elements, couplers, systems, and methods for joining two or more trough members. A locking element for a coupler of a cable trough system can include a threaded portion including first and second ends, the first end extending at an angle to a point, and a head portion coupled to the threaded portion at the second end, the head portion including a key portion that corresponds to the point of the first end of the threaded portion.
|
1. A locking element for a coupler of a cable trough system, the locking element comprising:
a threaded portion including first and second ends, the first end extending at an angle to a point; and
a head portion coupled to the threaded portion at the second end, the head portion including a key portion that corresponds to the point of the first end of the threaded portion.
5. A coupler for a cable trough system, the coupler comprising:
a coupler including a body including a bottom wall and two side walls defining a trough, the body having a body terminal end defining an overlap region, the overlap region being sized to slideably receive a terminal end of a trough member along a longitudinal direction of the body; and
a locking element including a threaded portion including first and second ends, the first end extending at an angle to a point, and a head portion coupled to the threaded portion at the second end, the head portion including a key portion that corresponds to the point of the first end of the threaded portion, the threaded portion of the locking element being threaded into a first aperture defined by the body of the coupler.
11. A method for coupling a coupler to a trough member, the method comprising:
threading a locking element into an aperture defined by the coupler to a locked position, the locking element including a threaded portion including first and second ends, the first end extending at an angle to a point, and a head portion coupled to the threaded portion at the second end, the head portion including a key portion that corresponds to the point of the first end of the threaded portion;
sliding the trough member into the coupler so that the an exterior surface of the trough member rides along the point of the locking element until the trough member is fully inserted into the coupler; and
allowing the point of the locking element to engage the exterior surface of the trough member to resist movement of the trough member out of the coupler.
7. A cable trough system, comprising:
a first trough member including an exterior surface; and
a coupler including a body including a bottom wall and two side walls defining a trough, the body having a body terminal end defining an overlap region, the overlap region being sized to slideably receive a terminal end of a first trough member along a longitudinal direction of the body, and the coupler including a first locking element including a threaded portion including first and second ends, the first end extending at an angle to a point, and a head portion coupled to the threaded portion at the second end, the head portion including a key portion that corresponds to the point of the first end of the threaded portion, the threaded portion of the locking element being threaded into a first aperture defined by the body of the coupler;
wherein, as the first trough member is inserted into the coupler, the point of the first end of the first locking element contacts and rides along the exterior surface of the first trough member, and wherein, when the first trough member is fully inserted into the coupler, the point engages the exterior surface to couple the first trough member to the coupler.
2. The locking element of
3. The locking element of
8. The system of
9. The system
10. The system of
12. The method of
rotating the key portion to an unlocked position; and
sliding the trough member out of the coupler.
|
This application is related to the following applications: U.S. patent application Ser. No. 11/677,181; U.S. patent application Ser. No. 11/677,184; U.S. patent application Ser. No. 11/677,193; U.S. patent application Ser. No. 11/677,200; U.S. patent application Ser. No. 11/677,203; and U.S. patent application Ser. No. 11/677,174; all of which were filed on even date herewith and are incorporated by reference herein.
Embodiments disclosed herein relate to systems for the management and routing of telecommunication cables, and, more particularly, to couplers for joining trough members.
In the telecommunications industry, optical fiber systems are increasingly used for high-speed signal transmission. With the increased utilization of optical fiber systems, optical fiber cable management requires industry attention.
One area of optical fiber management is the routing of optical fibers from one piece of equipment to another. For example, in a telecommunications facility, optical fiber cables are routed between fiber distribution equipment and optical line terminating equipment. In buildings and other structures that carry such equipment, the cable routing typically takes place in concealed ceiling areas or in other manners to route cables from one location to another.
When routing optical fibers and other cables such as copper wires, it is desirable that a routing system is readily modifiable and adaptable to changes in equipment needs. Accordingly, such routing systems include a plurality of components, such as trough members and couplers, for defining the cable routing paths. The trough members are joined together by couplings. U.S. Pat. Nos. 5,067,678; 5,316,243; 5,752,781; 6,709,186; and 6,715,719 teach cable routing systems that include a plurality of trough members and couplers.
Various concerns arise with the use of couplers for coupling trough members. One concern is that a plurality of hardware is used for joining the trough members. This hardware can be cumbersome. Further, there is sometimes a need to rearrange or change the trough members and couplers. It is desirable to provide couplers that can be disconnected and reconnected.
Embodiments disclosed herein relate to a system for the management and routing of telecommunication cables, and, more particularly, to elements, couplers, systems, and methods for joining two or more trough members.
One aspect relates to a locking element for a coupler of a cable trough system, the locking element including a threaded portion including first and second ends, the first end extending at an angle to a point, and a head portion coupled to the threaded portion at the second end, the head portion including a key portion that corresponds to the point of the first end of the threaded portion.
As used herein, the terms “couple” and “coupled” mean to join or attach a first element in relation to a second element, whether the attachment is made directly with the second element or indirectly through one or more intermediate components. As used herein, the term “slot” means a space defined by one or more surfaces and can include, without limitation, T-slots, closed slots, flanges, and projections.
In addition, coupler 100 can be configured to release the connections between coupler 100 and trough members 300A, 300B. In an example embodiment, locking elements 107A, 107B, 107C, 107D, 107E, 107F are tool-less (i.e., do not require the use of a separate tool to couple and uncouple trough members 300A, 300B to coupler 100). However, elements requiring one or more auxiliary tools are also within the scope of the present disclosure.
I. Coupler
As shown in
First guiding surface 101 of coupler 100 is generally in the shape of a trough, including a first side wall portion 104 and a second side wall portion 105, as well as a bottom wall portion 106 joining first and second side wall portions 104 and 105. As used herein, the term “trough” means any structure that defines an interior in which an element such as an optical cable can be maintained. Second guiding surface 102 is also in the shape of a trough. A midpoint or midsection 175 divides coupler 100 into first and second halves, and generally surrounds at least a portion of first guiding surface 101. A rib portion 166 is coupled to second guiding surface 102 and includes apertures 116 extending through second guiding surface 102 to spacing 103.
Referring now to
Handle portion 220 includes a key portion 222 that corresponds to the position of point 214 on end 212 of threaded portion 210. For example, in the illustrated embodiment, key portion 222 is positioned at the same orientation as that of point 214. In an alternative embodiment, key portion 222 can be positioned opposite to that of point 214 (see
Referring now to
Other configurations for locking elements are possible. For example, in other embodiments, handle portion 220 can include two opposite key portions 222 so that locking element 107A is generally in the shape of a “T.”
Referring now to
In example embodiments, locking elements 107A, 107B can be rotated without the use of tools (i.e., by hand) so that locking elements 107A, 107B can be moved from locked to unlocked positions and vice versa. In alternative embodiments, a tool can be used.
II. Trough
Referring now to
Trough member 300A includes a first terminal end 302 and a second terminal end 303. Trough member 300A is generally in the shape of a trough including first and second side walls 305, 306 coupled by a bottom wall 307, thereby defining an interior surface 308 and an exterior surface 309. Walls 305, 306, 307 are each generally planar. In example embodiments, exterior surface 309 of trough member 300A defines one or more slots 310 on the side walls 305 and 306 and bottom wall 307.
III. System
Referring now to
Referring now to
As shown in
As shown in
Trough member 300B can be coupled to the opposite end of coupler 100 in a similar manner. In example embodiments, each locking element on opposite sides of coupler 100 can be moved separately to separately release trough members 300A, 300B. Alternatively, both locking elements can be moved at the same time to release both trough members 300A, 300B at the same time.
In some embodiments, indicators are provided on rib portion 166 of coupler 100 to correspond to key portion 222 of locking element 107A. For example, in one embodiment, a first indicator on rib portion 166 is labeled “unlocked” and a second indicator is labeled “locked” to assist the user in determining the optimal position for key portion 222 for the locked and unlocked positions.
In addition, in some embodiments, threaded portion 210 includes an indicator that assists the user in determining the optimal transverse position of locking element 107A with respect second guiding surface 102 to coupler 100 for locked and unlocked positions. For example, in one embodiment, threaded portion 210 includes a first indicator labeled “unlocked” and a second indicator is labeled “locked” to assist the user in determining the optimal transverse position for threaded portion 210 for the locked and unlocked positions.
The other locking elements 107B, 107C, 107D, 107E, and 107F function in a manner similar to that of locking element 107A.
IV. Method of Use
An example method for coupling one or both of trough members 300A, 300B to coupler 100 is as follows. Locking element 407A is positioned in the locked position so that, as terminal end 302 is inserted into coupler 100, outer surface 309 rides along point 414. See, for example,
An example method of removing trough member 300A includes rotating locking element 407A in the counterclockwise direction so that locking element 407A moves transversely so that point 414 moves away from outer surface 309 of trough member 300A to the unlocked position. Once point 414 disengages outer surface 309, trough member 300A can be removed from spacing 103 of coupler 100. Trough member 300B can be removed in a similar fashion.
In example embodiments, the locking elements disclosed herein are tool-less in that the locking elements do not require a separate tool to move the locking elements from the locked position to the unlocked position and vice versa. For example, in some embodiments, the locking elements can be moved from the locked position to the unlocked position through use of the user's hand.
In example embodiments, the locking elements disclosed herein are auto-locking, in that the locking elements can be placed in the locked position prior to insertion of the trough member into the coupler. When the trough member is introduced into the coupler, the locking elements automatically lock the trough member to the coupler. The locking elements can subsequently be moved to the unlocked position to release the trough member from the coupler.
Alternative embodiments to those provided herein are also possible. For example, in one alternative embodiment, a coupler can be configured to be coupled to more than two trough members, therefore including more than the first and second coupler ends. Further, a greater number of locking elements can be presented for each coupler end, or, alternatively, fewer locking elements such as, for example, two on opposing sides, can be used.
The above specification, examples and data provide a complete description of the manufacture and of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the disclosure, the invention resides in the claims hereinafter appended.
Patent | Priority | Assignee | Title |
D868004, | Apr 25 2018 | AMPHENOL NETWORK SOLUTIONS, INC | Cable trough lip |
D887992, | Apr 25 2018 | AMPHENOL NETWORK SOLUTIONS, INC | Cable trough attachment assembly |
Patent | Priority | Assignee | Title |
2316166, | |||
2360159, | |||
2741499, | |||
2821154, | |||
2823056, | |||
2834622, | |||
2880887, | |||
2891750, | |||
3022972, | |||
3042351, | |||
3188030, | |||
3351699, | |||
3370121, | |||
3457598, | |||
3471629, | |||
3493917, | |||
3603625, | |||
3782420, | |||
3875618, | |||
3915420, | |||
4099749, | Apr 08 1974 | Air-O-Mulder B.V. | Coupling sleeve |
4305236, | Jan 14 1980 | Rain gutter system | |
4854665, | Sep 17 1984 | ENDOT INDUSTRIES, INC | Coupling for joining axial sections of duct for fiber optic cables |
4954015, | Apr 04 1990 | EURAMAX CANADA, INC | Gutter seal |
5035092, | Aug 13 1990 | EURAMAX CANADA, INC | Nonsymmetrical eavestrough fitting |
5038528, | May 08 1990 | EURAMAX CANADA, INC | Gasket seal |
5067678, | Jul 31 1989 | ADC Telecommunications, Inc.; ADC TELECOMMUNICATIONS, INC , 4900 WEST 78TH STREET, MINNEAPOLIS, MINNESOTA 55435 A CORP OF MN | Optic cable management system |
5078530, | Apr 26 1991 | Permanent Solution Industries, Inc. | Plastic coupling device for connecting two building elements |
5100221, | Jan 22 1990 | Augat Inc | Optical fiber cable distribution frame and support |
5134250, | Apr 10 1991 | Panduit Corp. | Wiring duct |
5142606, | Jan 22 1990 | Augat Inc | Optical fiber cable distribution frame and support |
5161580, | Aug 27 1990 | Tyton Corporation | Cable duct fitting with removable cover |
5316243, | Jul 31 1989 | ADC Telecommunications, Inc. | Optic cable management |
5469893, | Dec 21 1993 | Panduit Corp. | Tab and slot fiber optic fitting |
5547307, | Dec 10 1993 | LEGRAND AND LEGRAND SNC | Device for butt-jointing perforated cable tray sections |
5617678, | Aug 28 1992 | EURAMAX CANADA, INC | Eavestrough system |
5720567, | Apr 19 1995 | Cooper Technologies Company | Cable tray system |
5752781, | Mar 14 1997 | CommScope EMEA Limited; CommScope Technologies LLC | Fiber trough coupling |
5753855, | Nov 17 1994 | Panduit Corp.; Panduit Corp | Wiring duct fittings |
5792993, | Apr 07 1997 | Cooper Technologies Company | Wireway sealing device |
5995699, | Jan 05 1998 | The Wiremold Company | Fiber optic cable raceway system cross reference to related applications |
5998732, | Jan 13 1998 | Panduit Corp.; Panduit Corp | Raceway outlet station |
6037543, | Nov 17 1994 | Panduit Corp. | Wiring duct fittings |
6126122, | Nov 06 1997 | Sioux Chief Manufacturing Co., Inc. | Double ratchet arm pipe clamp |
6143984, | Apr 02 1998 | CommScope EMEA Limited; CommScope Technologies LLC | Adjustable channel connector for a cable raceway system |
6188024, | Feb 03 1998 | Aparellaje Electrico, S.A.; L'Hosptalet De Llobregat | Elbow for the angular connection of two stretches of raceway for electrical cable system |
6193434, | Jul 26 1996 | I C M GROUP | Connecting splice for cable trough sections, and resulting cable trough sections |
6402418, | Jul 26 1996 | Legrand France | Coupling for assembling cable tray unit sections and cable tray unit sections obtained |
6424779, | Aug 28 2000 | AMPHENOL NETWORK SOLUTIONS, INC | Fiber trough coupling system |
6450458, | Jun 01 2000 | Panduit Corp.; Panduit Corp | Cable duct coupler with locking clip |
6454485, | Mar 10 1999 | Ki Mobility, LLC | Bi-directional retainer |
6463631, | May 17 2000 | KITAGAWA INDUSTRIES CO , LTD | Binding tool |
6476327, | Jun 01 2000 | Panduit Corp.; Panduit Corp | Split fiber cover and raceway fitting |
6512875, | Oct 06 2000 | CommScope Technologies LLC | Optical cable troughs, fittings, and couplings |
6520192, | Nov 14 2001 | Extensible positioning device of the shank of an umbrella | |
6523791, | Jun 01 2000 | Panduit Corp | Cable duct coupler |
6603073, | Sep 12 2001 | CommScope EMEA Limited; CommScope Technologies LLC | Snap together cable trough system |
6634605, | Jun 01 2000 | Panduit Corp. | Cable duct coupler |
6634825, | Sep 18 2000 | GENERAL DYNAMICS MISSION SYSTEMS, INC | Apparatus for joining cylindrical sections |
6709186, | Nov 16 2001 | CommScope EMEA Limited; CommScope Technologies LLC | Coupler for cable trough |
6715719, | Mar 27 2002 | CommScope EMEA Limited; CommScope Technologies LLC | Coupler for cable trough |
6810191, | Jul 20 2001 | CommScope EMEA Limited; CommScope Technologies LLC | Cable trough cover |
7029195, | Mar 27 2002 | CommScope EMEA Limited; CommScope Technologies LLC | Coupler for cable trough |
7093997, | Mar 27 2002 | CommScope EMEA Limited; CommScope Technologies LLC | Coupler for cable trough |
7175137, | Nov 16 2001 | CommScope EMEA Limited; CommScope Technologies LLC | Coupler for cable trough |
7246778, | Mar 27 2003 | Panduit Corp | Releasable barb assembly |
20020006312, | |||
20020096606, | |||
20030147690, | |||
20030177628, | |||
20030183731, | |||
20030183732, | |||
20040159750, | |||
20060210356, | |||
20060261240, | |||
D348651, | Apr 01 1991 | ADC Telecommunications, Inc. | Fiber trough coupling |
D402262, | Dec 06 1996 | Panduit Corp.; Panduit Corp | Straight dual raceway fitting |
D402263, | Dec 06 1996 | Panduit Corp.; Panduit Corp | Straight single raceway fitting |
D413306, | Dec 06 1996 | Panduit Corp. | Right angle single raceway fitting |
D419962, | Jan 13 1998 | Panduit Corp. | Raceway outlet station |
D430543, | Feb 07 2000 | Panduit Corp. | Raceway cover |
D447737, | Dec 06 1996 | Panduit Corp. | Right angle dual raceway fitting |
DE10212285, | |||
DE3636412, | |||
EP315023, | |||
EP486442, | |||
EP571307, | |||
EP874260, | |||
EP1033800, | |||
EP1160949, | |||
EP1160950, | |||
EP1249912, | |||
FR1479341, | |||
GB1342085, | |||
GB549840, | |||
WO75550, | |||
WO2086576, | |||
WO218991, | |||
WO231939, | |||
WO233445, | |||
WO2004006400, | |||
WO9906746, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 19 2007 | BECK, RONALD A | ADC Telecommunications, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018918 | /0976 | |
Feb 21 2007 | ADC Telecommunications, Inc. | (assignment on the face of the patent) | / | |||
Sep 30 2011 | ADC Telecommunications, Inc | TYCO ELECTRONICS SERVICES GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036060 | /0174 | |
Aug 28 2015 | TYCO ELECTRONICS SERVICES GmbH | CommScope EMEA Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036956 | /0001 | |
Aug 28 2015 | CommScope EMEA Limited | CommScope Technologies LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037012 | /0001 | |
Dec 20 2015 | CommScope Technologies LLC | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT TERM | 037513 | /0709 | |
Dec 20 2015 | CommScope Technologies LLC | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT ABL | 037514 | /0196 | |
Apr 04 2019 | JPMORGAN CHASE BANK, N A | REDWOOD SYSTEMS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 048840 | /0001 | |
Apr 04 2019 | JPMORGAN CHASE BANK, N A | Allen Telecom LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 048840 | /0001 | |
Apr 04 2019 | JPMORGAN CHASE BANK, N A | Andrew LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 048840 | /0001 | |
Apr 04 2019 | JPMORGAN CHASE BANK, N A | COMMSCOPE, INC OF NORTH CAROLINA | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 048840 | /0001 | |
Apr 04 2019 | JPMORGAN CHASE BANK, N A | CommScope Technologies LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 048840 | /0001 | |
Apr 04 2019 | COMMSCOPE, INC OF NORTH CAROLINA | JPMORGAN CHASE BANK, N A | TERM LOAN SECURITY AGREEMENT | 049905 | /0504 | |
Apr 04 2019 | ARRIS ENTERPRISES LLC | JPMORGAN CHASE BANK, N A | TERM LOAN SECURITY AGREEMENT | 049905 | /0504 | |
Apr 04 2019 | CommScope Technologies LLC | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT | 049892 | /0051 | |
Apr 04 2019 | ARRIS TECHNOLOGY, INC | JPMORGAN CHASE BANK, N A | TERM LOAN SECURITY AGREEMENT | 049905 | /0504 | |
Apr 04 2019 | RUCKUS WIRELESS, INC | JPMORGAN CHASE BANK, N A | TERM LOAN SECURITY AGREEMENT | 049905 | /0504 | |
Apr 04 2019 | ARRIS SOLUTIONS, INC | JPMORGAN CHASE BANK, N A | TERM LOAN SECURITY AGREEMENT | 049905 | /0504 | |
Apr 04 2019 | COMMSCOPE, INC OF NORTH CAROLINA | JPMORGAN CHASE BANK, N A | ABL SECURITY AGREEMENT | 049892 | /0396 | |
Apr 04 2019 | CommScope Technologies LLC | JPMORGAN CHASE BANK, N A | ABL SECURITY AGREEMENT | 049892 | /0396 | |
Apr 04 2019 | ARRIS ENTERPRISES LLC | JPMORGAN CHASE BANK, N A | ABL SECURITY AGREEMENT | 049892 | /0396 | |
Apr 04 2019 | ARRIS TECHNOLOGY, INC | JPMORGAN CHASE BANK, N A | ABL SECURITY AGREEMENT | 049892 | /0396 | |
Apr 04 2019 | RUCKUS WIRELESS, INC | JPMORGAN CHASE BANK, N A | ABL SECURITY AGREEMENT | 049892 | /0396 | |
Apr 04 2019 | CommScope Technologies LLC | JPMORGAN CHASE BANK, N A | TERM LOAN SECURITY AGREEMENT | 049905 | /0504 | |
Apr 04 2019 | ARRIS SOLUTIONS, INC | JPMORGAN CHASE BANK, N A | ABL SECURITY AGREEMENT | 049892 | /0396 |
Date | Maintenance Fee Events |
Sep 17 2012 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 19 2016 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Nov 02 2020 | REM: Maintenance Fee Reminder Mailed. |
Apr 19 2021 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 17 2012 | 4 years fee payment window open |
Sep 17 2012 | 6 months grace period start (w surcharge) |
Mar 17 2013 | patent expiry (for year 4) |
Mar 17 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 17 2016 | 8 years fee payment window open |
Sep 17 2016 | 6 months grace period start (w surcharge) |
Mar 17 2017 | patent expiry (for year 8) |
Mar 17 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 17 2020 | 12 years fee payment window open |
Sep 17 2020 | 6 months grace period start (w surcharge) |
Mar 17 2021 | patent expiry (for year 12) |
Mar 17 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |