reactors and methods for reducing the carbon monoxide concentration in a reactant stream are provided. The reactors are generally configured such that a reactant from a second reactant stream may be continuously introduced along at least a portion of the length of a first reactant stream. A membrane may separate a first reactant stream and a second reactant stream.
|
1. A method for removing carbon monoxide from a reactant stream, the method comprising:
configuring a reactor to comprise:
a first flow path defining a length and a preferential oxidation catalyst disposed therealong, said first flow path configured to convey carbon monoxide and hydrogen contained in said reactant stream;
a second flow path configured to convey an oxygen-containing fluid stream; and
an oxygen-porous membrane disposed between said first and second flow paths;
flowing said reactant stream along said first flow path such that at least said carbon monoxide contained therein contacts said preferential oxidation catalyst; and
variably flowing oxygen to said first flow path in order to promote a preferential oxidation reaction between said oxygen and said carbon monoxide that is in contact with said preferential oxidation catalyst, said variably flowing of said oxygen comprising:
continuously flowing oxygen contained in said second flow path along at least a portion of said length of said first flow path such that said continuously flowing oxygen passes across said membrane and to said carbon monoxide that is in contact with said preferential oxidation catalyst; and
discretely flowing oxygen into an upstream portion of said first flow path in such quantity that catalytic reaction with said carbon monoxide that is in contact with said preferential oxidation catalyst occurs while inhibiting in said first flow path both the consumption of hydrogen in said reactant stream and the formation of a reverse water gas shift reaction in said reactant stream, a combination of said continuously flowing and said discretely flowing configured to avoid an even distribution of oxygen throughout said first flow path.
2. The method as claimed in
3. The method as claimed in
4. The method as claimed in
5. The method as claimed in
6. The method as claimed in
7. The method as claimed in
8. The method as claimed in
9. The method as claimed in
10. The method as claimed in
11. The method as claimed in
12. The method as claimed in
13. The method as claimed in
14. The method as claimed in
15. The method as claimed in
16. The method as claimed in
|
The present invention relates to reactors and methods for catalyzing a reaction. More particularly, the present invention relates to reactors having first and second reactant flow paths configured to enable a reactant from the second reactant flow path to be continuously introduced to at least a portion of the first reactant flow path. The reactors and methods may be used to remove carbon monoxide from a reactant stream.
Hydrogen fuel cells have become an increasingly attractive source of power for a variety of applications. However, the storage, transportation, and delivery of hydrogen present a number of difficulties. Thus, hydrogen fuel cell systems may be equipped with reforming systems for producing hydrogen from an alternate fuel source such as a hydrocarbon fuel. However, these reforming systems often require extensive carbon monoxide removal subsystems because hydrogen fuel cells are generally not tolerant of carbon monoxide. The carbon monoxide removal systems may not efficiently remove a desired amount of carbon monoxide.
Thus, there remains a need in the art for carbon monoxide clean-up subsystems that are more efficient.
In accordance with an embodiment of the present invention, a device comprising a reactor defined by at least one first reactant flow path is provided. The at least one first reactant flow path comprises a length. The reactor comprises at least one second reactant flow path proximate to the at least one first reactant flow path, and the reactor further comprises at least one catalyst disposed along the at least one first reactant flow path. The at least one first reactant flow path is configured to enable a first reactant stream to flow along the length of the at least one first reactant flow path from a beginning of the length of the at least one first reactant flow path to an end of the length of the at least one first reactant flow path. The at least one first reactant flow path is configured to enable the first reactant stream to contact the catalyst, and the at least one second reactant flow path is configured to enable a second reactant stream to flow proximate to the first reactant stream along at least a portion of the length of the at least one first reactant flow path from the beginning of the length of the at least one first reactant flow path to the end of the length of the at least one first reactant flow path. The at least one second reactant flow path is configured to enable a second reactant from the second reactant stream to be continuously introduced to the at least one first reactant flow path along at least a portion of the length of the at least one first reactant flow path.
In accordance with another embodiment of the present invention, a device comprising a preferential oxidation reactor defining at least one channel, at least one first reactant flow path, and at least one second reactant flow path is provided. The first reactant flow path comprises hydrogen and carbon monoxide, and the second reactant flow path comprises oxygen. The at least one channel comprises a length, an inlet, and an outlet, and the at least one first reactant flow path extends along the length between the channel inlet and the channel outlet. The at least one channel comprises a catalyst selected to alter a rate of reaction of carbon monoxide and oxygen, and the at least one channel is configured such that at least a portion of the at least one second reactant flow path is placed in communication with at least a portion of the at least one first reactant flow path via a partition. The partition is configured to define a substantially continuous introduction of the oxygen to the first reactant flow path along at least a portion of the length of the at least one channel.
In accordance with yet another embodiment of the present invention, a method for removing carbon monoxide from a reactant stream is provided. The method comprises: providing at least one first reactant flow path comprising a length; providing at least one catalyst along the at least one first reactant flow path; providing at least one second reactant flow path proximate to the at least one first reactant flow path; flowing a first reactant stream comprising carbon monoxide and hydrogen along the at least one first reactant flow path from a beginning of the length to an end of the length; and flowing a second reactant stream along the at least one second reactant flow path. The first reactant stream is defined by a carbon monoxide concentration, and the first reactant stream contacts the catalyst. The second reactant stream comprises oxygen, and the at least one second reactant flow path is configured such that the oxygen from the second reactant stream is continuously introduced to at least a portion of the at least one first reactant flow path along the length of the at least one first reactant flow path. The carbon monoxide concentration of the first reactant stream is reduced between the beginning of the length of the at least one first reactant flow path to the end of the length of the at least one first reactant flow path.
In accordance with another embodiment of the present invention, a device comprising a reactor defined by at least one channel is provided. The at least one channel comprises a length, an inlet, and an outlet, and the reactor comprises at least one first reactant flow path along the at least one channel between the inlet and the outlet. The reactor comprises at least one second reactant flow path proximate to the at least one channel, and at least a portion of the at least one first reactant flow path and at least a portion of the at least one second reactant flow path are separated by an oxygen porous membrane. The oxygen porous membrane is selected from yttria stabilized bismuth oxide, silver, ETS-4 zeolite material, SOFC electrolyte material, and polyimide and TiO2/polyimide composite and combinations thereof. The reactor further comprises at least one preferential oxidation catalyst disposed along the at least one channel. The at least one first reactant flow path is configured to enable a first reactant stream to flow along the length of the at least one channel from the inlet to the outlet, and the at least one first reactant flow path is configured to enable the first reactant stream to contact the preferential oxidation catalyst. The at least one second reactant flow path is configured to enable a second reactant stream comprising oxygen to flow proximate to the channel along the length of the reactor from the inlet to the outlet, and the at least one second reactant flow path is configured to enable the oxygen from the second reactant flow stream to permeate the membrane and be continuously introduced to at least a portion of the at least one first reactant flow path along the length of the channel from the inlet to the outlet.
The following detailed description of the preferred embodiments of the present invention can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
In one embodiment, the reactant gas stream 48 exiting the primary reactor 10 comprises hydrogen and carbon monoxide. The reactant gas stream 48 exiting the primary reactor 10 may further comprise carbon dioxide, water in the form of steam, nitrogen (from air), and other trace compounds. To reduce the carbon monoxide and to increase hydrogen concentration, the reactant gas stream 48 may enter a water gas-shift reactor 26. Oxygen from existing or added water converts the carbon monoxide to carbon dioxide leaving additional hydrogen by the following reaction: CO+H2OH2+CO2. However, the water-gas-shift reactor may not reduce the carbon monoxide low enough for efficient stack operation. The further reduction of carbon monoxide to acceptable concentration levels takes place in reactor 28. Reactor 28 may be a preferential oxidation reactor. The preferential oxidation reactor 28 will be discussed further in detail hereinafter.
The carbon monoxide cleansed product stream 48′ exiting the reactor 28 is then fed into a fuel cell stack 30. As used herein, the term fuel cell stack refers to one or more fuel cells to form an electrochemical energy converter. As is illustrated schematically in
Referring to
The first reactant flow path 50 is configured to enable a first reactant stream (not shown) to flow along the length of the first reactant flow path 50 from a beginning 66 of the length L of the first reactant flow path 50 to an end 68 of the length L of the first reactant flow path 50. The first reactant flow path 50 may extend along the length L of the channel 62 between the channel inlet 52 and the channel outlet 54. Although the first reactant flow path 50 and the channel 62 are illustrated as being linear, it will be understood that the first reactant flow path 50 and the channel 62 may have any suitable shape including but not limited to, curved, spiral, and an irregular shape.
The reactor has at least one catalyst 58 disposed along the first reactant flow path. The catalyst 58 is selected to alter a rate of reaction of first and second reactants. In accordance with one embodiment, the catalyst 58 may comprise a preferential oxidation catalyst selected to alter the reaction rates of a first reactant, carbon monoxide, with a second reactant, oxygen. The preferential oxidation catalyst may be any suitable preferential oxidation catalyst. For example, the preferential oxidation catalyst may be selected from platinum, platinum alloys, noble metal catalysts, promoted noble metal catalysts, Au, promoted Au, and combinations thereof. The reactant flow path 50 is configured to enable the first reactant stream to contact the catalyst 58.
The reactor 28 comprises a second reactant flow path 56, which may be proximate to the first reactant flow path 50. The second reactant flow path 56 may be configured to enable a second reactant stream (not shown) to flow proximate to the first reactant stream along the length L of the first reactant flow path 50. The second reactant flow path 56 is configured to enable a second reactant 60 from the second reactant stream to be continuously introduced to the first reactant flow path 50 along at least a portion of the length L of the first reactant flow path 50. It will be understood that “continuously introduced” refers to the second reactant being continuously available to the first reactant flow path along a point upstream to a point downstream along at least a portion of the length L of the first reactant flow path. The reactor 28 may have an additional source 80 of the second reactant configured to enable the second reactant from the additional source 80 to be discretely introduced to a portion of the first reactant flow path proximate to the beginning 66 of the first reactant flow path 50. It will be understood that “discretely introduced” refers to the second reactant being introduced in a one-time addition at a single point along the length L of the first reactant flow path 50.
In accordance with an embodiment of the present invention, the first reactant stream may comprise hydrogen and carbon monoxide, and the first reactant stream may be defined by a carbon dioxide concentration. The second reactant stream may comprise air or a modified air stream, and the second reactant 60 may comprise oxygen. Thus, oxygen may be continuously introduced to the first reactant flow path 50 along at least a portion of the length L of the first reactant flow path 50. Additionally, oxygen 60 may be discretely introduced to the first reactant flow path 50 proximate to the beginning 66 of the first reactant flow path 50.
A preferential oxidation reaction of the carbon monoxide in the first reactant stream generally occurs in the reactor 28 when the first reactant stream contacts the preferential oxidation catalyst 58 and oxygen 60 from the second reactant stream is continuously introduced or oxygen from the additional source 80 is discretely introduced.
Three reactions generally occur in the reactor 28. The first reaction is carbon monoxide oxidation: CO+½O2→CO2. This reaction removes carbon monoxide and is desirable. Thus, the concentration of carbon monoxide in the first reactant stream is reduced as the first reactant stream flows along the first reactant flow path 50 between the beginning 66 of the length L of the first reactant flow path 50 and the end 68 of the length L of the first reactant flow path 50.
The second reaction is hydrogen oxidation: H2+½O2→H2O. This reaction depletes hydrogen, which is needed in the fuel cell stack 30. Thus, it is important not to have too much oxygen present to limit hydrogen oxidation. The third reaction is the reverse-water-gas shift reaction: CO2+H2→H2O+CO, which cannibalizes hydrogen to produce undesirable carbon monoxide. The reverse-water-gas shift reaction is a slow reaction as compared to carbon monoxide and hydrogen oxidation, but the carbon monoxide production can be significant in the absence of oxygen when oxidation of carbon monoxide is not possible.
Thus, it is desirable to maintain a suitable level of oxygen 60 throughout the preferential oxidation reactor 28 so that the effect of the reverse-water-gas shift reaction is kept to a minimum. Additionally, it is desirable to limit excess oxygen 60 in the reactor 28 because excess oxygen will promote the consumption of hydrogen. Therefore, along the length L of a channel 62 of a preferential oxidation reactor 28 an appropriate amount of oxygen 60 is desired to achieve maximum efficiency. It will be understood that the appropriate amount of oxygen 60 may vary depending on the reactor 28 conditions.
Referring to
Referring to
The second reactant 60 from the second reactant stream may be continuously introduced to the first reactant flow path 50 in any suitable manner. In accordance with an embodiment of the present invention, the channel 62 may be configured such that at least a portion of the second reactant flow path 56 is placed in communication with at least a portion of the first reactant flow path 50 via a partition 64. The partition 64 is configured to define a substantially continuous introduction of a second reactant 60 from the second reactant stream along at least a portion of the length L of the channel 62. For example, the partition may be configured to define a substantially continuous introduction of a second reactant 60 from the second reactant stream along only a portion of the length L of the channel 62 or along substantially the entire length L of the channel 62. The partition 64 may be configured to define a substantially continuous introduction of the second reactant 60 along a portion of the length L of the channel 64 downstream from the inlet 52 as illustrated in
The partition 64 may comprise a porous membrane, and the porous membrane may be an oxygen porous membrane. The oxygen porous membrane may be any suitable membrane. For example, the membrane may be made from yttria stabilized bismuth oxide or silver. The membrane may be made from ETS-4 zeolite materials as detailed in U.S. Pat. No. 4,938,939, which is incorporated by reference herein. The membrane may be made from solid oxide fuel cell (SOFC) electrolyte materials. Suitable SOFC electrolyte materials include, but are not limited to: CeO2 doped with Mg2+, Ca2+, Sr2+, Yb3+, Y3+, Gd3+, La3+, Ti4+, Zr4+, Nb5+, Sc+3, Sm3+; Zr doped with Ca, Y, yttria-stabilized zirconia (YSZ); perovskite-type La1−xAxCO1−yByO3−d where A=Sr, Ba, Ca; B═Fe, Cu, Ni; d is the non-shoichiometery factor and is often between 0 and 0.3; La0.85Sr0.15MnO3; and perovskite-type ABO3 where A=La, Sr, Ca; B═Co, Fe. The membrane may alternatively be made from a polyimide and TiO2/polyimide composite.
Thus, when the partition 64 comprises an oxygen porous membrane, oxygen 60 from the second reactant stream may migrate through the oxygen porous membrane along at least a portion of the length L of the first reactant flow path 50, and oxygen 60 from the second reactant stream may be available along a portion of the length L of the first reactant flow path 50 along which a preferential oxidation reaction may take place. It will be understood that the amount of oxygen that diffuses through the porous membrane may vary with varying reaction conditions. For example, the rate of migration may change based on the amount of carbon monoxide and hydrogen in the first reactant stream, the temperature of the reactor 28, and depending on which catalyst 58 is selected. Thus, a membrane or membranes may be selected that will allow the best rate of oxygen migration based on a given set of reaction conditions, and the degree of porosity of the membrane may be selected such that an optimized amount of oxygen 60 from the second reactant stream is continuously introduced to at least a portion of the first reactant flow path 50.
The channel 62 may have at least a first sidewall 70 and at least a second sidewall 72, and the first sidewall 70 may comprise the partition 64 which may be an oxygen porous membrane. The channel 62 may further have a third sidewall and a fourth sidewall (not shown), and the sidewalls may comprise partitions 64. It will be understood that channel 62 may be configured in any suitable manner and that a plurality of channels 62 may be employed as desired. The catalyst 58 may be disposed on the first sidewall 70 as illustrated in
Referring to
Unless otherwise indicated, all numbers expressing quantities, properties such as molecular weight, reaction conditions, and so forth as used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless otherwise indicated, the numerical properties set forth in the specification and claims are approximations that may vary depending on the desired properties sought to be obtained in embodiments of the present invention.
It will be obvious to those skilled in the art that various changes may be made without departing from the scope of the invention, which is not to be considered limited to what is described in the specification.
Brundage, Mark A., Bissett, Edward J.
Patent | Priority | Assignee | Title |
11040928, | Apr 23 2018 | Precision Combustion, Inc. | Process for converting alkanes to olefins |
11358915, | Apr 23 2018 | Precision Combustion, Inc. | Process for converting alkanes to olefins |
8617267, | Dec 24 2009 | Samsung SDI Co., Ltd. | Reformer with high durability |
Patent | Priority | Assignee | Title |
4827071, | Jun 09 1986 | LYONDELL CHEMICAL TECHNOLOGY, L P | Ceramic membrane and use thereof for hydrocarbon conversion |
5006494, | Apr 24 1989 | Gas Technology Institute | Stabilized bismuth oxide |
5160618, | Jan 02 1992 | AIR PRODUCTS AND CHEMICALS, INC A CORP OF DELAWARE | Method for manufacturing ultrathin inorganic membranes |
5723035, | Mar 13 1987 | STANDARD OIL COMPANY, THE | Coated membranes |
6002106, | Dec 24 1996 | Canon Kabushiki Kaisha | Fixing device |
6162558, | Sep 16 1998 | Delphi Technologies, Inc | Method and apparatus for selective removal of carbon monoxide |
6201945, | Jan 08 1998 | Xerox Corporation | Polyimide and doped metal oxide fuser components |
6223843, | Dec 16 1998 | GM Global Technology Operations LLC | Electrochemical propulsion system |
6254848, | Jun 28 1997 | NuCellSys GmbH | Process for the production of hydrogen-rich gas |
6290913, | Sep 24 1996 | Toyota Jidosha Kabushiki Kaisha | Apparatus for reducing concentration of carbon monoxide |
6340433, | Sep 15 2000 | Engelhard Corporation | Water purification using titanium silicate membranes |
20040018134, | |||
JP2003346859, |
Date | Maintenance Fee Events |
Jun 04 2009 | ASPN: Payor Number Assigned. |
Nov 14 2012 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 01 2016 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 01 2021 | REM: Maintenance Fee Reminder Mailed. |
Jul 19 2021 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 16 2012 | 4 years fee payment window open |
Dec 16 2012 | 6 months grace period start (w surcharge) |
Jun 16 2013 | patent expiry (for year 4) |
Jun 16 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 16 2016 | 8 years fee payment window open |
Dec 16 2016 | 6 months grace period start (w surcharge) |
Jun 16 2017 | patent expiry (for year 8) |
Jun 16 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 16 2020 | 12 years fee payment window open |
Dec 16 2020 | 6 months grace period start (w surcharge) |
Jun 16 2021 | patent expiry (for year 12) |
Jun 16 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |