A pivoting strain relief bar assembly that is comprised of a patch panel rotatably coupled to a strain relief bar, where the patch panel and strain relief bar are also coupled to a conventional rack capable of supporting telecommunications or other electronic equipment. Cables that are to be terminated to the patch panel are secured to and supported by the strain relief bar. The strain relief bar is capable of locking in a substantially horizontal position and thus remains fixed while supporting a large number of network cables. The strain relief bar can also be unlocked and rotated, allowing a technician to access the patch panel without having to unnecessarily disconnect cables.
|
1. A strain relief bar assembly comprising:
a patch panel;
a side bracket coupled to the patch panel, the side bracket further comprising a latch tab;
a strain relief bar; and
a finger tab coupled to the strain relief bar, the finger tab further comprising a latch slot adapted to receive the latch tab, the finger tab being rotatably coupled to the side bracket such that when the latch tab is engaged with the latch slot, the strain relief bar is locked in position and will not rotate, and when the finger tab is deflected away from the side bracket, the latch tab of the side bracket disengages from the latch slots allowing the strain relief bar to freely rotate.
2. The strain relief bar assembly of
3. The strain relief bar assembly of
4. The strain relief bar assembly of
5. The strain relief bar assembly of
6. The strain relief bar assembly of
7. The strain relief bar assembly of
8. The strain relief bar assembly of
9. The strain relief bar assembly of
10. The strain relief bar assembly of
11. The strain relief bar assembly of
12. The strain relief bar assembly of
13. The strain relief bar assembly of
14. The strain relief bar assembly of
|
The Present Invention is directed to a device used to organize and support network cables and, more particularly, to a strain relief bar rotatably coupled to a data patch panel.
Local area networks and telecommunications connections often use data patch panels to enable inter or cross-connection between telecommunications equipment. Patch panels typically comprise a frame member having a plurality of connector locations wherein any of a plurality of jacks may be mounted. The jacks allow for rapid connection and disconnection of network cable between jacks in the same patch panel or between jacks located on different patch panels.
If network cables are haphazardly connected directly into the patch panel, many problems would result. Typically, the terminations at the terminal end of network cables are designed only to maintain a mating relationship with the jack. Excessive loads, such as a downward shear force due to the unsupported weight of the loose network cable, can overstress the cable terminations, causing them to break or disengage from the jack, resulting in the need to repair or replace the termination or the entire cable. Additionally, due to the heavy weight of the network cable, a small bending radius results where the cable bends downward under the influence of gravity near the point where the cable termination is connected to the jack. This tight bending radius can result in physical damage to the cable itself, or can lead to cable performance degradation. Finally, when a large number of cables are haphazardly routed to the patch panels, technicians would be unable to quickly disconnect and reconnect a group of cables and, thus, valuable time and money would be wasted whenever routine maintenance tasks were undertaken.
Various means have been developed to physically support and assist in the organization of network cables routed to a patch panel, such as the device illustrated in U.S. Pat. No. 6,600,106, entitled “Cable Management Bar and Patch Panel,” filed on 11 Jul. 2001 and issued to Standish et al. on 29 Jul. 2003 (the “'106 patent”). The '106 patent discloses a support bar that extends horizontally from the patch panel and is disposed in a direction that is generally normal to the longitudinal axis of the individual network cable strands. Network cable is connected to the support bar using conventional fasteners and is thus supported at a location near the point where the cable plug is inserted into the patch panel jack. As a result of this support, the cable does not sag at the point of entry into the jack and the large stresses on the cable plug, as well as the tight bending radius in the cable, are eliminated. Additionally, the support bar of the '106 patent allows for the cables to be organized, providing for the speedy identification of the terminal end of a particular cable and resulting in a reduction in the overall volume of the cable bundle, conserving valuable storage space.
However, the device of the '106 patent, and similar variants, is not without shortcomings. Specifically, the fixed horizontal bar blocks access to the jacks on the patch panel. When a technician must connect or disconnect cables from the jacks of the patch panels, the support bar of the '106 patent must be removed, requiring the disconnection, and ultimate reconnection, of all cables connected to the support bar from the jacks. This process is cumbersome and time-consuming for the technician, who often must consult a diagram to ensure that the correct cables are inserted into the correct jacks.
U.S. Pat. No. 5,575,665, entitled “Patch Panel with Hinged Tie Bar,” filed on 1 Dec. 1995 and issued to Shramawick et al. on 19 Nov. 1996 (the “665 patent”), attempted to overcome the problems associated with the '106 patent. The '665 patent discloses a horizontally disposed support bar that is rotatably coupled to a fixed hinge on the patch panel. The '665 patent is designed to allow the support bar to be rotated, thus moving the cables away from the patch panel and allowing the technician to access a specific area on the patch panel without removing unnecessary cables.
However, the '665 patent suffers from several drawbacks. Specifically, resistance to the rotation of the support bar is provided by friction and the support bar is thus unable to lock in any position. When using heavier network cable, such as Cat6 cable, the weight of the cable tends to pivot the support bar downward during normal operation of the support bar. This gradual downward rotation could block access to adjacent patch panels, resulting in the need for a technician to reposition multiple support bars in order to access a specific patch panel. Additionally, this gradual rotation of support bars could result in the pinching of network cables between adjacent support bars. Since the support bars are typically constructed from stamped sheet metal, the pinching of the cables could result in damage to the cables, requiring costly cable repair or replacement.
Thus, it would be desirable to provide an inexpensive and convenient means to quickly organize and support groups of cables that are routed into a patch panel using a pivoting support bar, and to additionally provide a means to prevent gradual rotation of the support bar while allowing for a fast and convenient method to unlock the support bar and rotate it to a convenient position.
A pivoting strain relief bar assembly that is comprised of a patch panel rotatably coupled to a strain relief bar, where the patch panel and strain relief bar are also coupled to a conventional rack capable of supporting telecommunications or other electronic equipment. Cables that are to be terminated to the patch panel are secured to and supported by the strain relief bar. The strain relief bar is capable of locking in a substantially horizontal position and thus remains fixed while supporting a large number of network cables. The strain relief bar can also be unlocked and rotated, allowing a technician to access the patch panel without having to unnecessarily disconnect cables.
The illustrated embodiments of the Present Invention are directed to a pivoting strain relief bar assembly for organizing and supporting network data cables.
Referring now to the Figures, in which like elements are represented by the same reference numerals, a pivoting strain relief bar assembly for organizing and supporting network data cables is generally indicated in
Pivoting strain relief bar assembly 10 also preferably includes a patch panel 14, an embodiment of which is illustrated in
Also disposed on the vertical planar face of the patch panel 14 is a plurality of input jacks 36. The input jacks 36 are adapted to receive and secure the termination located at the terminal end of a network cable 38. It is contemplated that the plug and jack configuration can be one of any known in the art or a combination thereof, including RJ45 plugs and jacks or 8P8C modular plugs and jacks.
Pivoting strain relief bar assembly 10 also preferably includes two side brackets 16, an embodiment of which is illustrated in
In this embodiment of the present invention, the bracket mounting face 40 also includes a bracket ratchet aperture 44, the bracket ratchet aperture 44 being disposed near the center of the bracket mounting face 40 and dimensioned to accept a mechanical fastening device, such as a bolt or screw, that secures the patch panel 14 to the support rack 12. However, it would be obvious to one skilled in the art that the bracket mounting face 40 can have any number of mounting apertures arranged to accommodate the support mounting apertures 26 of the support rack 12. Additionally, the bracket ratchet aperture 44 and bracket rack mount apertures 42 may take on any size and shape known in the art, including round holes or slots.
Each side bracket 16 also includes a planar bracket support surface 46, the bracket support surface 46 generally extends in a direction normal to the bracket mounting face 40 in a substantially vertical direction. The bracket support surface 46 includes a bracket hinge aperture 48, about which the strain relief bar 20 rotates. In one embodiment of the invention, the bracket hinge aperture 48 is located along the upper perimeter edge and near the longitudinal center of the bracket support surface 46. The bracket hinge aperture 48 is dimensioned to receive a bracket rivet 50, the bracket rivet 50 coupling the side bracket 16 to the strain relief bar 20.
Each side bracket 16 can also include at least one bracket latch tab 18 that is coupled to the bracket support surface 46. In one embodiment of the invention, a bracket latch tab 18 is integrally formed with the bracket support surface 46, but it is contemplated that the bracket latch tab 18 could be secured to the bracket support surface 46 in any way known in the art, including the use of mechanical fastening devices, adhesive bonding, or welding. In one embodiment of the invention, the bracket latch tab 18 is disposed on the terminal end of the bracket support surface 46, and is oriented such that the terminal end of the latch tab 18 points in a direction that is substantially toward the finger tab 22 of the strain relief bar 20 such that the terminal end of the latch tab 18 is capable of being received into the substantially vertical latch slot 24 located on the finger tab 22 of the strain relief bar 20. Other embodiments of the present invention may include multiple latch tabs 18 disposed on the bracket support surface 46. It would be obvious to one of skill in the art to dimension or position the latch tab 18 in any configuration that would facilitate engagement of the latch tab 18 with the latch slot 24 located on the finger tab 22 of the strain relief bar 20.
Pivoting strain relief bar assembly 10 also preferably includes a strain relief bar 20, an embodiment of which is illustrated in
As previously mentioned, the bracket engagement surface 52 is a generally vertical surface that is substantially parallel to the bracket support surface 46 of the side bracket 16 when the strain relief bar 20 is coupled to the side bracket 16. The bracket engagement surface 52 includes a pivoting hinge aperture 54 that is disposed near the terminal end of the bracket engagement surface 52. The pivoting hinge aperture 54 can be positioned and dimensioned to receive a bracket rivet 50, which serves to couple the side bracket 16 to the bracket engagement surface 52 of the strain relief bar 20. Before the bracket rivet 50 is secured, a nylon washer 56 is positioned between the bracket hinge aperture 48 on the bracket support surface 46 and the pivoting hinge aperture 54 on the bracket support surface 46. Thus, as the bracket rivet 50 is inserted into the bracket hinge aperture 48, the rivet is received into the aperture of the nylon washer 56. As the bracket rivet 50 is further inserted into the bracket hinge aperture 48, the bracket rivet is received into the pivoting hinge aperture 54 on the bracket engagement surface 52 of the strain relief bar 20. A rivet washer 58 is inserted over the portion of the bracket rivet 50 that protrudes from the bracket engagement surface 52. The rivet is then secured in position by any means known in the art, thus rotatably coupling the side bracket 16 and the strain relief bar 20.
As previously mentioned, the bracket engagement surface 52 of the strain relief bar 20 also includes an elongated finger tab 22 that can be integrally formed with the bracket engagement surface 52. The finger tab 22 includes a latch slot 24 positioned and dimensioned to receive the bracket latch tab 18 of the side bracket 16. The finger tab 22 is cantilevered from the bracket engagement surface 52 such that when a horizontal force is applied to the finger tab 22 in a direction substantially normal to the finger tab 22, the finger tab 22 can be horizontally displaced in a direction normal to the bracket engagement surface 52. When the finger tab 22 is displaced, the bracket latch tab 18 disengages from the latch slot 24 of the finger tab 22, thereby unlocking the strain relief bar 20 and allowing the strain relief bar 20 to freely rotate about the bracket rivet 50.
Strain relief bar 20 can also include a plurality of mushroom tabs 60. The mushroom tabs 60 have an elongated body with a head portion disposed at the terminal end of the elongated body, the head portion having a width greater than the width of the elongated body. The plurality of mushroom tabs 60 are integrally formed with a tab runner 62 that extends longitudinally across the strain relief bar 20. The plurality of mushroom tabs 60 are arrayed such that the elongated bodies of the mushroom tabs are substantially normal to the longitudinal axis of the tab runner 62, and the elongated bodies of the individual mushroom tabs 60 are substantially parallel. The mushroom tabs 60 and the space between adjacent mushroom tabs 60 are dimensioned such that cables 38 that are routed to the patch panel input jacks 36 can be secured to the mushroom tabs 60 using fasteners commonly known in the art, such as nylon cable ties or TAK-TY® hook and loop cable ties. To assist in fastening cables 38 to the strain relief bar 20, the tab runner 62 includes one or more runner pockets 64 located on the edge of the tab runner 62. The one or more runner pockets 64 are adapted to receive a TAK-TY® cable tie when the TAK-TY® cable tie is secured to the strain relief bar 20 in a direction normal to the length of the strain relief bar 20.
Strain relief bar 20 can also include a curved flange 66 that is integrally formed with the strain relief bar 20. When the strain relief bar 20 is in a substantially horizontal locked position, the curved flange 66 extends downwardly from the strain relief bar 20 following a substantially curved trajectory. The curved flange 66 also includes one or more elongated flange slots 68 that are disposed longitudinally along the curved flange 66 and dimensioned to receive a TAK-TY® cable tie that is secured to the strain relief bar 20 in a direction normal to the length of the strain relief bar 20. The terminal ends of the curved flange 66 are positioned to act as an emergency stop to prevent overextension and possible permanent deformation of the finger tab 22. Specifically, when an excessive force is applied to the finger tab 22, the finger tab 22 will eventually contact the terminal edge of the curved flange 66, and will thus be prevented from further displacement.
Strain relief bar 20 can also include an integrally formed vertical tab 70. Vertical tab 70 extends perpendicularly upward from the strain relief bar 20, and is positioned between the mushroom tabs 60 and the bracket engagement surface 52. The vertical tab 70 functions to prevent cables 38 from falling into the gap that is created between the bracket support surface 46 of the side bracket 16 and the bracket engagement surface 52 of the strain relief bar 20 when the strain relief bar 20 is rotated.
The operation of the pivoting strain relief bar assembly 10 will now be described in detail with reference to
To mount the pivoting strain relief bar assembly 10 to the support rack 12, the strain relief bar 20 is first secured to the patch panel 14. Specifically, a ratchet fastener 72 is inserted into the fastener slot 34 on the panel mounting flange 30 of the patch panel 14. The ratchet fastener is then received into the bracket ratchet aperture 44 on the bracket mounting face of the side bracket 16. The ratchet fastener 72 is then tightened, securing the strain relief bar 20 to the patch panel 14. This process is repeated for the remaining side bracket 16.
To mount the strain relief bar 20 and the patch panel 14 to the support rack 12, the strain relief bar 20 and the patch panel 14 are positioned such that the bracket mounting face 40 of each side bracket 16 mates with the forward facing flange of support rack 12, as illustrated in
Cables 38 can then be inserted into the input jacks 36 of the patch panel 14. When the desired number of cables 38 are connected to the patch panel 14, the cables can be secured to the strain relief bar using any means known in the art. For example, the cables 38 can be secured to the mushroom tabs using nylon cable ties. Alternatively, the cables can be secured to the strain relief bar 20 using TAK-TY® cable ties, wherein the TAK-TY® cable tie is wrapped and secured transversely around the strain relief bar 20. The TAK-TY® cable tie can be further secured to the strain relief bar 20 by inserting the TAK-TY® cable tie into the flange slots 68 of the curved flange 66 or by seating the TAK-TY® cable tie in a runner pocket 64 on the strain relief bar 20. Once the cables 38 have been secured to the strain relief bar 20, the cables 38 can be routed outward towards the support rack 12 for further routing.
It is also contemplated that the cables 38 could be inserted into the input jacks 36 of the patch panel 14 prior to the attachment of the pivoting strain relief bar assembly 10 to the support rack 12. In this case, the cables 38 are first attached to the patch panel 14 and secured to the strain relief bar 20 as previously described. The patch panel 14 and the strain relief bar 20 are then secured to the support rack 12 as previously described.
When a technician must access the input jacks 36 of the patch panel 14, the technician applies an inward horizontal force to the finger tabs 22 of the strain relief bar 20. When the finger tabs 22 are displaced, the bracket latch tabs 18 disengage from the latch slot 24 on the finger tab 22, thereby allowing the strain relief bar 20 to freely rotate about the bracket rivet 50. The strain relief bar 20 can then be rotated to a desired position, and be fixed in that position due to the frictional engagement of the nylon washer 56 on the bracket support surface 46 and the bracket engagement surface 52. When the technician wishes to re-secure the strain relief bar 20, the finger tabs 22 can be depressed and the strain relief bar 20 can be rotated back to a horizontal position where the latch slots 24 are aligned with the bracket latch tabs 18. In this position, when the finger tabs 22 are released, the bracket latch tabs 18 are received into the latch slots 24, and the strain relief bar 20 is locked in the horizontal position.
The disclosed Present Invention provides a pivoting strain relief bar assembly that provides adequate structural support for a large number of network cables, and, by allowing for the rotation of the support device, provides a convenient means for a technician to access a patch panel without removing all cables terminated to the patch panel. It should be noted that the above-described and illustrated embodiments and preferred embodiments of the Present Invention are not an exhaustive listing of the forms such a pivoting strain relief bar assembly in accordance with the Present Invention might take; rather, they serve as exemplary and illustrative of embodiments of the Present Invention as presently understood. Many other forms of the Present Invention exist and are readily apparent to one having ordinary skill in the art. For instance, other embodiments of finger tab 22 are also possible without departing from the scope and spirit of the Present Invention. Specifically, the latch tab 18 may be located in any of a number of positions on the finger tab 22. Furthermore, multiple latch tabs 18 designed to engage multiple latch slots 24 can also be used. Moreover, it is contemplated that the strain relief bar 20 can have one finger tab 22 that engages one latch tab 18 on a side bracket 16. Alternatively, as previously described, the strain relief bar 20 can have two finger tabs 22, with a finger tab 22 being coupled to each of the two bracket engagement surfaces 52 of the strain relief bar 20 and each finger tab 22 being designed to engage at least one latch tab 18 coupled to each side bracket 16.
Additionally, the side bracket 16 and the strain relief bar 20 can be rotatably coupled by using any of a number of devices known in the art, including a screw, a bolt, a rivet or a pin. Also, the side bracket 16 and patch panel 14 can be secured to the support rack 12 by any means known in the art, including a bolt or a pin, or by using any number or configuration of mounting apertures. Moreover, it would be understood by one of ordinary skill in the art that features described as “integrally formed” could also be separately formed and coupled to a different feature by any securing means known in the art, including welding, adhesive bonding, or mechanical fastening.
Herbst, Paul M., Fransen, Robert E., Donnell, Mark J.
Patent | Priority | Assignee | Title |
10084727, | Jul 29 2014 | Mellanox Technologies Ltd | Cable backplane |
10094996, | Aug 29 2008 | Corning Optical Communications, LLC | Independently translatable modules and fiber optic equipment trays in fiber optic equipment |
10116074, | Apr 30 2017 | MELLANOX TECHNOLOGIES, LTD.; Mellanox Technologies, LTD | Graded midplane |
10120153, | Aug 29 2008 | Corning Optical Communications, LLC | Independently translatable modules and fiber optic equipment trays in fiber optic equipment |
10126514, | Aug 29 2008 | Corning Optical Communications, LLC | Independently translatable modules and fiber optic equipment trays in fiber optic equipment |
10167981, | Dec 23 2015 | CYBER POWER SYSTEMS, INC.; CYBER POWER SYSTEMS, INC | Extension-type cable tie frame for power cable |
10222570, | Aug 29 2008 | Corning Optical Communications LLC | Independently translatable modules and fiber optic equipment trays in fiber optic equipment |
10231353, | Mar 28 2016 | Amazon Technologies, Inc. | Patch panel assembly |
10365445, | Apr 24 2017 | MELLANOX TECHNOLOGIES, LTD. | Optical modules integrated into an IC package of a network switch having electrical connections extend on different planes |
10416405, | Aug 29 2008 | Corning Optical Communications LLC | Independently translatable modules and fiber optic equipment trays in fiber optic equipment |
10422971, | Aug 29 2008 | Corning Optical Communicatinos LLC | High density and bandwidth fiber optic apparatuses and related equipment and methods |
10444456, | Aug 29 2008 | Corning Optical Communications LLC | High density and bandwidth fiber optic apparatuses and related equipment and methods |
10459184, | Aug 29 2008 | Corning Optical Communications LLC | High density and bandwidth fiber optic apparatuses and related equipment and methods |
10481335, | Feb 02 2011 | Corning Optical Communications LLC | Dense shuttered fiber optic connectors and assemblies suitable for establishing optical connections for optical backplanes in equipment racks |
10547145, | Feb 05 2018 | CHATSWORTH PRODUCTS, INC | Electric receptacle with locking feature |
10564378, | Aug 29 2008 | Corning Optical Communications LLC | High density and bandwidth fiber optic apparatuses and related equipment and methods |
10606014, | Aug 29 2008 | Corning Optical Communications LLC | Independently translatable modules and fiber optic equipment trays in fiber optic equipment |
10653031, | Apr 23 2018 | Schneider Electric Industries SAS | Smart module for patch enclosure panel receiving data transfer cables |
10694265, | Dec 09 2016 | MCQ TECH GMBH | Cable conduit for distribution panel and distribution panel comprising a cable conduit |
10827640, | Apr 12 2017 | International Business Machines Corporation | Secure add-on brackets and bezel for locking devices and/or slots in a computer rack |
10827642, | Apr 20 2018 | KING SLIDE WORKS CO., LTD.; KING SLIDE TECHNOLOGY CO., LTD.; KING SLIDE WORKS CO , LTD ; KING SLIDE TECHNOLOGY CO , LTD | Rack system and cable supporting assembly thereof |
10852499, | Aug 29 2008 | Corning Optical Communications LLC | High density and bandwidth fiber optic apparatuses and related equipment and methods |
10855030, | Feb 05 2018 | Chatsworth Products, Inc. | Electrical receptacle with locking feature |
10952345, | Jun 06 2018 | Cisco Technology, Inc.; Cisco Technology, Inc | Adjustable cable management bracket for modular electronic system |
11086089, | Aug 29 2008 | Corning Optical Communications LLC | High density and bandwidth fiber optic apparatuses and related equipment and methods |
11092767, | Aug 29 2008 | Corning Optical Communications LLC | High density and bandwidth fiber optic apparatuses and related equipment and methods |
11294135, | Aug 29 2008 | Corning Optical Communications LLC | High density and bandwidth fiber optic apparatuses and related equipment and methods |
11294136, | Aug 29 2008 | Corning Optical Communications LLC | High density and bandwidth fiber optic apparatuses and related equipment and methods |
11322891, | Feb 05 2018 | Chatsworth Products, Inc. | Electrical receptacle with locking feature |
11342718, | Mar 27 2015 | COMMSCOPE CONNECTIVITY SPAIN, S L | Latch for telecommunications connector |
11356751, | Jun 19 2017 | CommScope Technologies LLC | High density bezel for patch panel |
11356752, | Nov 10 2017 | CommScope Technologies LLC | Telecommunications panel with grounding wire |
11367985, | Aug 15 2016 | CommScope Technologies LLC | Connector assembly with grounding |
11382229, | Oct 24 2019 | Leviton Manufacturing Co., Inc. | Cable manager with fixed and removable door |
11509105, | Mar 20 2015 | CommScope Connectivity Spain, S.L. | Connector with separable lacing fixture |
11609396, | Aug 29 2008 | Corning Optical Communications LLC | High density and bandwidth fiber optic apparatuses and related equipment and methods |
11754796, | Aug 29 2008 | Corning Optical Communications LLC | Independently translatable modules and fiber optic equipment trays in fiber optic equipment |
11838700, | Jun 19 2017 | CommScope Technologies LLC | High density bezel for patch panel |
11909143, | Feb 05 2018 | Chatsworth Products, Inc. | Electrical receptacle with locking feature |
12072545, | Aug 29 2008 | Corning Optical Communications LLC | High density and bandwidth fiber optic apparatuses and related equipment and methods |
12149032, | Aug 15 2016 | CommScope Technologies LLC | Connector assembly with grounding |
8040692, | Aug 16 2005 | CommScope EMEA Limited; CommScope Technologies LLC | Assembly device for line and plug connector elements |
8093499, | Apr 23 2008 | CommScope EMEA Limited; CommScope Technologies LLC | Cable management system |
8130502, | Feb 15 2008 | Panduit Corp | Modular stackable angled patch panel for enclosure |
8263867, | Jan 07 2008 | CHATSWORTH PRODUCTS, INC | Cable management accessories |
8273989, | Jan 07 2008 | Chatsworth Products, Inc. | Cable management accessories |
8330043, | Jan 07 2008 | Chatsworth Products, Inc. | Cable management accessories |
8411465, | Jan 07 2008 | Chatsworth Products, Inc. | Method for organizing cables in a cabinet to reduce impeded airflow |
8437147, | Jan 07 2008 | Chatsworth Products, Inc. | Kit for organizing cables in a cabinet |
8582292, | Dec 27 2010 | Amazon Technologies, Inc | Integrated ventilation system for electronic equipment |
8752848, | Jun 17 2010 | Bretford Manufacturing, Inc | Computer cart |
8822819, | Jun 10 2011 | Hong Fu Jin Precision Industry (WuHan) Co., Ltd.; Hon Hai Precision Industry Co., Ltd. | Server enclosure |
8879881, | Apr 30 2010 | Corning Optical Communications LLC | Rotatable routing guide and assembly |
8913866, | Mar 26 2010 | Corning Optical Communications LLC | Movable adapter panel |
8953924, | Sep 02 2011 | Corning Optical Communications LLC | Removable strain relief brackets for securing fiber optic cables and/or optical fibers to fiber optic equipment, and related assemblies and methods |
8965168, | May 07 2010 | Corning Optical Communications LLC | Fiber management devices for fiber optic housings, and related components and methods |
8985862, | Feb 28 2013 | Corning Optical Communications LLC | High-density multi-fiber adapter housings |
8989547, | Jun 30 2011 | Corning Optical Communications LLC | Fiber optic equipment assemblies employing non-U-width-sized housings and related methods |
8992099, | Feb 04 2010 | Corning Optical Communications LLC | Optical interface cards, assemblies, and related methods, suited for installation and use in antenna system equipment |
8995812, | Oct 26 2012 | CCS Technology, Inc | Fiber optic management unit and fiber optic distribution device |
9008485, | May 09 2011 | Corning Optical Communications LLC | Attachment mechanisms employed to attach a rear housing section to a fiber optic housing, and related assemblies and methods |
9020320, | Aug 29 2008 | Corning Optical Communications LLC | High density and bandwidth fiber optic apparatuses and related equipment and methods |
9022814, | Apr 16 2010 | CCS Technology, Inc | Sealing and strain relief device for data cables |
9038832, | Nov 30 2011 | Corning Optical Communications LLC | Adapter panel support assembly |
9042702, | Sep 18 2012 | Corning Optical Communications LLC | Platforms and systems for fiber optic cable attachment |
9075217, | Apr 30 2010 | Corning Optical Communications LLC | Apparatuses and related components and methods for expanding capacity of fiber optic housings |
9116324, | Oct 29 2010 | Corning Optical Communications LLC | Stacked fiber optic modules and fiber optic equipment configured to support stacked fiber optic modules |
9125326, | Dec 27 2010 | Amazon Technologies, Inc. | Integrated ventilation system for electronic equipment |
9213161, | Nov 30 2010 | Corning Optical Communications LLC | Fiber body holder and strain relief device |
9250409, | Jul 02 2012 | Corning Optical Communications LLC | Fiber-optic-module trays and drawers for fiber-optic equipment |
9277663, | Feb 12 2014 | LENOVO INTERNATIONAL LIMITED | Pivoting cable management assembly |
9279951, | Oct 27 2010 | Corning Optical Communications LLC | Fiber optic module for limited space applications having a partially sealed module sub-assembly |
9281676, | Sep 12 2013 | KING SLIDE WORKS CO., LTD.; KING SLIDE TECHNOLOGY CO., LTD. | Adjustment device for cable management arm |
9398735, | Jun 17 2010 | Bretford Manufacturing Inc. | Computer cart |
9429251, | Aug 31 2015 | JYH ENG TECHNOLOGY CO., LTD. | Foldable electrical wire organizer assembly |
9502837, | May 15 2014 | Advanced-Connectek Inc. | Electrical plug connector and electrical receptacle connector |
9519118, | Apr 30 2010 | Corning Optical Communications LLC | Removable fiber management sections for fiber optic housings, and related components and methods |
9531126, | Jun 05 2014 | CHATSWORTH PRODUCTS, INC | Electrical receptacle with locking feature |
9645317, | Feb 02 2011 | Corning Optical Communications LLC | Optical backplane extension modules, and related assemblies suitable for establishing optical connections to information processing modules disposed in equipment racks |
9832904, | Mar 28 2016 | Amazon Technologies, Inc.; Amazon Technologies, Inc | Patch panel assembly |
9910236, | Aug 29 2008 | Corning Optical Communications LLC | High density and bandwidth fiber optic apparatuses and related equipment and methods |
ER3692, |
Patent | Priority | Assignee | Title |
3356432, | |||
5401193, | Feb 10 1993 | ENTERASYS NETWORKS, INC | Patch panel system |
5575665, | Dec 01 1995 | Superior Modular Products Incorporated | Patch panel with hinged tie bar |
5836551, | Jul 26 1996 | ORITRONICS, INC | Bottom pivot wallmount bracket and wire management system |
6086415, | Oct 29 1998 | Hubbell Incorporated | High density modular patch panel |
6193341, | May 29 1998 | Avaya Technologies Corp | Tiltable electronics cabinet |
6556762, | Dec 13 2001 | International Business Machines Corporation | Cable management tie bar and brackets |
6568542, | Feb 05 2002 | Surtec Industries Inc. | Suspending cable rack for patch panel |
6600106, | Jul 11 2001 | CommScope EMEA Limited; CommScope Technologies LLC | Cable management bar and patch panel |
6818834, | Apr 27 2004 | Hsing Chau Industrial Co., LTD | Suspended type cable fixing-up rack |
7091418, | Apr 01 2005 | CommScope EMEA Limited; CommScope Technologies LLC | Cable management bar and patch panel |
7097047, | Sep 30 2003 | Dell Products L.P. | Cable management flip tray assembly |
7352947, | Nov 04 2005 | LEVITON MANUFACTURING CO , INC | Cable management support system |
20040035983, | |||
20060018622, | |||
20060160431, | |||
20060168759, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 10 2007 | Panduit Corp. | (assignment on the face of the patent) | / | |||
Aug 15 2007 | FRANSEN, ROBERT E | Panduit Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019706 | /0825 | |
Aug 15 2007 | DONNELL, MARK J | Panduit Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019706 | /0825 | |
Aug 15 2007 | HERBST, PAUL M | Panduit Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019706 | /0825 |
Date | Maintenance Fee Events |
Sep 19 2012 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 10 2016 | REM: Maintenance Fee Reminder Mailed. |
Mar 31 2017 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 31 2012 | 4 years fee payment window open |
Oct 01 2012 | 6 months grace period start (w surcharge) |
Mar 31 2013 | patent expiry (for year 4) |
Mar 31 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 31 2016 | 8 years fee payment window open |
Oct 01 2016 | 6 months grace period start (w surcharge) |
Mar 31 2017 | patent expiry (for year 8) |
Mar 31 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 31 2020 | 12 years fee payment window open |
Oct 01 2020 | 6 months grace period start (w surcharge) |
Mar 31 2021 | patent expiry (for year 12) |
Mar 31 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |