 1995 AUTOMATION MIDDLEWARE SOLUTIONS, INC Distribution of motion control commands over a network
6516236, May 30 1995 AUTOMATION MIDDLEWARE SOLUTIONS, INC Motion control systems
6518980, Nov 19 1999 FANUC Robotics North America, Inc. Method and system for allowing a programmable controller to communicate with a remote computer
6519594, Nov 14 1998 Sony Corporation Computer-implemented sharing of java classes for increased memory efficiency and communication method
6519646, Sep 01 1998 Oracle America, Inc Method and apparatus for encoding content characteristics
6523171, Dec 29 1998 International Business Machines Corporation Enhanced source code translator from procedural programming language (PPL) to an object oriented programming language (OOPL)
6528963, Dec 13 2000 Samsung Electronics Co., Ltd. Robot and method for controlling motor speed of the robot
6542925, May 30 1995 AUTOMATION MIDDLEWARE SOLUTIONS, INC Generation and distribution of motion commands over a distributed network
6546436, Mar 30 1999 PHANTOM II, LLC System and interface for controlling programmable toys
6559860, Sep 29 1998 Rockwell Software Inc.; Allen-Bradley Company, LLC Method and apparatus for joining and manipulating graphical objects in a graphical user interface
6560513, Nov 19 1999 Fanuc Robotics North America Robotic system with teach pendant
6571141, May 30 1995 AUTOMATION MIDDLEWARE SOLUTIONS, INC Application programs for motion control devices including access limitations
6606665, Sep 27 1999 Rockwell Automation Technologies, Inc. Multiple connection architecture for communication with a computer numerical control resident in a workstation and other networked computer numerical controls
6615091, Jun 26 1998 Energizer Brands, LLC Control system and method therefor
6647328, Jun 18 1998 Kline and Walker LLC Electrically controlled automated devices to control equipment and machinery with remote control and accountability worldwide
6652378, Jun 01 2001 IGT Gaming machines and systems offering simultaneous play of multiple games and methods of gaming
6658627, Sep 04 1992 Caterpillar Inc Integrated and authoring and translation system
6662361, Jan 14 2000 International Business Machines Corporation Method, system, program, and data structures for transforming an instruction in a first bit architecture to an instruction in a second bit architecture
6665688, Dec 23 1998 Cray Inc Method and system for automatically regenerating data on-demand
6678713, Apr 29 1998 Xerox Corporation Machine control using a schedulerlock construct
6733382, Apr 14 2000 KONAMI DIGITAL ENTERTAINMENT CO , LTD Game device, game device control method and information storage medium
6778949, Oct 18 1999 Sony Corporation; Sony Electronics Inc. Method and system to analyze, transfer and generate language expressions using compiled instructions to manipulate linguistic structures
6848107, Nov 18 1998 Fujitsu Limited Message control apparatus
6850806, Apr 16 1999 SIEMENS INDUSTRY, INC Method and apparatus for determining calibration options in a motion control system
6859671, May 30 1995 AUTOMATION MIDDLEWARE SOLUTIONS, INC Application programs for motion control devices including access limitations
6859747, Apr 26 2001 SIEMENS INDUSTRY, INC Method and apparatus for self-calibrating a motion control system
6865499, Apr 26 2001 SIEMENS INDUSTRY, INC Method and apparatus for tuning compensation parameters in a motion control system associated with a mechanical member
6879862, Feb 28 2000 Roy-G-Biv Corporation Selection and control of motion data
6885898, May 18 2001 Roy-G-Biv Corporation Event driven motion systems
6889118, Nov 28 2001 iRobot Corporation Hardware abstraction layer for a robot
6920408, Apr 26 2001 SIEMENS INDUSTRY, INC Method and apparatus for tuning compensation parameters in a motion control system associated with a mechanical member
6941543, May 30 1995 AUTOMATION MIDDLEWARE SOLUTIONS, INC Motion control system and method
7024255, May 18 2001 Roy-G-Biv Corporation Event driven motion systems
7024666, Jan 28 2002 Roy-G-Biv Corporation Motion control systems and methods
7031798, Feb 09 2001 Roy-G-Biv Corporation Event management systems and methods for the distribution of motion control commands
7035697, May 30 1995 AUTOMATION MIDDLEWARE SOLUTIONS, INC Access control systems and methods for motion control
7076336, Nov 28 2001 iRobot Corporation Hardware abstraction layer (HAL) for a robot
7113833, Feb 28 2000 Roy-G-Biv Corporation Selection and control of motion data
7137107, Apr 29 2003 Roy-G-Biv Corporation Motion control systems and methods
7139843, May 30 1995 AUTOMATION MIDDLEWARE SOLUTIONS, INC System and methods for generating and communicating motion data through a distributed network
20010020944,
20010032268,
20020165627,
20050286457,
20060149824,
EP275826,
EP281427,
EP442676,
EP508912,
EP583908,
EP1174779,
EP821522,
GB2244896,
JP2000020114,
JP59228473,
JP8161335,
WO9211731,
WO9308654,
WO9507504,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 26 2007Roy-G-Biv Corporation(assignment on the face of the patent)
Date Maintenance Fee Events


Date Maintenance Schedule
Mar 10 20124 years fee payment window open
Sep 10 20126 months grace period start (w surcharge)
Mar 10 2013patent expiry (for year 4)
Mar 10 20152 years to revive unintentionally abandoned end. (for year 4)
Mar 10 20168 years fee payment window open
Sep 10 20166 months grace period start (w surcharge)
Mar 10 2017patent expiry (for year 8)
Mar 10 20192 years to revive unintentionally abandoned end. (for year 8)
Mar 10 202012 years fee payment window open
Sep 10 20206 months grace period start (w surcharge)
Mar 10 2021patent expiry (for year 12)
Mar 10 20232 years to revive unintentionally abandoned end. (for year 12)