In a plasma treatment method of and apparatus for treating the surface of a treatment target substrate by utilizing glow discharge produced by supplying high-frequency power into an inside-evacuated reactor through a high-frequency power supply means, a plurality of impedance regulation means for regulating impedances on the side of the reactor and on the side of the high-frequency power supply means are provided correspondingly to the impedances of a plurality of reactors, and the high-frequency power is supplied into the reactors via the impedance regulation means corresponding to the reactors. plasma treatment can be made in a good efficiency and a low cost on a plurality of reactors having different impedances.
|
1. A plasma treatment method in which a plurality of reactors, each provided with a cylindrical substrate provided inside of the reactor which is capable of being evacuated and a different impedance, are successively connected to a high frequency power supply to perform a plasma treatment, the method comprising:
(a) attaching a plurality of impedance regulation means each corresponding to impedance of the respective reactors to a detachable attachment portion provided in the high-frequency power supply;
(b) connecting the reactors to the high-frequency power supply after the attaching;
(c) supplying high-frequency power to the reactors via the impedance regulation means;
(d) generating a glow discharge from the supplied high-frequency power to treat a surface of the cylindrical substrate; and
(e) successively separating the plurality of reactors from the high-frequency power supply after the surface treatment.
2. The plasma treatment method according to
3. The plasma treatment method according to
4. The plasma treatment method according to
5. The plasma-treatment method according to
6. The plasma-treatment method according to
|
This application is a division of U.S. application Ser. No. 10/729,005, filed on Dec. 8, 2003, which is a division of U.S. application Ser. No. 09/899,188, filed on Jul. 6, 2001, now U.S. Pat. No. 6,761,128. The disclosures of these prior applications are incorporated by reference herein in their entirety.
1. Field of the Invention
This invention relates to a plasma treatment method and a plasma treatment apparatus which are used when material gases are decomposed by utilizing the phenomenon of discharge, to form deposited films on substrates or to etch or surface-modify the deposited films formed on substrates. More particularly, this invention relates to a plasma treatment method and a plasma treatment apparatus which are to form on substrates deposited films, in particular, functional deposited films, especially amorphous semiconductors used in semiconductor devices, electrophotographic light-receiving members, image input line sensors, imaging devices, photovoltaic devices and so forth.
2. Related Background Art
As device members used in semiconductor devices, electrophotographic light-receiving members, image input line sensors, imaging devices, photovoltaic devices and other various electronic devices and optical devices, non-single-crystal deposited films such as amorphous silicon as exemplified by amorphous silicon compensated with hydrogen and/or halogen (e.g., fluorine or chlorine) or crystalline deposited films such as diamond thin films have been proposed, some of which have been put into practical use. Such deposited films are formed by plasma CVD (chemical vapor deposition), i.e., a process in which material gases are decomposed by glow discharge produced by high-frequency or microwave power, to form deposited films on substrates made of stainless steel, aluminum or the like. Treatment methods and treatment apparatus therefor are also proposed in variety.
As an example of such apparatus,
This apparatus is constituted basically of a deposition system 1001 having a reactor 1004 formed of a cylindrical dielectric member, a feed system 1002 for feeding material gases into the reactor 1004, and an evacuation system 1030 for evacuating the inside of the reactor 1004.
The deposition system 1001 has a first space 1005 formed inside the reactor 1004 and a second space 1006 formed between the reactor 1004 and a shield wall 1017. Cylindrical substrates 1010, members on which deposited films are formed, are each set to a substrate holder 1012 and is placed in the first space 1005. Also, in the first space 1005, a heater 1016 for heating each substrate from its interior and a material gas feed pipe 1015 are provided. Meanwhile, in the second space 1006, cathode rodlike electrodes 1011 are provided in substantially parallel to the sidewall of the reactor 1004, and a high-frequency power source 1040 is connected thereto via a high-frequency matching device 1041. The material gas feed system 1002 has cylinders (not shown) individually holding therein material gases such as SiH4, GeH4, H2, CH4, B2H6 and PH3, valves (not shown) and mass flow controllers (not shown). The individual material gas cylinders are connected to the material gas feed pipe 1015 leading to the inside of the reactor 1004 via a valve 1026.
Using such a deposited film formation apparatus, deposited films are formed on the cylindrical substrates 1010 in the following way, for example.
First, the cylindrical substrates 1010, having been precisely cleaned in a dust-controlled environment such as a clean room, are each set to the substrate holder 1012 and disposed in the reactor 1004. Then, the inside of the reactor 1004 is evacuated by means of the evacuation system 1030.
Subsequently, a substrate-heating gas for heating the cylindrical substrates 1010 is fed into the reactor 1004 via the material gas feed pipe 1015. Next, by means of a mass flow controller (not shown), the substrate-heating gas is regulated so as to flow at a prescribed flow rate. To do so, the extent of opening of an evacuation valve 1031 is so regulated, watching a vacuum gauge (not shown), that the internal pressure of the reactor 1004 may come to be a prescribed pressure of, e.g., 133 Pa or below. At the time the internal pressure of the reactor 1004 has become stable, the temperature of each cylindrical substrate 1010 is controlled by the substrate heater 1016 to a prescribed temperature of from 50° C. to 450° C.
At the time the cylindrical substrates 1010 have come to have a prescribed temperature, material gases are fed into the reactor 1004 regulating each material gases so as to flow at a prescribed flow rate by means of mass flow controllers (not shown). To do so, the extent of opening of the evacuation valve 1031 is so regulated, watching a vacuum gauge (not shown), that the internal pressure of the reactor 1004 may come to be a prescribed pressure of, e.g., 133 Pa or below.
At the time the internal pressure of the reactor 1004 has become stable, the high-frequency power source 1040 having a frequency of, e.g., 105 MHz is set at a prescribed power and the high-frequency power is supplied into the reactor 1004 through the high-frequency matching device 1041 to cause glow discharge to take place. By the energy of this discharge, the material gases fed into the reactor 1004 are decomposed, so that the desired deposited films composed chiefly of silicon are formed on the cylindrical substrates 1010.
After the deposited films have come to have the desired layer thickness, the supply of high-frequency power and flowing of material gases into the reactor 1004 are stopped to finish the formation of deposited films.
Then, the like procedure may be repeated a plurality of times to form light-receiving layers having the desired multi-layer structure.
Here, needless to say, valves other than those for necessary gases are closed when respective layers are formed. Also, the operation to full open the evacuation valve 1031 to once evacuate the inside of the system to a high vacuum is optionally made in order to avoid the respective gases from remaining in the reactor 1004 and in the piping which leads to the reactor 1004. Also, during the formation of deposited films, the cylindrical substrates 1010 are rotated by driving a motor 1020.
In the case where plasma treatment is made in this way, the impedance on the load side and the impedance on the high-frequency power source side are matched by means of the high-frequency matching device 1041. The impedance on the load side involves a stray capacitance component, an inductance component and a resistance component, and hence may greatly change depending on the conditions for plasma treatment and the shape of the apparatus for making the plasma treatment. Hence, the regulation of impedance requires specific values for each apparatus or for each plasma treatment condition.
As a method for matching impedances, it is common to match impedances by changing the capacitance of variable capacitors in a π-type or T-type circuit provided in the matching device. Also, when it is insufficient to regulate the impedance only in the matching device, as disclosed in, e.g., Japanese Patent Application Laid-Open No. 9-310181, capacitors are attached individually to a plurality of cathode electrodes so that the distance between the matching device and the cathode electrodes can be made larger whereby any changes in the induction component can be cancelled to match impedances. As also disclosed in Japanese Patent Application Laid-Open No. 8-253862, the length of an electrode lead-in shaft connected to a plasma-generating electrode and that of a coaxial cylindrical earth shield are set variable so as to enable adaptation to a variety of power source frequencies.
Such conventional methods and apparatus have attained a good state of matching. However, there is further room for improvement when it is intended to form deposited films in a good efficiency in actual production.
The above method for matching can certainly attain a good matching in respect of certain plasma treatment. When, however, the electrophotographic light-receiving members described above are produced, electrophotographic light-receiving members different in shape and film composition must be produced in conformity with electrophotographic apparatus greatly rich in variety. Accordingly, the impedance of reactors for forming deposited films changes. Moreover, in the case of multi-layer construction like the electrophotographic light-receiving members, the type of treating gas, the internal pressure, the high-frequency power and so forth change for each layer, and hence the impedance ascribable to plasma may also greatly change.
As a result, in conventional plasma treatment systems, an attempt to well match impedances in accordance with various forms of products may make it necessary to provide matching devices specifically designed for respective conditions, resulting in a high cost for the whole apparatus and furthermore providing an obstacle to the cost reduction of articles to be produced. Also, the matching device must be replaced every time the conditions for plasma treatment have changed. This causes a lowering of operating efficiency. Also, when any treatment under the like conditions is continuously made in order to prevent the operating efficiency from lowering, the flexibility of production may be held back, making it difficult to smoothly execute the adjustment of production that may have to be made because of a variety of production requirements or any accidental troubles.
Accordingly, in plasma treatment systems making use of high-frequency power as stated above, it has been sought to simplify production systems against manufacture of many kinds of articles, and to construct a plasma treatment apparatus, or early materialize a plasma treatment method, which can achieve low cost.
An object of the present invention is to provide a plasma treatment method and a plasma treatment apparatus which can carry out plasma treatment in a good efficiency and at a low cost, can carry out plural kinds of plasma treatment without causing any lowering of production efficiency, and have a superior productivity.
To achieve the above object, the present invention provides a plasma treatment method of treating the surface of a treatment target substrate by utilizing glow discharge produced by supplying high-frequency power into an inside-evacuated reactor through a high-frequency power supply means, wherein;
a plurality of impedance regulation means for regulating impedances on the side of the reactor and on the side of the high-frequency power supply means are provided correspondingly to the impedances of a plurality of reactors, and the high-frequency power is supplied into the reactors via the impedance regulation means corresponding to the reactors.
The present invention also provides a plasma treatment apparatus comprising:
a plurality of reactors each having an evacuatable inside where at least one treatment target substrate is set in, and having impedances different from each other;
a high-frequency power supply means for supplying high-frequency power into each reactor having been inside-evacuated, to cause glow discharge to take place in the reactor; and
a plurality of impedance regulation means provided correspondingly to the impedances of the reactors in order to regulate impedances on the side of each reactor and on the side of the high-frequency power supply means.
The present inventors made extensive studies in order to overcome the above problems in the conventional plasma treatment method and plasma treatment apparatus to achieve the object of the present invention. As a result, they have discovered that a plasma treatment made on demand using a plurality of impedance regulation means for regulating impedances on the side of the reactor and on the side of the high-frequency power supply means in respect of a plurality of reactors having impedances different from each other enables achievement of a simple and low-cost production system against manufacture of many kinds of articles, and enables simultaneous achievement of both high operating efficiency and high production flexibility. Thus, they have accomplished the present invention.
According to the present invention, various plasma treatment conditions or various shapes of reactors for plasma treatment can be met by the use of one high-frequency power supply means, and hence the cost for the whole apparatus can be kept low and the cost of articles to be produced can be reduced. Also, it is unnecessary to replace the matching device every time the conditions for plasma treatment have changed. Hence, a high operating efficiency can be achieved and also, keeping such a high operating efficiency, the adjustment of production that may have to be made because of a variety of production requirements or any accidental troubles can smoothly be made, bringing about an improvement in the production flexibility.
Embodiments of the present invention are described below with reference to the accompanying drawings.
As shown in
The movable reactor section 101 has the reactor 104, which is covered with a shield (not shown in
Inside the reactor 104, it has substrate holders for holding cylindrical substrates on which deposited films are to be formed, a material gas feed pipe, substrate heaters and so forth (all not shown).
There are no particular limitations on the moving means as long as it can move the reactor 104. Any means making use of casters, a belt or belts, magnetic floating, air floating or the like may be used. In view of readiness to handle and cost, a means making use of the casters 105 as in the present embodiment is preferred.
There are also no particular limitations on the shape of the reactor 104. In order to form deposited films more uniformly, it is preferable to fit its shape to the shape of the member on which the deposited films are to be formed. Where members on which deposited films are to be formed are substrates for electrophotographic light-receiving members as in the present embodiment, the substrates have a cylindrical shape and, from the viewpoint of productivity, the substrates are arranged in plurality on the same circumference. Accordingly, as the shape of the reactor 104, it is common to use those having a cylindrical shape like the substrates arranged in a circle. Also, the reactor 104 may preferably be made of a material such as aluminum, stainless steel or alumina ceramics in view of mechanical strength and vacuum-keeping ability.
The evacuation section 102 has a joining flange 109 joined with the joining flange 108 of the movable reactor section 101, and an evacuation means 107 such as a vacuum pump, joined to the movable reactor section 101 via the joining flange 109.
The high-frequency power supply means 110 is set separable from the movable reactor section 101, and has a high-frequency power source 111 for generating plasma in the reactor 104, and a high-frequency matching device 112 for supplying the high-frequency power to the reactor 104 side in a good efficiency and matching the impedance on the side of the reactor 104 and the impedance on the side of the high-frequency power source 111.
An outline of a procedure for the plasma treatment method making use of this plasma treatment apparatus is described below.
First, in the state the movable reactor section 101 is kept separate from the evacuation section 102 and the high-frequency power supply means 110, the cylindrical substrates are set in the reactor 104. In the following description, an area in which the operation to set the cylindrical substrates in the reactor is made is called a substrate set-in area and an area in which the evacuation section and the high-frequency power supply means are provided and the plasma treatment is made with respect to the movable reactor section is called a plasma treatment area (see
Thereafter, the inside of the reactor 104 is evacuated until it comes to have a desire pressure. Here, if necessary, the cylindrical substrates may be heated with the substrate heaters or an inert gas feed system (not shown) may be connected to the reactor 104 to feed an inert gas such as N2 gas, Ar gas or He gas into the reactor 104.
Next, the movable reactor section 101 is moved to the position at which the evacuation section 102 is set, and the joining flanges 108 and 109 of the both are brought into contact at their openings via a vacuum sealing material to join the movable reactor section 101 and the evacuation section 102 to each other.
After the movable reactor section 101 and the evacuation section 102 have been joined, their joint is optionally fastened by a fastening means such as screws or a clamp. Having made sure that the movable reactor section 101 has been joined to the evacuation section 102, the inside of the reactor 104 is evacuated by the evacuation means 107 of the evacuation section 102.
The order up to this stage, in which the substrates are set in the reactor 104, the evacuation section 102 is moved and the movable reactor section 101 is joined to the evacuation section 102, is by no means limited to the above order. For example, after the substrates have been set, the movable reactor section 101 may be moved and joined to the evacuation section 102 without evacuating the inside of the reactor 104, or the movable reactor section 101 may be moved after the desired gases have been fed into the reactor 104 at a prescribed pressure. Alternatively, the substrates may be set in the reactor 104 after the movable reactor section 101 has been joined to the evacuation section 102. Besides, the inside of the reactor 104 may be brought into a deposited-film formable state before the movable reactor section 101 is joined to the evacuation section 102 and the step of forming deposited films may be started. Specific orders of procedure may be determined taking account of operating efficiency, productivity and so forth in each production step.
After the movable reactor section 101 has been joined to the evacuation section 102, the high-frequency power supply means 110 present in the plasma treatment area is connected to the reactor 104.
Thus, after the substrates have been set in the reactor 104 and the inside of the reactor 104 has been evacuated by the evacuation means 106, the cylindrical substrates are optionally heated with the substrate heaters to a prescribed temperature and their temperature is controlled. At the time the cylindrical substrates have come to have the prescribed temperature, the material gases are fed into the reactor 104 from the material gas feed means via the material gas feed pipe. Having made sure that the flow rates of material gases have come to any preset flow rates and also the internal pressure of the reactor 104 has become stable, a prescribed high-frequency power is supplied to the cathode electrode from the high-frequency power source 111 via the high-frequency matching device 112. The high-frequency power thus supplied causes glow discharge to take place in the reactor 104, and the material gases are excited and dissociated, whereupon deposited films are formed on the cylindrical substrates.
After the deposited films have been formed in the desired thickness, the supply of high-frequency power is stopped and subsequently the feeding of material gases is stopped to finish the formation of deposited films. Where deposited films are formed in a multi-layer structure, the like procedure is repeated a plurality of times. In this case, to form the next layer, the discharge may once completely be stopped at the time the formation of one layer has been completed as described above, the setting of gas flow rates and pressure may be changed for that for the next layer, and thereafter the discharge may be caused to take place to form the next layer. Alternatively, in a prescribed time after the formation of one layer has been completed, the gas flow rates, pressure and high-frequency power may gradually be changed to any preset values for the next layer to form a plurality of layers continuously.
Here, the substrate holders set in the reactor 104 may be so provided as to be rotatable by means of a motor around the axes of the cylindrical substrates set to the substrate holders, and, during the formation of deposited films, the cylindrical substrates may optionally be rotated at a prescribed speed.
The foregoing is an outline of the procedure of forming the deposited films. In the present embodiment, as shown in
As methods for making plasma treatment in this way using one high-frequency power supply means with respect to the movable reactors 104, 154 and 164, a method is available in which the variable capacitor in the high-frequency matching device 112 is set variable in a wide range to make it matchable to various impedances. However, setting it variable in a wide range makes its microadjustment difficult, or making its volume larger may cause a lowering of breakdown strength of the capacitor. Also, depending on the construction of the reactors, only setting the device variable in a wide range can not sufficiently deal with the matter in some cases.
Accordingly, methods for matching impedances that do not cause any difficulties as stated above are described by giving some examples, with reference to
In an example shown in
In an example shown in
In an example also shown in
This method, compared with the previous two methods, makes it unnecessary to select any of the matching circuit units 101U, 151U and 161U, and hence can make handling simpler. Moreover, any mistake in selecting the matching circuit units is by no means made even when the movable reactor sections are provided in a larger number and more types. Furthermore, the plasma treatment in many types of reactors can be made using one high-frequency power supply means. Also, since the matching circuit units are provided on the side of the movable reactor sections, it is unnecessary for the variable capacitor in each matching circuit unit to be set variable in a wide range, also enabling easy microadjustment of impedances.
In the examples shown in
After the step of forming deposited films has been thus completed, the material gases present in the reactor 104 are sufficiently purged away or may preferably be displaced with an inert gas. Subsequently, the movable reactor section 101 is detached from the evacuation section 102, and the movable reactor section 101 is moved to a substrate take-off area (not shown).
If necessary, the substrates are cooled to the desired temperature, and thereafter an inert gas is fed into the reactor 104 through a leak valve (not shown) provided on the reactor 104 to bring the inside of the reactor 104 to atmospheric pressure. At the time the inside of the reactor 104 has been brought to atmospheric pressure, the substrates on which the deposited films have been formed are taken out of the reactor 104.
Thereafter, at the time the inside of the reactor 104 has been again brought into a deposited-film formable state by replacing component parts provided in the reactor 104 and by cleaning and so forth, the reactor 104 is then moved to the substrate set-in area described previously.
Thus, the plasma treatment apparatus so constructed that the movable reactor section 101 is set separable from the evacuation section 102 can greatly improve the production flexibility to bring about an improvement in production efficiency and a reduction of production cost. Moreover, since in the apparatus thus constructed the reactor section is movable, the substrates may be set in the reactor after the reactor section is moved to a stage for setting substrates. Hence, it is unnecessary to provide any substrate transport assembly used exclusively for transporting and setting substrates to and in each reactor when the reactor is fastened. This can simplify the production system. Hence, especially the application of the present invention in such a plasma treatment apparatus can bring out the advantages of high production flexibility, high production efficiency and production cost reduction as stated above, and is especially effective.
The use of a plurality of movable reactor sections also enables preparation for the next formation of deposited films (e.g., the setting of substrates in the reactors and the inside-evacuation of the reactor) in other movable reactor sections while the deposited films are formed in one movable reactor section through a series of the vacuum treatment steps described above. Hence, at the stage where the treatment has been completed and the movable reactor section has been detached from the evacuation section, the next movable reactor section in which the preparation for the formation of deposited films has been completed may be joined to the evacuation section to carry out the next plasma treatment immediately, enabling more efficient production.
The embodiments of the present invention have been described above taking the case of the formation of deposited films on electrophotographic light-receiving members. However, the present invention is by no means limited to the formation of deposited films, and may also be used in other plasma treatment processes such as sputtering and thermal CVD.
The present invention is described below in greater detail by giving specific working examples of the present invention in comparison with a comparative example.
As movable reactor sections to be joined to the evacuation section 102 and connected to the high-frequency power supply means 110, a movable reactor section 201 shown in
The construction of the movable reactor sections 201 and 301 shown in
As shown in
Especially as shown in
Between the shield 217 and the reactor 204, three rodlike high-frequency power electrodes 211 made of SUS stainless steel, disposed in parallel to the center axis of the reactor 204, are provided on a concentric circle at regular intervals. The high-frequency power electrodes 211 are put together at one spot at the part of an impedance regulator 240 provided above the reactor 204, and are connected to the high-frequency power supply means 110 (see
Meanwhile, as shown in
Between the shield 317 and the reactor 304, twelve rodlike high-frequency power electrodes 311 made of SUS stainless steel, disposed in parallel to the center axis of the reactor 304, are provided on a concentric circle at regular intervals. The high-frequency power electrodes 311 are put together at one spot at the part of an impedance regulator 340 provided above the reactor 304, and are connected to the high-frequency power supply means 110 (see
The formation of deposited films by the use of the above movable reactor sections 201 and 301 is described below.
First, the component parts provided in the movable reactor sections 201 and 301 were replaced and their insides were cleaned to bring them into a deposited-film formable state, where the movable reactor sections 201 and 301 were manually transported to the substrate set-in area.
In the substrate set-in area, first, in respect of one movable reactor section 201 the six cylindrical substrates 210 were respectively set to the substrate holders 212, and these were disposed at the prescribed positions inside the reactor 204. After the substrate holders 212 were disposed, the inside of the reactor 204 was evacuated by an evacuation means (not shown), and thereafter the cylindrical substrates 210 were heated to and controlled at 230° C. by means of the heaters 216. At the time the cylindrical substrates 210 came to have a prescribed temperature, the movable reactor section 201 was manually transported by an operator to the plasma treatment area. After it was transported to the plasma treatment area, the movable reactor section 201 was joined to the evacuation section 102 (see
After the joining of the movable reactor section 201 to the evacuation section 102 was completed, the high-frequency power supply means 110 was connected to the connector 214 of the movable reactor section 201, and the inside of the reactor 204 was evacuated by means of the evacuation means 107 of the evacuation section 102. Thereafter, material gases were fed into the reactor 204 via the material gas feed pipe 215. Having made sure that the flow rates of material gases came to any preset flow rates and also the internal pressure of the reactor 104 became stable, a prescribed high-frequency power was supplied to the cathode electrodes 211 from the high-frequency power supply means 110 to form deposited films on the cylindrical substrates 210. In the present Example, the substrate temperature, the gas flow rates of material gases, the pressure and the high-frequency power were changed to repeat the like procedure to form triple-layer deposited films as a charge injection blocking layer, a photoconductive layer and a surface layer. In the course of the formation of deposited films, the motors 220 were driven to rotate the cylindrical substrates 210. Also, the high-frequency power was set at a frequency of 105 MHz.
During the formation of deposited films in the movable reactor section 201, in respect of the other movable reactor section 301 the cylindrical substrates 310 were set in the reactor 304 in the same manner as in the movable reactor section 201, and the cylindrical substrates 310 were heated to and controlled at 230° C. by means of the heaters 316.
After the formation of deposited films was completed in the movable reactor section 201, the movable reactor section 201 was detached from the evacuation section 102, and was moved to the substrate take-off area (not shown). Thereafter, the other movable reactor section 301 was moved to the plasma treatment area, and the movable reactor section 301 was joined to the evacuation section 102. After the joining of the former to the latter was completed, the high-frequency power supply means 110 was connected to the connector 314 of the movable reactor section 301, and the deposited films having triple-layer structure as a charge injection blocking layer, a photoconductive layer and a surface layer were formed on the cylindrical substrates 310 in the same manner as in the movable reactor section 201.
On aluminum cylinders 210 (see
In that course, in the high-frequency power supply means, high-frequency matching devices were replaced correspondingly to the respective movable reactor sections to match impedances. More specifically, when the deposited films were formed using a movable reactor section corresponding to the movable reactor section 201 shown in
Conditions for the formation of deposited films on the cylindrical substrates 210 in Example 1 and Comparative Example 1 are shown in Table 1. Conditions for the formation of deposited films on the cylindrical substrates 310 in Example 1 and Comparative Example 1 are shown in Table 2.
TABLE 1
Charge
injection
Photo-
blocking
conductive
Surface
layer
layer
layer
Gases and flow rates:
SiH4 (sccm)
300
300
30
B2H6 (ppm)
3,000
2
0
(based on SiH4)
NO (sccm)
9
0
0
CH4 (sccm)
0
0
70
Internal pressure:
1.1
1.1
1.4
(Pa)
High-frequency power:
1,500
1,500
1,300
(W)
Substrate temperature:
270
270
250
(° C.)
Layer thickness:
3
25
0.5
(μm)
TABLE 2
Charge
injection
Photo-
blocking
conductive
Surface
layer
layer
layer
Gases and flow rates:
SiH4 (sccm)
150
150
20
B2H6 (ppm)
2,000
2
0
(based on SiH4)
NO (sccm)
8
0
0
CH4 (sccm)
0
0
50
Internal pressure:
1.1
1.1
1.4
(Pa)
High-frequency power:
1,500
1,500
1,300
(W)
Substrate temperature:
260
270
250
(° C.)
Layer thickness:
3
25
0.5
(μm)
In both Example 1 and Comparative Example 1, stable plasma treatment was effected, and good results were obtained on the evaluation of electrophotographic light-receiving members produced.
In Comparative Example 1, however, the high-frequency matching device had to be replaced when the movable reactor section was replaced. Hence, compared with Example 1, the operation was delayed about 10 minutes before the formation of deposited films in the next movable reactor section was started. Also, in Example 1, operator's burden can be lessened for the operation unnecessary to replace the high-frequency matching device. As a result, the plasma treatment handled by one operator can be made more times or, depending on plasma treatment conditions, the number of operators can be lessened. Moreover, only one set of matching device may be used in Example 1, but in Comparative Example 1 two sets of matching devices must be used. Hence, the equipment cost can be made lower in Example 1 than in Comparative Example.
As can be seen from the foregoing, the present invention enables simplification of the production system and cost reduction and also enables simultaneous achievement of high operating efficiency and high production flexibility.
In the present Example, electrophotographic light-receiving members were produced using a deposited-film formation apparatus shown in
The deposited-film formation apparatus used in the present Example has two plasma treatment areas, and an evacuation section 502 is placed in each plasma treatment area. The evacuation sections 502 each have an evacuation means 507 provided with two joining flanges 509. Also, in the respective plasma treatment areas, two sets each of high-frequency power supply means 510 are provided. Thus, in the respective plasma treatment areas, plasma treatment can be made using two movable reactor sections of the same type. In the present Example, as the movable reactor sections, four sets each of movable reactor sections 201 having the same construction as the one shown in
Then, the four movable reactor sections 201 were each joined to each evacuation section 502 and connected to each high-frequency power supply means 510, and deposited films were simultaneously formed in the same manner as in Example 1 and under the same conditions as those shown in Table 1. Here, the conditions shown in Table 1 are conditions in respect of each movable reactor section 201.
During the formation of deposited films in the movable reactor sections 201, in respect of the other type of movable reactor sections 301 the cylindrical substrates were set in the reactors and the substrates were kept controlled at a prescribed temperature.
After the formation of deposited films was completed in the movable reactor sections 201, all the movable reactor sections 201 were detached from the evacuation sections 502. Then the other movable reactor sections 301 were each joined to each evacuation section 502 and connected to each high-frequency power supply means 510, and deposited films were simultaneously formed in the same manner as in Example 1 and under the same conditions as those shown in Table 2. Here, the conditions shown in Table 2 are conditions in respect of each movable reactor section 301.
In the present Example, too, like Example 1, stable plasma treatment was achievable in respect of all the movable reactor sections 201 and 301, and good results were obtained on the evaluation of electrophotographic light-receiving members produced. Also, there was no waiting period for next treatment which was taken in Comparative Example 1 when the movable reactor sections 201 were replaced with the movable reactor sections 301, and the plasma treatment was smoothly shiftable.
In the present Example, electrophotographic light-receiving members were produced using a deposited-film formation apparatus shown in
In the deposited-film formation apparatus shown in
As shown in
As shown in
Four impedance regulators 740 are attached to the outer walls of the shield 717. These impedance regulators 740 are electrically connected with the respective reactors 704 through rods each having a diameter of 16 mm, made of aluminum. Meanwhile, as shown in
Meanwhile, as shown in
Four impedance regulators 840 are attached to the outer walls of the shield 817. These impedance regulators 840 are electrically connected with the respective reactors 804 through rods each having a diameter of 16 mm, made of aluminum. In the impedance regulators 840, the connectors 814 and the above rods having a diameter of 16 mm are each electrically connected through a sheet made of copper and having a thickness of 1 mm, a width of 20 mm and a length which is ½ of the sheet used in the apparatus shown in
The formation of deposited films in the present Example is described below with reference to
First, the component parts provided in the movable reactor sections 701 and 801 were replaced and their insides were cleaned to bring them into a deposited-film formable state, where the movable reactor sections 701 and 801 were manually transported to the substrate set-in area.
In the substrate set-in area, first, in respect of one movable reactor section 701 the four cylindrical substrates 710 were respectively set to the substrate holders 712, and these were disposed at the prescribed positions inside the respective reactors 704. After the substrate holders were disposed, the insides of the respective reactors 704 were evacuated by an evacuation means (not shown), and thereafter the cylindrical substrates 710 were heated to and controlled at 250° C. by means of the heaters 716. At the time the cylindrical substrates 710 came to have a prescribed temperature, the movable reactor section 701 was manually transported by an operator to the plasma treatment area. After it was transported to the plasma treatment area, the movable reactor section 701 was joined to the evacuation section 602 via an O-ring provided between the joining flange 708 of the movable reactor section 701 and the joining flange 609 of the evacuation section 602.
After the joining of the movable reactor section 701 to the evacuation section 602 was completed, the high-frequency power supply means 610 was connected to the connector 714 of the movable reactor section 701, and the insides of the respective reactors 704 were evacuated by means of the evacuation means 607 of the evacuation section 602. Thereafter, material gases were fed into the respective reactors 704 via the material gas feed pipes 715. Having made sure that the flow rates of material gases came to any preset flow rates and also the internal pressure of the respective reactors 604 became stable, a prescribed high-frequency power was supplied from the high-frequency power supply means 610 to form deposited films on the cylindrical substrates 710. In the present Example, the substrate temperature, the gas flow rates of material gases, the pressure and the high-frequency power were changed to repeat the like procedure to form triple-layer deposited films as a charge injection blocking layer, a photoconductive layer and a surface layer. In the course of the formation of deposited films, the motors 720 were driven to rotate the cylindrical substrates 710. Also, the high-frequency power was set at a frequency of 13.56 MHz.
Conditions for the formation of deposited films on the cylindrical substrates 710 in the present Example are shown in Table 3. Here, the conditions shown in Table 3 are conditions in respect of each reactor 704.
TABLE 3
Charge
injection
Photo-
blocking
conductive
Surface
layer
layer
layer
Gases and flow rates:
SiH4 (sccm)
100
100
10
H2 (sccm)
300
300
0
B2H6 (ppm)
1,500
1.0
0
(based on SiH4)
NO (sccm)
5
0
0
CH4 (sccm)
0
0
350
Internal pressure:
48
60
50
(Pa)
High-frequency power:
150
150
100
(W)
Substrate temperature:
250
250
250
(° C.)
Layer thickness:
3
25
0.6
(μm)
During the formation of deposited films in the movable reactor section 701, in respect of the other movable reactor section 801 the cylindrical substrates were set in the reactors 804 in the same manner as in the movable reactor section 701, and the cylindrical substrates 810 were heated to and controlled at 270° C. by means of the heaters 816.
After the formation of deposited films was completed in the movable reactor section 701, the movable reactor section 701 was detached from the evacuation section 602, and was moved to the substrate take-off area (not shown). Thereafter, the other movable reactor section 801 was moved to the plasma treatment area, and the movable reactor section 801 was joined to the evacuation section 602. After the joining of the former to the latter was completed, the high-frequency power supply means 610 was connected to the connector 814 of the movable reactor section 801, and the deposited films having triple-layer structure were formed on the cylindrical substrates 810 in the same manner as in the movable reactor section 701.
Conditions for the formation of deposited films on the cylindrical substrates 810 in the present Example are shown in Table 4. Here, the conditions shown in Table 4 are conditions in respect of each reactor 804.
TABLE 4
Charge
injection
Photo-
blocking
conductive
Surface
layer
layer
layer
Gases and flow rates:
SiH4 (sccm)
300
300
30
H2 (sccm)
600
700
0
B2H6 (ppm)
2,000
1.0
0
(based on SiH4)
NO (sccm)
9
0
0
CH4 (sccm)
0
0
700
Internal pressure:
48
60
50
(Pa)
High-frequency power:
600
600
150
(W)
Substrate temperature:
260
260
250
(° C.)
Layer thickness:
3
25
0.6
(μm)
In the present Example, too, like Example 1, stable plasma treatment was achievable in respect of all the cylindrical substrates 710 and 810, and good results were obtained on the evaluation of electrophotographic light-receiving members produced. Also, there was no waiting period for next treatment which was taken in Comparative Example 1 when the movable reactor section 701 was replaced with the movable reactor section 801, and the plasma treatment was smoothly shiftable.
As described above, according to the present invention, a plurality of impedance regulation means are kept ready for use correspondingly to the impedances of reactors so that any prescribed impedance regulation means can be used correspondingly to the reactors in which the plasma treatment is made. Thus, the plasma treatment can be made in a good efficiency and at a low cost. Also, it has become possible to make plasma treatment of a plurality of types without causing any lowering of operating efficiency.
In addition, the reactor and the high-frequency power supply means are set separable. Hence, during plasma treatment made in respect of one reactor, other reactor having impedance different from that reactor can be made ready for the next plasma treatment. This can bring about a more improvement in production efficiency. In this case, the respective reactors may further be so constructed as to have the impedance regulation means individually. This enables prevention of any mistake in selecting the impedance regulation means when the reactor is replaced.
Hosoi, Kazuto, Otsuka, Takashi, Aoike, Tatsuyuki, Akiyama, Kazuyoshi, Shirasuna, Toshiyasu, Murayama, Hitoshi, Tazawa, Daisuke, Abe, Yukihiro
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3968018, | Sep 29 1969 | Warner-Lambert Company | Sputter coating method |
4615298, | Aug 16 1979 | SEMICONDUCTOR ENERGY LABORATORY CO , LTD , A CORP OF JAPAN | Method of making non-crystalline semiconductor layer |
4972799, | Jan 26 1989 | Canon Kabushiki Kaisha | Microwave plasma chemical vapor deposition apparatus for mass-producing functional deposited films |
4981566, | Aug 02 1989 | Leybold Aktiengesellschaft | Arrangement for measuring the thickness of thin layers |
5076205, | Jan 06 1989 | GENERAL SIGNAL CORPORATION, A CORP OF NY | Modular vapor processor system |
5084125, | Sep 12 1989 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Apparatus and method for producing semiconductor substrate |
5116640, | Oct 24 1989 | SHARP KABUSHIKI KAISHA, | Process for preparing an electroluminescent device |
5288329, | Nov 24 1989 | Nihon Shinku Gijutsu Kabushiki Kaisha | Chemical vapor deposition apparatus of in-line type |
5324360, | May 21 1991 | Canon Kabushiki Kaisha | Method for producing non-monocrystalline semiconductor device and apparatus therefor |
5515986, | May 03 1993 | Tel Solar AG | Plasma treatment apparatus and method for operating same |
5922134, | May 14 1996 | TOKYO OHKA KOGYO CO , LTD | Simultaneous discharge device |
5948166, | Nov 05 1996 | 3M Innovative Properties Company | Process and apparatus for depositing a carbon-rich coating on a moving substrate |
5968328, | Dec 11 1996 | Leybold Systems GmbH | Device for sputter deposition of thin layers on flat substrates |
6017396, | Aug 04 1995 | Sharp Kabushiki Kaisha | Plasma film forming apparatus that prevents substantial irradiation damage to the substrate |
6145469, | May 21 1996 | Canon Kabushiki Kaisha | Plasma processing apparatus and processing method |
6273955, | Aug 28 1995 | Canon Kabushiki Kaisha | Film forming apparatus |
6300225, | Mar 13 1998 | Canon Kabushiki Kaisha | Plasma processing method |
JP11319546, | |||
JP8253862, | |||
JP9310181, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 26 2008 | Canon Kabushiki Kaisha | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 04 2013 | REM: Maintenance Fee Reminder Mailed. |
Jun 23 2013 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 23 2012 | 4 years fee payment window open |
Dec 23 2012 | 6 months grace period start (w surcharge) |
Jun 23 2013 | patent expiry (for year 4) |
Jun 23 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 23 2016 | 8 years fee payment window open |
Dec 23 2016 | 6 months grace period start (w surcharge) |
Jun 23 2017 | patent expiry (for year 8) |
Jun 23 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 23 2020 | 12 years fee payment window open |
Dec 23 2020 | 6 months grace period start (w surcharge) |
Jun 23 2021 | patent expiry (for year 12) |
Jun 23 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |