When slide operation of a finger on a sweep type fingerprint sensor is not constant, it is difficult to construct a general image of a fingerprint. An inspection region, which is used to find a difference between a latest partial image read by a sweep type fingerprint sensor and an already acquired partial image, is set in the already acquired partial image along a displacement direction of a plurality of consecutive already acquired partial images. A retrieval range for a position of superposition of the latest partial image on the already acquired partial image is set on the basis of a position of the inspection region. displacement of the latest partial image with respect to the already acquired partial image is caused in the retrieval range and a difference between the already acquired partial image and the latest partial image concerning the inspection region is found every displacement. In addition, displacement of the latest partial image corresponding to a minimum difference quantity among the found difference quantities is determined as the position of superposition, and the latest partial image is disposed in the position of superposition with respect to the already acquired partial image and the latest partial image is stored.
|
1. An image construction method, in which an apparatus equipped with a sensor mechanism to read a series of partial images representing a fingerprint from a finger which conducts a slide operation
successively stores partial images read by the sensor mechanism,
sets an inspection region, which is used to find a difference quantity between a latest partial image and an already acquired partial image in the successively stored partial images, in the already acquired partial image along a displacement direction of a plurality of consecutive already acquired partial images,
sets a retrieval range for a position of superposition of the latest partial image on the already acquired partial image on the basis of a position of the inspection region,
causes displacement of the latest partial image with respect to the already acquired partial image in the retrieval range and finds a difference quantity between the already acquired partial image and the latest partial image concerning the inspection region every displacement,
determines displacement of the latest partial image corresponding to a minimum difference quantity among the found difference quantities as the position of superposition, and
disposes the latest partial image in the position of superposition with respect to the already acquired partial image and stores the latest partial image.
7. A computer program stored on a computer readable storage medium that when executed causes a computer connected to a sensor mechanism to read a series of partial images representing a fingerprint from a finger which conducts a slide operation, the computer program causing the computer to execute the steps of:
successively storing partial images read by the sensor mechanism,
setting an inspection region, which is used to find a difference quantity between a latest partial image and an already acquired partial image in the successively stored partial images, in the already acquired partial image along a displacement direction of a plurality of consecutive already acquired partial images,
setting a retrieval range for a position of superposition of the latest partial image on the already acquired partial image on the basis of a position of the inspection region,
causing displacement of the latest partial image with respect to the already acquired partial image in the retrieval range and finding a difference quantity between the already acquired partial image and the latest partial image concerning the inspection region every displacement,
determining displacement of the latest partial image corresponding to a minimum difference quantity among the found difference quantities as the position of superposition, and
disposing the latest partial image in the position of superposition with respect to the already acquired partial image and storing the latest partial image.
4. A fingerprint image construction apparatus including a sensor mechanism which reads a series of partial images representing a fingerprint from a finger which conducts a slide operation, a memory mechanism which successively stores the series of partial images read by the sensor mechanism, and a control mechanism which conducts on the series of partial images stored by the memory mechanism, wherein
the control mechanism comprises:
a retrieval condition determination unit which sets an inspection region, which is used to find a difference quantity between a latest partial image and an already acquired partial image in the partial images successively stored by the memory mechanism, in the already acquired partial image along a displacement direction of a plurality of consecutive already acquired partial images, and sets a retrieval range for a position of superposition of the latest partial image on the already acquired partial image on the basis of a position of the inspection region;
a difference quantity computation unit which causes displacement of the latest partial image with respect to the already acquired partial image in the retrieval range, and finds a difference quantity between the already acquired partial image and the latest partial image concerning the inspection region every displacement;
a position relation computation unit which determines displacement of the latest partial image corresponding to a minimum difference quantity among the found difference quantities as the position of superposition; and
an image disposition unit which disposes the latest partial image in the position of superposition with respect to the already acquired partial image in the memory mechanism.
2. The image construction method according to
3. The image construction method according to
5. The image construction apparatus according to
6. The image construction apparatus according to
8. The computer program according to
9. The computer program according to
|
1. Field of the Invention
The present invention relates to a technique of generating a fingerprint image to be used in fingerprint collation processing. In particular, the present invention relates to a technique of using a sensor mechanism to read a series of partial images representing a fingerprint from a finger which conducts slide operation and constructing a general image of the fingerprint from the series of partial images.
2. Description of the Related Art
As a kind of a conventional sensor mechanism to read a fingerprint image, there is the so-called sweep type fingerprint sensor. This sweep type fingerprint sensor has a sensor plane that is substantially the same in lateral width as a finger and that is shorter in longitudinal length than the whole fingerprint. The sweep type fingerprint sensor is a mechanism which continuously acquires partial images of a fingerprint from a finger which moves in substantially one direction. An image which can be acquired at each read timing of the sweep type fingerprint sensor has such a size as to be a part of the whole fingerprint. In order to acquire an image of the whole fingerprint, therefore, it is necessary to construct a general image joining a plurality of partial images successively read.
In constructing a general image from partial images of a fingerprint, there is, for example, a method of gradually shifting two consecutive partial images to overlap each other and determining a superposing position of both images on the basis of a difference between both images in the overlapping portion. In this method, a method of restricting a calculation subject of the difference to an inspection region which is a part of a partial image is adopted to fast calculate the difference between both images.
As a conventional method for determining an image region such as the inspection region, there is, for example, a method described in Japanese Patent Application Laid-Open No. 2003-208620. According to this method, a predetermined region in an input image, expected to overlap a preceding image is designated as a noted region, and a feature region corresponding to the inspection region is detected from the noted region. And a similar region that is the most similar to the feature region is detected from the preceding image, and the both images are combined so as to make the detected similar region and the feature region in the input image coincide with each other.
In the method described in Japanese Patent Application Laid-Open No. 2003-208620, however, the noted region, i.e., the region in the input image expected to overlap the preceding image is set in the same position for any input image. Only when the finger has slid in a predetermined one direction, therefore, it becomes possible to superpose the input image properly. For example, if the finger is slid in a direction opposite to the prescribed direction, therefore, a situation where the noted region in the input image does not correspond to the preceding image occurs and consequently the input image cannot be superposed on the preceding image. Furthermore, for example, when the finger does not slide smoothly on the sensor in one direction, a momentary motion of the finger substantially in the reverse direction is in fact caused. In such a case as well, however, a situation similar to the situation described above occurs. Therefore, it becomes difficult to construct a proper image of the whole fingerprint.
The present invention has been achieved to solve the problems. An object of the present invention is to provide an image construction method which is less susceptible to an influence of the slide direction of the finger in constructing the image of the whole fingerprint.
An image construction method according to the present invention is a method, in which an apparatus equipped with a sensor mechanism to read a series of partial images representing a fingerprint from a finger which conducts a slide operation, successively stores partial images read by the sensor mechanism, sets an inspection region, which is used to find a difference quantity between a latest partial image and an already acquired partial image in the successively stored partial images, in the already acquired partial image along a displacement direction of a plurality of consecutive already acquired partial images, sets a retrieval range for a position of superposition of the latest partial image on the already acquired partial image on the basis of a position of the inspection region, causes displacement of the latest partial image with respect to the already acquired partial image in the retrieval range and finds a difference quantity between the already acquired partial image and the latest partial image concerning the inspection region every displacement, determines displacement of the latest partial image corresponding to a minimum difference quantity among the found difference quantities as the position of superposition, and disposes the latest partial image in the position of superposition with respect to the already acquired partial image and stores the latest partial image.
A fingerprint image construction apparatus according to the present invention includes a sensor mechanism which reads a series of partial images representing a fingerprint from a finger which conducts a slide operation, a memory mechanism which successively stores the series of partial images read by the sensor mechanism, and a control mechanism which conducts on the series of partial images stored by the memory mechanism, and the control mechanism includes a retrieval condition determination unit which sets an inspection region, which is used to find a difference quantity between a latest partial image and an already acquired partial image in the partial images successively stored by the memory mechanism, in the already acquired partial image along a displacement direction of a plurality of consecutive already acquired partial images, and sets a retrieval range for a position of superposition of the latest partial image on the already acquired partial image on the basis of a position of the inspection region; a difference quantity computation unit which causes displacement of the latest partial image with respect to the already acquired partial image in the retrieval range, and finds a difference quantity between the already acquired partial image and the latest partial image concerning the inspection region every displacement; a position relation computation unit which determines displacement of the latest partial image corresponding to a minimum difference quantity among the found difference quantities as the position of superposition; and an image disposition unit which disposes the latest partial image in the position of superposition with respect to the already acquired partial image in the memory mechanism.
A program according to the present invention causes a computer connected to a sensor mechanism to read a series of partial images representing a fingerprint from a finger which conducts a slide operation to execute successively storing partial images read by the sensor mechanism, setting an inspection region, which is used to find a difference quantity between a latest partial image and an already acquired partial image in the successively stored partial images, in the already acquired partial image along a displacement direction of a plurality of consecutive already acquired partial images, setting a retrieval range for a position of superposition of the latest partial image on the already acquired partial image on the basis of a position of the inspection region, causing displacement of the latest partial image with respect to the already acquired partial image in the retrieval range and finding a difference quantity between the already acquired partial image and the latest partial image concerning the inspection region every displacement, determining displacement of the latest partial image corresponding to a minimum difference quantity among the found difference quantities as the position of superposition, and disposing the latest partial image in the position of superposition with respect to the already acquired partial image and storing the latest partial image.
According to the present invention, the inspection region used to find the difference between the already acquired partial image and the latest partial image is set along the displacement direction of a plurality of already acquired partial images in the construction processing of the general image of a fingerprint. Therefore, there is a merit that the slide direction of the finger with respect to the sensor mechanism is not susceptible to a restriction. In addition, even if there is a variation such as a local increase in the movement speed of the finger, it can be coped with the variation more easily, resulting in an effect.
Hereafter, embodiments of the present invention will be described in detail with reference to the drawings.
A general view of the sweep type fingerprint sensor 10 is shown in
The partial image storage unit 20a has such a capacity as to be able to store a plurality of partial images. In the illustrated example, the partial image storage unit 20a includes a storage region 121 and a storage region 122 to store two partial images. The latest partial image input from the sweep type fingerprint sensor 10 is stored in the storage region 122. An already partial image corresponding to a preceding image for the latest partial image, i.e., the second latest partial image at the current time point is stored in the storage region 121.
An example of partial images stored in the storage region 121 and the storage region 122 is shown in
In
The functional configuration of the control mechanism 30 shown in
A difference computation unit 32 calculates the difference between a partial image serving as reference, i.e., the already acquired partial image stored in the storage region 121 and the latest partial image stored in the storage region 122 which is a partial image to be subject to processing, on the basis of the inspection region and the displacement retrieval range output from the retrieval condition determination unit 31, and outputs a combination of the displacement and the difference of the result of calculation.
The position relation computation unit 33 determines a position of superposition of the latest partial image on the already acquired partial image on the basis of the combination of the displacement and the difference output from the difference computation unit 32. In this determination, a relative position relation of the latest partial image to the already acquired partial image is found. The above-described information concerning the relative position stored by the retrieval condition determination unit 31 is the position information of the superposition determined by the position relation computation unit 33.
A disposition coordinate computation unit 34 calculates disposition coordinates that should be taken in the general image storage unit 20b by the latest partial image stored in the partial image storage unit 20a on the basis of the relative position relation calculated by the position relation computation unit 33 and the disposition coordinates of the partial image disposed the last time. The calculated disposition coordinates are stored inside in preparation for computation to be conducted next time. An image disposition unit 35 disposes the latest partial image in the general image storage unit 20b in accordance with the result of calculation conducted by the disposition coordinate computation unit 34.
An operation procedure in the fingerprint image construction apparatus 100 will now be described with reference to a flow chart shown in
The retrieval condition determination unit 31 sets the inspection region and the displacement retrieval range to be used for the latest partial image 12 to be subject to construction processing this time. The term “inspection region” means a region that becomes the subject of calculation of the difference between the latest partial image 12 and the already acquired partial image 11. This inspection region is set with respect to the already acquired partial image 11. The term “displacement retrieval range” means a range, in the y axis direction, of the displacement of the latest partial image 12 on the already acquired partial image 11 given to determine the position of superposition of the latest partial image 12 on the already acquired partial image 11.
First, a method of determining the inspection region will now be described with reference to
Selection of the inspection region will now be described concretely with reference to
If the sign of the sum total of the relative position relations, i.e., the record of “displacement direction” shown in
In the above described method, the movement quantity D shown in
Under the judgment, a position of an inspection region in the reading order “7” at the current time point is fixed on a position at a distance of a movement quantity d′ which is smaller than a movement quantity d adopted for the order “6,” from a position of an inspection region set for the reading order “6” the last time. This will now be described further with reference to
Subsequently, the retrieval condition determination unit 31 sets a displacement retrieval range to retrieve a position of superposition of the latest partial image 12 on the already acquired partial image 11 on the basis of the position of the inspection region determined according to the procedure described above.
A principle of setting the displacement retrieval range will now be described with reference to
If the inspection region 41 is already set in the already acquired partial image 11, the retrieval condition determination unit 31 sets displacement retrieval ranges Sa1 and Sb1 shown in
In the case of the inspection region 41, the inspection region 41 is disposed at a distance from the central part of the already acquired partial image 11 along the plus direction of the y axis. Therefore, a displacement retrieval range Sb1 in the plus direction is larger than a displacement retrieval range Sa1 in the minus direction (Sa1<Sb1). In other words, when the relative position relation among partial images successively read tends to conduct transition in the plus direction of the y axis, the retrieval range in the plus direction is set to be larger than the retrieval range in the minus direction. This is advantageous in the retrieval in the plus direction when the difference computation unit 32 retrieves the position of superposition of the latest partial image 12 on the already acquired partial image 11 later.
Relations between the replacement retrieval ranges Sa1 and Sb1 for the inspection region 41 shown in
Conversely, as for the inspection region 42 set when the relative position relation of the partial image tends to conduct transition in the minus direction of the y axis, the displacement retrieval range Sa2 in the minus direction becomes larger than the displacement retrieval range Sb2 in the plus direction as shown in
Since the movement speed of the finger continuously changes, there is strong correlation between the relative position relation found between partial images calculated in the immediate past and the relative position relation to be currently calculated. The retrieval condition determination method heretofore described is based on this fact.
By the way, in the early period of the fingerprint image construction processing, the quantity of read partial images is small and consequently it is difficult to judge the immediate past displacement direction of already acquired partial images. In the early period of the processing, therefore, the retrieval condition shown in
When the retrieval condition determination unit 31 determines the inspection region and the displacement retrieval range, effects of the present invention are obtained sufficiently by conducting the determination only for the y direction in the above-described method considering that the finger moves substantially in the y direction. However, it is also possible to conduct determination in the x direction as well by using a similar method.
The retrieval condition determination unit 31 outputs the position of the inspection region and the displacement retrieval range determined by using the method described heretofore to the difference computation unit 32 as the retrieval condition at this time, and stores this retrieval condition inside in preparation for processing conducted next time.
The difference computation unit 32 calculates a difference quantity between the already acquired partial image 11 serving as the reference stored in the storage region 121 and the latest partial image 12 serving as the processing subject stored in the storage region 122 in accordance with the retrieval condition obtained from the retrieval condition determination unit 31. In calculating the difference quantity, the difference computation unit 32 displaces the already acquired partial image 11 and the latest partial image 12 in the displacement retrieval range output from the retrieval condition determination unit 31. In other words, the difference computation unit 32 gradually shifts the already acquired partial image 11 and the latest partial image 12 and superpose the latest partial image 12 on the already acquired partial image 11. At each time of superposition, the difference computation unit 32 successively finds difference quantities between gray level data at pixels existing in the inspection region in the already acquired partial image 11 and gray level data at pixels existing in the corresponding region in the latest partial image 12, and finds the sum total of the difference quantities found for all pixels. A difference quantity obtained by this sum total is a difference quantity found at each time of superposition.
The difference computation unit 32 combines the difference quantity obtained at the time of each superposition with the displacement of the latest partial image 12 at that time point, and outputs a result to the position relation computation unit 33 (step S11 in
The position relation computation unit 33 determines the position of superposition of the latest partial image 12 on the already acquired partial image 11, i.e., the position of superposition of the latest partial image 12 on the already acquired partial image 11 in a mutually overlapping place, on the basis of combination of the difference quantity and displacement output from the difference computation unit 32. At that time, the position relation computation unit 33 pays attention to the minimum difference quantity among the above-described difference quantities obtained from the difference computation unit 32, and determines the displacement corresponding to the minimum difference quantity as the position of superposition (step S12 in
The disposition coordinate computation unit 34 calculates the disposition coordinates of the origin of the latest partial image 12 to be disposed in the general image, on the basis of coordinates of the origin of the already acquired partial image 11 serving as the reference in the general image and the relative position relation obtained from the position relation computation unit 33. The coordinate values of the origin of the already acquired partial image 11 have been stored in computation conducted last time. The origin of a partial image means reference coordinates set in common to all partial images read by the sweep type fingerprint sensor 10. For example, specific vertex coordinates or the like in a rectangle formed by a partial image are adopted as the origin. The disposition coordinate computation unit 34 outputs the coordinate values of the origin of the latest partial image 12 in the general image to the image disposition unit 35, and stores the coordinate values in the disposition coordinate computation unit 34 in preparation for the computation conducted next time (step S13 in
Finally, the image disposition unit 35 disposes the latest partial image 12 so as to superpose it on the already acquired partial image 11 in the general image storage unit 20b, on the basis of the coordinate values output by the disposition coordinate computation unit 34 (step S14). As a result, the latest partial image 12 is disposed on the already acquired partial image 11 as shown in, for example,
According to the fingerprint image construction apparatus 100 in the embodiment heretofore described, the inspection region used to find the difference between both images is set along the displacement direction of a plurality of already acquired partial images when superposing the latest partial image 12 on the already acquired partial image 11 in the construction processing of the fingerprint image. Therefore, restriction on the slide direction of the finger with respect to the sweep type fingerprint sensor 10 can be relaxed. As a result, convenience in use of the sweep type fingerprint sensor 10 is improved.
The above-described operation procedure of the control mechanism 30 corresponds to a process of a program executed by a computer. Therefore, a device can be used as the fingerprint image construction apparatus 100 by introducing the program corresponding to the procedure into an information processing device, such as a personal computer or a personal digital assistant, having the sweep type fingerprint sensor 10.
Patent | Priority | Assignee | Title |
8126215, | Feb 10 2006 | Sony Corporation | Registration and collation of a rolled finger blood vessel image |
8358803, | May 05 2008 | Cross Match Technologies, Inc | Navigation using fourier phase technique |
8634604, | May 05 2008 | Cross Match Technologies, Inc | Method and system for enhanced image alignment |
Patent | Priority | Assignee | Title |
6289114, | Jun 14 1996 | Apple Inc | Fingerprint-reading system |
7043061, | Jun 27 2001 | Activcard Ireland Limited | Swipe imager with multiple sensing arrays |
20020012455, | |||
20030026458, | |||
JP2002245457, | |||
JP2002366950, | |||
JP2003208620, | |||
JP2003248820, | |||
JP2003248828, | |||
JP2003288160, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 20 2005 | IKEDA, MUNEHIRO | NEC INFONTIA CORPORATION | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016732 | /0816 | |
Jun 20 2005 | IKEDA, MUNEHIRO | NEC Infrontia Corporation | CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE S NAME AND ADDRESS PREVIOUSLY RECORDED ON REEL 16732 FRAME 816 | 017777 | /0974 | |
Jun 27 2005 | NEC Infrontia Corporation | (assignment on the face of the patent) | / | |||
Jul 01 2014 | NEC Infrontia Corporation | NEC PLATFORMS, LTD | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 034881 | /0078 |
Date | Maintenance Fee Events |
Aug 22 2012 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 01 2016 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 03 2020 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 17 2012 | 4 years fee payment window open |
Sep 17 2012 | 6 months grace period start (w surcharge) |
Mar 17 2013 | patent expiry (for year 4) |
Mar 17 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 17 2016 | 8 years fee payment window open |
Sep 17 2016 | 6 months grace period start (w surcharge) |
Mar 17 2017 | patent expiry (for year 8) |
Mar 17 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 17 2020 | 12 years fee payment window open |
Sep 17 2020 | 6 months grace period start (w surcharge) |
Mar 17 2021 | patent expiry (for year 12) |
Mar 17 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |