A fluid spring assembly includes a first end member and a second end member spaced from the first end member. A spring sleeve extends between the first and second end members. A third end member is disposed along the second end member and is axially displaceably secured thereto. The third end member engages the spring sleeve and is displaceable between a fully-assembled use condition and a fully-assembled adjustment condition in which the third end member and spring sleeve are disassociated with the second end member permitting approximately free rotation thereof. A method includes adjusting the rotational alignment of the fluid spring assembly.
|
1. A fluid spring assembly comprising:
a first end member;
a second end member spaced from said first end member and including a first end wall and an opening extending through said first end wall;
a flexible sleeve including an axis and a sleeve wall extending between first and second open ends, said sleeve wall toward said first open end secured on said first end member and said sleeve wall toward said second open end disposed along said first end wall of said second end member;
a third end member supported on said second end member along said first end wall with at least a portion of said sleeve wall toward said second open end disposed between said third end member and said first end wall of said second end member; and,
a retainer extending at least partly into said opening and displaceable therealong, said retainer securing said third end member on said second end member such that:
in a fully-assembled use condition, at least one of said third end member and said sleeve wall is in abutting engagement with said first end wall of said second end member; and,
in a fully-assembled adjustment condition, said third end member and said sleeve wall are axially displaced from said second end member such that said third end member and said sleeve wall are disengaged from said second end member thereby permitting relative rotational movement therebetween.
15. A method of adjusting rotational alignment of a fluid spring assembly, said method comprising:
a) providing a fluid spring assembly having a fully-assembled use condition and a fully-assembled adjustment condition, said fluid spring assembly including:
a first end member;
a second end member spaced from said first end member and disposed in a first rotational alignment relative thereto, said second end member including a first end wall;
a spring sleeve including an axis and a sleeve wall extending between opposing open ends, said spring sleeve secured on said first end member and disposed along said first end wall of said second end member; and,
a third end member disposed along said first end wall of said second end member and engaging said spring sleeve;
said third end member axially displaceably secured on said second end member such that in said fully-assembled use condition said spring sleeve and said third end member are in abutting engagement with said first end wall of said second end member and in said fully-assembled adjustment condition said spring sleeve and said third end member are approximately free from contact with said first end wall of said second end member;
b) placing said fluid spring assembly into said fully-assembled adjustment condition;
c) adjusting said second end member into a second rotational alignment relative to said first end member; and,
d) returning said fluid spring assembly to said fully-assembled use condition.
7. A fluid spring assembly for an associated vehicle having an associated first structural component and an associated second structural component spaced from and displaceable relative to the associated first structural component, the associated first and second structural components respectively having associated first and second mounting portions, said fluid spring assembly comprising:
a first end member securable on the associated first mounting portion of the associated first structural component;
a second end member spaced from said first end member and including a first end wall, an opposing second end wall and a passage extending through said first end wall, said second end member disposed along the associated second structural component such that said second end wall is toward the associated second mounting portion;
a spring sleeve including an axis and a sleeve wall formed from an elastomeric material, said sleeve wall extending between opposing first and second ends with said first open end secured on said first end member and said second end disposed along said first end wall of said second end member; and,
a third end member supported on said second end member and extending along said sleeve wall at least partially across said second end thereof such that at least a portion of said sleeve wall extends between said second and third end members;
said third end member secured along said first end wall of said second end member such that said second end member is axially displaceable relative to said third end member and said spring sleeve between a fully-assembled use condition in which at least one of said sleeve wall and said third end member is in abutting engagement with said first end wall of said second end member and a fully-assembled adjustment condition in which said sleeve wall and said third end member are spaced from said first end wall of said second end member; and,
said second end member being rotatable relative to said first end member in said fully-assembled adjustment condition which permits rotational alignment of said second end member with the associated second mounting portion of the associated second structural component.
2. A fluid spring assembly according to
3. A fluid spring assembly according to
4. A fluid spring assembly according to
5. A fluid spring assembly according to
6. A fluid spring assembly according to
8. A fluid spring assembly according to
in said fully-assembled use condition, said central wall portion being in abutting engagement with said first end wall of said second end member; and,
in said fully-assembled adjustment condition, said central wall portion being spaced from said first end wall of said second end member.
9. A fluid spring assembly according to
10. A fluid spring assembly according to
11. A fluid spring assembly according to
12. A fluid spring assembly according to
13. A fluid spring assembly according to
14. A fluid spring assembly according to
16. A method according to
17. A method according to
18. A method according to
19. A method according to
20. A method according to
|
The present disclosure broadly relates to the art of spring devices and, more particularly, to a fluid spring assembly having end members that can be quickly and easily repositioned relative to one another without the use of tools or instruments, as well as a method of adjusting the same.
The present novel concept finds particular application and use in association with vehicle suspension systems and will be shown and described herein with specific reference thereto. However, it is to be understood that the present novel concept is capable of broad use in a wide variety of applications and environments, such as machinery mounting applications, for example. As such, reference herein to specific applications and/or uses is merely exemplary and is not intended to be limiting.
Fluid spring assemblies using a compressed gas medium, such as air, for example, are well known and commonly used as components of vehicle suspension systems, as an example of one of the many uses and applications of such devices. Fluid spring assemblies are known to be constructed in a variety of configurations and arrangements, including those having convoluted bellows and those having rolling-lobe sleeves, for example. Typically, a fluid spring assembly that includes a convoluted bellows will also include opposing end members that are permanently secured thereto. As such, the end members of the convoluted bellows spring assembly are normally rotationally fixed relative to one another. Therefore, the desired positioning or alignment of any features or components on the opposing end members must normally be established by the manufacturer during assembly. This can lead to inefficiencies and increased costs and/or inventory levels where a variety of mounting configurations of a given model of fluid spring assembly are requested and/or used.
As compared with bellows-type assemblies, fluid spring assemblies that utilize rolling-lobe sleeves often have constructions that can be at least partially disassembled. One advantage of such arrangements is that same can be constructed in a manner that permits the upper end member and the lower end member or piston to be rotated or otherwise repositioned relative to one another. As a result, the fluid spring assemblies can be manufactured in a common orientation and later adjusted, such as by a customer or user, for example, to meet the orientational mounting requirements of the particular use or application.
As an example, a vehicle manufacturer may use the same basic fluid spring assembly on several different models of vehicle, but with each vehicle model having slightly different mounting alignment and/or orientation for the fluid spring assembly. One option in such situations, is for the vehicle manufacturer to procure and store a quantity of fluid suspension assemblies, such as permanently configured bellows-type assemblies, for each different mounting configuration. As an alternative, the vehicle manufacturer could procure and store a greater quantity of fluid suspension assemblies, such as rolling-lobe type assemblies, having a single alignment configuration. The alignment of the fluid spring assemblies can then be adjusted on a as needed or other basis.
One difficulty with such an approach, however, is that known fluid spring assemblies typically require some amount of disassembly to make the adjustments. This normally requires the use of tools and equipment. Additionally, significant time and effort are often required to reconfigure a quantity of fluid spring assemblies. This undesirably increases the costs associated with the use of such fluid spring assemblies. As such, it is believed desirable to develop fluid spring assemblies that capable of being quickly and easily realigned without the need for tools and/or other equipment.
A fluid spring assembly in accordance with one exemplary embodiment of the present novel concept is provided that includes a first end member and a second end member spaced from the first end member. The second end member includes a first end wall and an opening extending through the first end wall. A flexible sleeve that includes an axis and a sleeve wall extends between first and second open ends. The sleeve wall toward the first open end thereof is secured on the first end member. The sleeve wall toward the second open end thereof is disposed along the first end wall of the second end member. A third end member is supported on the second end member along the first end wall with at least a portion of the sleeve wall toward the second open end thereof disposed between the third end member and the first end wall of the second end member. A retainer extends into the opening and is displaceable therealong. The retainer secures the third end member on the second end member such that the third end member and the sleeve wall can be axially displaced to disengage the third end member and the sleeve wall from the second end member thereby permitting relative rotational movement therebetween.
A fluid spring assembly in accordance with another exemplary embodiment of the present novel concept is provided for use on an associated vehicle having an associated first structural component and an associated second structural component spaced from and displaceable relative to the associated first structural component. The associated first and second structural components respectively having associated first and second mounting portions. The fluid spring assembly including a first end member securable on the associated first mounting portion of the associated first structural component. A second end member is spaced from the first end member and includes a first end wall, an opposing second end wall and a passage extending through the first end wall. The second end member is disposed along the associated second structural component such that the second end wall is toward the associated second mounting portion. A spring sleeve includes an axis and a sleeve wall formed from an elastomer material. The sleeve wall extends between opposing open ends with one of the open ends secured on the first end member and the other of the open ends disposed along the first end wall of the second end member. A third end member is supported on the second end member and extends along the sleeve wall at least partially within the open end thereof such that at least a portion of the sleeve wall extends between the second and third end members. The third end member is secured along the first end wall of the second end member such that the second end member is axially displaceable relative to the third end member and the spring sleeve. The second end member is rotatable relative to the first end member in the axially displaced condition permitting rotational alignment of the second end member with the associated second mounting portion of the associated second structural components.
A method of adjusting rotational alignment of a fluid spring assembly in accordance with the present novel concept is provided and includes providing a fluid spring assembly transformable between a fully-assembled use condition and a fully-assembled adjustment condition. The fluid spring assembly includes a first end member and a second end member spaced from the first end member and disposed in a first rotational alignment relative thereto. The second end member includes a first end wall. A spring sleeve includes an axis and a sleeve wall extending between opposing open ends. The spring sleeve is secured on the first end member and is disposed along the first end wall of the second end member. A third end member disposed along the first end wall of the second end member and engaging the spring sleeve. The third end member is axially displaceably secured on the second end member such that in the fully-assembled one condition the spring sleeve and the third end member are in abutting engagement with the first end wall of the second end member and in the fully-assembled adjustment condition the spring sleeve and the third end member are approximately free from contact with the first end wall of the second end member. The method also includes placing the fluid spring assembly into the fully-assembled adjustment condition, adjusting the second end member into a second rotational alignment relative to the first end member, and returning the fluid spring assembly to the fully-assembled use condition.
Referring now in greater detail to the drawings, wherein the showings are for the purposes of illustrating exemplary embodiments of the subject novel concept only, and not for the purpose of limiting the same,
Fluid spring assembly 100 includes a first or upper end member 102, a second or lower end member 104, and a spring sleeve 106 supported therebetween and at least partially defining a spring chamber (not shown). First end member 102 is shown in
As provided in
As discussed above, bellows-type fluid spring assemblies are permanently assembled, such as by rolling the edge of the end member around a bead formed on the end of the bellows, for example. Thus, this type of fluid spring assembly is typically incapable of being realigned. Certain configurations of rolling lobe-type fluid spring assemblies are similarly permanently assembled, such as by securing opposing ends of the spring sleeve on the end members using crimped rings or bands. However, other configurations of rolling lobe-type fluid springs are secured together using removable fasteners along at least one end of the spring sleeve. Such configurations normally utilize a third end member, which is also referred to in the art as an end closure. The third end member is at least partially disposed within an open end of the spring sleeve and is secured to the second end member or piston using a fastener. Normally, the third end member is tightly secured to the second end member thereby capturing a portion of the sleeve wall between the second and third end members. In such arrangements, the third end member is secured tightly to the second end member and cannot move axially relative thereto. Additionally, the contact of the sleeve wall with the second end member due at least in part to the loading from the third end member generates substantial frictional forces which prevent any substantial rotation of the second end member from occurring. As such, known fluid spring assemblies require at least partial disassembly for rotation of the second end member to be permitted. Furthermore, these known fluid spring assemblies once disassembled for adjustment must then be reassembled prior to use.
With reference now to
Second end member 104 includes a first end wall 114 and an opposing second end wall 116. Second end member 104 is shown and described herein as having an outwardly curved side wall 118. However, it will be appreciated that any configuration or arrangement of side wall can alternately be used. Preferably, second end wall 116 includes at least one approximately planar portion for seating on the associated structural component. First end wall 114 includes opposing first and second sides 120 and 122. First side 120 includes a substantially central and approximately planar portion 124, and a radially outwardly disposed non-planar portion 126. In the exemplary embodiment shown, non-planar portion 126 is curvilinear. However, any other suitable shape or configuration can alternately be used. Central portion 124 extends or projects axially outwardly from non-planar portion 126 at least partially forming an approximately cylindrical side wall 128 that at least partially defines a relief 130 between third end member 112 and non-planar portion 126.
Spring sleeve 106 includes a sleeve wall 132 and extends between opposing open ends (not numbered), only one of which is shown in
As mentioned above, third end member 112 and spring sleeve 106 are axially displaceable relative to second end member 104 and it is to be understood that such operation can be achieved in any suitable manner and by using any suitable arrangement or configuration of components and/or features. In the exemplary embodiment shown, a passage or opening 142 extends through first end wall 114 of second end member 104. A retainer, such as a fastener 144, for example, extends through passage 142 and threadably engages a bumper stud 146. In the exemplary embodiment shown, bumper stud 146 extends through a hole (not numbered) in third end member 112 and through passage 142, and projects outwardly below second side 122 of first end wall 114. Fastener 144 includes an elongated post 148 and a head 150 having a head surface 152 disposed toward second side 122 of first end wall 114. Fastener 144 threadably engages bumper stud 146 such that head surface 152 engages end wall 154 of the bumper stud, which fully secures the bumper stud and fastener together. However, end wall 154 projects beyond second side 122 of first end wall 114 generating a gap GAP between head surface 152 and second side 122. Bumper stud 146 includes a shoulder 156 formed thereon that is seated on third end member 112 along the hole (not numbered) formed therein. In another alternative arrangement, a shorter bumper stud and an elongated shoulder bolt could be used, for example. As still another example, an extended fastener and separate spacer sleeve could be used to extend through the passage in the first end wall and engage a threaded portion formed on the third end member. As such, it will be appreciated that a variety of other arrangements and combinations of components could alternately be used and that such other arrangements and use are intended to fall within the scope and intent of the present novel concept.
Due to the provision of gap GAP between head surface 152 and second side 122 of first end wall 114, third end member 112 and spring sleeve 106 can be displaced from second end member 104 approximately the same distance as the gap, as indicated by gap GAP′ in
Optionally, it may be desirable to provide suitable sealing members, such as o-rings, for example, along or in operative association with the retainer or fastener 144 or elsewhere to form a substantially fluid-tight seal on or along a passage, such as passage 142, for example. However, it is believed that by closely fitting the retainer, passage and/or other components and features that the use of such optional sealing members can be avoided. Thus, it will be appreciated that the enlarged clearances illustrated in
While the subject novel concept has been described with reference to the foregoing embodiments and considerable emphasis has been placed herein on the structures and structural interrelationships between the component parts of the embodiments disclosed, it will be appreciated that other embodiments can be made and that many changes can be made in the embodiments illustrated and described without departing from the principles of the subject novel concept. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. Accordingly, it is to be distinctly understood that the foregoing descriptive matter is to be interpreted merely as illustrative of the present novel concept and not as a limitation. As such, it is intended that the subject novel concept be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims and any equivalents thereof.
Patent | Priority | Assignee | Title |
8613430, | Apr 01 2009 | FIRESTONE INDUSTRIAL PRODUCTS COMPANY, LLC | Gas spring assembly and suspension system including same |
Patent | Priority | Assignee | Title |
5060916, | Jul 20 1988 | OTTO SAUER ACHSENFABRIK KEILBERG, FED REP OF GERMANY | Plunger piston system |
5941510, | Jun 30 1998 | FIRESTONE INDUSTRIAL PRODUCTS COMPANY, LLC | Metal/elastomeric bumper for air springs |
6070861, | Mar 12 1998 | FIRESTONE INDUSTRIAL PRODUCTS COMPANY, LLC | Bumper extension for use with a bumper on an air spring |
6113081, | Jun 30 1998 | FIRESTONE INDUSTRIAL PRODUCTS COMPANY, LLC | Snap-on bumper for air spring |
6234460, | Aug 23 1999 | Infinity Engineered Products, LLC | Push-on air spring bumper |
6460836, | Mar 13 1997 | STEMCO PRODUCTS, INC | Press together air spring |
DE19811982, | |||
EP296445, | |||
EP864453, | |||
EP1300264, | |||
WO70238, | |||
WO235113, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 08 2006 | BFS Diversified Products, LLC | (assignment on the face of the patent) | / | |||
Mar 08 2006 | LEVY, DANIEL I | BFS Diversified Products, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017670 | /0965 | |
Nov 03 2011 | BFS Diversified Products, LLC | FIRESTONE INDUSTRIAL PRODUCTS COMPANY, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027354 | /0922 |
Date | Maintenance Fee Events |
Oct 04 2012 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 23 2016 | REM: Maintenance Fee Reminder Mailed. |
May 12 2017 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
May 12 2012 | 4 years fee payment window open |
Nov 12 2012 | 6 months grace period start (w surcharge) |
May 12 2013 | patent expiry (for year 4) |
May 12 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 12 2016 | 8 years fee payment window open |
Nov 12 2016 | 6 months grace period start (w surcharge) |
May 12 2017 | patent expiry (for year 8) |
May 12 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 12 2020 | 12 years fee payment window open |
Nov 12 2020 | 6 months grace period start (w surcharge) |
May 12 2021 | patent expiry (for year 12) |
May 12 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |