In one embodiment, the invention provides a method for fabricating a microelectromechanical systems device. The method comprises fabricating a first layer comprising a film having a characteristic electromechanical response, and a characteristic optical response, wherein the characteristic optical response is desirable and the characteristic electromechanical response is undesirable; and modifying the characteristic electromechanical response of the first layer by at least reducing charge build up thereon during activation of the microelectromechanical systems device.

Patent
   7550794
Priority
Sep 20 2002
Filed
Sep 20 2002
Issued
Jun 23 2009
Expiry
Sep 20 2022
Assg.orig
Entity
Large
47
525
all paid
7. A microelectromechanical systems device comprising:
a fixed electrode located over a substrate;
an electrostatically displaceable layer separated from the fixed electrode by an air gap;
a layer comprising al2O3 located over the fixed electrode;
a transparent layer located over the layer comprising al2O3; and
a charge-trapping layer located over the transparent layer.
1. A microelectromechanical systems device comprising:
a substrate;
a first electrode located over the substrate;
a displaceable layer, wherein the displaceable layer comprises a second electrode;
an air gap, wherein said air gap is located between the first electrode and the second electrode;
a charge-trapping layer located between one of the electrodes and the air gap, wherein the charge-trapping layer comprises a material capable of trapping both positive and negative charge, and wherein the charge trapping layer is configured to increase a difference between an actuation voltage and a release voltage of the microelectromechanical systems device relative to the device without the charge trapping layer; and
a transparent layer formed between the charge-trapping layer and said one of the electrodes; and
a layer comprising al2O3 located between the transparent layer and said one of the electrodes, wherein the layer comprising al2O3 is located directly adjacent said one of the electrodes.
2. The device of claim 1, wherein the microelectromechanical systems device comprises an interferometric modulator, and wherein the interferometric modulator is operable to reflect light of a certain wavelength.
3. The device of claim 1, wherein the displaceable layer is movable between a first position and a second position, and wherein the device has a first optical response when the displaceable layer is in the first position, and a second optical response when the displaceable layer is in the second position.
4. The device of claim 3, wherein the device reflects a light of a certain wavelength when the displaceable layer is in the first position, and wherein the device absorbs the light when the displaceable layer is in the second position.
5. The device of claim 1, wherein the device comprises a reflective display.
6. The device of claim 1, wherein the charge-trapping layer comprises a material selected from the group of AlOx (non-stoichiometric), Si3N4, SiNx(non-stoichiometric), Ta2O5, and TaOx (non-stoichiometric).
8. The device of claim 7, wherein the transparent layer comprises SiO2.
9. The device of claim 7, wherein the charge-trapping layer comprises a material selected from the group of AlOx (non-stoichiometric), Si3N4, SiNx (non-stoichiometric), Ta2O5, and TaOx (non-stoichiometric).
10. The device of claim 7, wherein the charge-trapping layer comprises al2O3.
11. The device of claim 10, wherein the transparent layer comprises SiO2.
12. The device of claim 7, wherein the device comprises an interferometric modulator.
13. The device of claim 7, wherein the device comprises a reflective display.

This invention relates to microelectromechanical systems devices. In particular it relates to thin film structures in microelctromechanical systems devices and to electromechanical and optical responses of such thin film structures.

Today a wide variety of microelectromechanical systems (MEMS) devices may be fabricated using microfabrication techniques. Examples of these MEMS devices include motors, pumps, valves, switches, sensors, pixels, etc.

Often these MEMS devices harness principles and phenomena from different domains such as the optical, electrical and mechanical domains. Such principles and phenomena, while seemingly difficult to harness in the macroscopic world, can become extremely useful in the microscopic world of MEMS devices, where such phenomena become magnified. For example, electrostatic forces which are generally considered to be too weak in the macroscopic world to be harnessed, are strong enough in the microscopic world of MEMS devices to activate these devices, often at high speeds and with low power consumption.

Materials used in MEMS devices are generally selected based on their inherent properties in the optical, electrical, and mechanical domains and the characteristic response to input, such as for example, a driving or actuation voltage.

One problem affecting the fabrication of MEMS devices is that in some cases, a material having a highly desirable response to input, for example an optical response to incident light, may also have an undesirable response to input, for example, an electromechanical response to an actuation or driving voltage. To overcome, or at least reduce, the undesirable response, new materials have to be found or developed often at great expense.

Another problem with the fabrication of MEMS devices is that sometimes, a material selected for its characteristic response may become damaged due to exposure to chemical agents used during a particular microfabrication process. This causes the material to demonstrate less of the characteristic response to the input.

In one embodiment, the invention provides a method for fabricating a microelectromechanical systems device. The method comprises fabricating a first layer comprising a film or structured film having a characteristic electromechanical response, and a characteristic optical response, wherein the characteristic optical response is desirable and the characteristic electromechanical response is undesirable; and modifying the characteristic electromechanical response of the first layer by manipulating charge build up thereon during activation of the microelectromechanical systems device.

FIGS. 1 and 2 show a block diagram of a MEMS device in an unactuated, and an actuated state respectively;

FIG. 3 shows a chart of the actuation and release voltages for the MEMS device of FIGS. 1 and 2;

FIG. 4 shows one embodiment of a thin film stack for a MEMS device, in accordance with one embodiment of the invention;

FIG. 5 shows a hysteresis curve for a MEMS device including the thin film stack shown in FIG. 4 of the drawings;

FIG. 6 shows another embodiment of a thin film stack for a MEMS device;

FIG. 7 shows a hysteresis curve for a MEMS device including the thin film stack of FIG. 6 of the drawings;

FIG. 8a shows a block diagram of an electrostatic fluid flow system within a MEMS device in accordance with one embodiment of the invention;

FIG. 8b shows a schematic drawing of the fluid flow system of FIG. 8a illustrating its principle of operation; and

FIG. 9 shows another embodiment of a MEMS device in accordance with the invention.

A particular structure or layer within a microelectromechanical systems (MEMS) device may be desirable for its optical response to input in the form of incident light, but may at the same time have an undesirable electromechanical response to input in the form of an actuation or driving voltage. The present invention discloses techniques to manipulate or control the electromechanical response of the structure or layer, thus at least reducing the undesirable electomechanical response.

As an illustrative, but a non-limiting example of a MEMS device, consider the interference modulator (IMOD]) device 10 shown in FIG. 1 of the drawings. Referring to FIG. 1, it will be seen that IMOD device 10 has been greatly simplified for illustrative purposes so as not to obscure aspects of the present invention.

The IMOD device 10 includes a transparent layer 12 and a reflective layer 14 which is spaced from the transparent layer 12 by an air gap 16. The transparent layer 14 is supported on posts 18 and is electrostatically displaceable towards the transparent layer 12 thereby to close the air gap 16. An electrode 20 which is connected to a driving mechanism 22 is used to cause the electrostatic displacement of reflective layer 14. FIG. 1 shows the reflective layer 14 in an undriven or undisplaced condition, whereas FIG. 2 shows the reflective layer 14 in a driven or displaced condition. The reflective layer 14 is generally selected to produce a desired optical response to incident light when it is brought into contact with the transparent layer 12. In one IMOD design, the transparent layer 12 may comprise SiO2. The electrode 20 and the transparent layer 12 are formed on a substrate 24. The substrate 24, the electrode 20, and the transparent layer 12 thereon will be referred to as a “thin film stack.”

Typically, a plurality of IMOD devices 10 are fabricated in a large array so as to form pixels within a reflective display. Within such a reflective display, each IMOD device 10 essentially defines a pixel which has a characteristic optical response when in the undriven state, and a characteristic optical response when in the driven state. The transparent layer 12 and the size of the air gap 16 may be selected so that an IMOD within the reflective display may reflect red, blue, or green light when in the undriven state and may absorb light when in the driven state.

It will be appreciated that during operation of the reflective display, the IMOD devices 10 are rapidly energized, and de-energized in order to convey information. When energized, the reflective layer 14 of an IMOD 10 device is electrostatically driven towards the transparent layer 12, and when the IMOD 10 is de-energized, the reflective layer 14 is allowed to return to its undriven state. In order to keep the reflective layer 14 in its driven condition, a bias voltage is applied to each IMOD device 10.

If an actuation voltage, Vactuation, defined as a voltage required to electrostatically drive the reflective layer 14 of an IMOD device to its driven condition, as showed in FIG. 2 of the drawings, is equal to a release voltage, Vrelease, defined as the voltage at which the reflective layer 14 returns to its undisplaced condition, as is shown in FIG. 1 of the drawings, then it becomes extremely difficult to select an appropriate bias voltage, Vbias, that can be applied to all of the IMOD's 10 within the reflective display to keep the reflective layers 14 of each respective IMOD device 10 within the reflective display in its driven condition. The reason for this is that each IMOD 10 within the reflective display may have slight variations, for example, variations in a thickness of the layers 12, 14, etc., which, in practice, result in a different release voltage, Vrelease, for each IMOD 10. Further, due to line resistance, there will be variations in the actual voltage applied to each IMOD 10, based on its position within the display. This makes it very difficult, if not impossible, to select a value for Vbias that will keep the reflective layer 14 of each respective IMOD 10 within the reflective display in its driven condition. This is explained with reference to FIG. 3 of the drawings, which shows the observed hysteresis behavior of the reflective layer 14 of an IMOD 10, in which the transparent layer 12 comprised SiO2.

Referring to FIG. 3, a curve, 30 is shown, which plots applied voltage (in volts) on the X-axis, against optical response measured in the volts on the Y-axis for an IMOD 10 comprising a transparent layer of SiO2. As can be seen, actuation of the reflective layer 14 occurs at about 12.5 volts, i.e., Vactuation equals 12.5 volts, and the reflective layer 14 returns to its undriven condition when the applied voltage falls to below 12.5 volts, i.e., Vrelease, equals 12.5 volts. Thus, the reflective layer 14 in an IMOD device 10 in which the transparent layer comprises only SiO2 demonstrates no hysteresis. Therefore, if the reflective display is fabricated using IMOD devices 10, each comprising a transparent layer 12 having only SiO2, it would be impossible to select a value for Vbias. For example, if Vbias is selected to be 12.5 volts, because of variations within the IMOD devices 10 in the reflective display, for at least some of the IMOD devices 10, a Vbias of 12.5 volts would fail to keep the reflective layer 14 of those IMOD devices 10 in the driven condition.

In order to select a Vbias that is sufficient to keep the reflective layer 14 of a respective IMOD device 10 within a reflective display in its driven condition, it is necessary for each reflective layer 14 of a respective IMOD device 10 within the reflective display to demonstrate some degree of hysteresis, defined as a non-zero difference between the Vactuation and Vrelease.

It will be appreciated that the electromechanical response of the reflective layer 14 of each IMOD device 10 is determined by the electromechanical properties of the reflective layer 14 as well as the electrical properties of the transparent layer 12. In one particular IMOD device design, the transparent layer 12 comprises SiO2 which gives a desired optical response when the reflective layer 14 is brought into contact therewith. However, the transparent layer 12 comprising SiO2 has a certain electrical characteristic or property (the SiO2 traps negative charge) that affects the hysteresis behavior of the reflective layer 14. Thus, the transparent layer 12 has a desired optical response but an undesirable electromechanical response to a driving or actuation voltage which affects the hysteresis behavior of the reflective layer 14.

In accordance with embodiments of the present invention, the electromechanical behavior of the transparent layer 12 is altered by adding a further layer to the thin film stack. This further layer at least minimizes or compensates for the effect of transparent layer 12 on the hysteresis behavior of the reflective layer 14.

In one embodiment of the invention, the further layer comprises Al2O2 which is deposited, in accordance with known deposition techniques, over the transparent layer 12. This results in a thin film stack 40 as shown in FIG. 4 of the drawings, comprising a substrate 42, an electrode 44, an SiO2 reflective layer 46 and an Al2O3 layer 48 which functions as a charge trapping layer.

FIG. 5 of the drawings shows a hysteresis curve 50 for an IMOD device 10 comprising the thin film stack 40. As with the hysteresis curve 30, the X-axis plots applied voltage in Volts, whereas the Y-axis plots optical response in Volts. The hysteresis curve 50 shows a hysteresis window of 2.8 volts defined as the difference between Vactuation (7.8 volts) and Vrelease (5.0 volts). When the individual IMOD's 10 within a reflective display each have a respective reflective layer 14 which demonstrates hysteresis in accordance with the hysteresis curve 50, it will be seen that it is possible to choose a value for the Vbias between 5 volts and 7.8 volts which will effectively perform the function of keeping the reflective layer 14 of each respective IMOD device 10 within the reflective display in its driven condition. In a further embodiment of the invention, the thin film stack may be further modified to include an Al2O3 layer above, as well as below, the reflective layer 12. This embodiment is shown in FIG. 6 of the drawings, where it will be seen that the thin film stack 60 includes a substrate 62, an electrode 64, a first Al2O3 layer 66, an SiO2 transparent layer 68 and a second Al2O3 layer 70.

FIG. 7 of the drawings shows a hysteresis curve 80 for a transparent layer 14 of an IMOD device 10 having the thin film stack 60 shown in FIG. 6 of the drawings. As will be seen, the hysteresis window is now wider, i.e., 4.5 volts, being the difference between Vactuation (9 volts) and Vrelease (4.5 volts).

However, other materials that have a high charge trapping density may be used. These materials include AlOx, which is the off-stoichiometric version of Al2O3, silicon nitride (Si3N4), its off-stoichiometric version (SiNx), and tantalum pentoxide (Ta2O5) and its off-stoichiometric version (TaOx). All of these materials have several orders of magnitude higher charge trapping densities than SiO2 and tend to trap charge of either polarity. Because these materials have a high charge trapping density, it is relatively easy to get charge into and out of these materials, as compared to SiO2, which has a low charge trapping density and has an affinity for trapping negative charge only.

Other examples of materials that have a high charge trapping density include the rare earth metal oxides (e.g., hafinium oxide), and polymeric materials. Further, semiconductor materials doped to trap either negative or positive charge may be used to form the further layer above, and optionally below the SiO2 transparent layer 12.

Thus far, a technique for manipulating the electromechanical behavior of a MEMS device has been described, wherein charge buildup within the MEMS device is controlled by the use of a charge trapping layer which has a high charge trapping density. However, it is to be understood that the invention covers the use of any charge trapping layer to alter or control the electromechanical behavior of a MEMS device regardless of the charge trapping density thereof. Naturally, the choice of a charge trapping layer whether it be of a high, low, or medium charge trapping density will be dictated by what electromechanical behavior for a MEMS device is being sought.

In some embodiments the incorporation of metals, in the form of thin layers or aggregates, provide yet another mechanism for manipulating the charge trapping density of a host film in a MEMS device. Structuring the host film by producing voids or creating a variation or periodicity in its material characteristics may also be used to alter the charge trapping characteristics.

According to another embodiment of the invention, an IMOD device 10 includes a chemical barrier layer deposited over the reflective layer 12 in order to protect the reflective layer 12 from damage or degradation due to exposure to chemical etchants in the microfabrication process. For example, in one embodiment, the transparent layer 12 which comprises SiO2, is protected by an overlying layer comprising Al2O3, which acts as a chemical barrier to etchants, for example, XeF2. In such embodiments, it has been found that when the transparent SiO2 layer 12 is protected from the etchants, nonuniformities in the SiO2 are eliminated along with attendant nonuniformities in electromechanical behavior, thus causing the transparent layer 14 within each IMOD device 10 to display hysteresis.

FIGS. 8a and 8b show another application within a MEMS device wherein a charged trapping layer is used to control the electromagnetic behavior of a structure within the MEMS device.

Referring to FIG. 8a, reference numeral 90 generally indicates a portion of an electrostatic fluid flow system. The electrostatic fluid flow system includes a substrate 92 within which is formed a generally U-shaped channel 94. The channel 94 includes an inner layer 96 of a first material which is selected, for example, because of its chemical and mechanical properties, for example, the material may be particularly wear-resistant, and may demonstrate little degradation due to the flow a fluid within the channel. The channel 94 also includes an outer layer 98 which is selected for its charge-trapping properties, as will be explained in greater detail below.

The electrostatic fluid flow system 90 also includes pairs of electrodes 100 and 102 which are selectively energized to cause displacement of charge particles within a fluid in the channel 94 in the direction indicated by the arrow 104 in FIG. 8b of the drawings. In one embodiment, the outer layer 98 traps charge in the fluid thereby to provide greater control of fluid flow within the system 101. In another embodiment, the layer 98 may trap charge in order to eliminate or to reduce hysteresis effects.

Referring now to FIG. 9 of the drawings, another application of using a charge-trapping layer to alter the electromechanical behavior of a structure within a MEMS device is shown. In FIG. 9, reference numeral 120 generally indicates a motor comprising a rotor 122 which is axially aligned and spaced from a stator of 124. As can be seen, the stator 124 is formed on a substrate 126 and includes electrodes 128, which, in use, are energized by a driving mechanism (not shown). The rotor 122 includes a cylindrical portion 130 which is fast with a spindle 132. The rotor 122 may be of a material that may be selected for its mechanical properties, including resistance to wear, but may have undesirable electrical properties in response to input, such as when the electrodes 128 are energized in order to cause rotation of the rotor 122. In order to compensate for these undesirable electrical properties, layers 134 and 136 are deposited on the rotor 122 in order to effectively act as a charge trapping layer to alter the electromechanical behavior of the rotor 122.

Although the present invention has been described with reference to specific exemplary embodiments, it will be evident that the various modification and changes can be made to these embodiments without departing from the broader spirit of the invention as set forth in the claims. Accordingly, the specification and drawings are to be regarded in an illustrative sense rather than in a restrictive sense.

Chui, Clarence, Kothari, Manish, Batey, John, Miles, Mark W.

Patent Priority Assignee Title
7660031, Sep 27 2004 SNAPTRACK, INC Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator
7719752, May 11 2007 SNAPTRACK, INC MEMS structures, methods of fabricating MEMS components on separate substrates and assembly of same
7781850, Sep 20 2002 SNAPTRACK, INC Controlling electromechanical behavior of structures within a microelectromechanical systems device
7830589, Sep 27 2004 SNAPTRACK, INC Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator
8035883, Sep 27 2004 SNAPTRACK, INC Device having a conductive light absorbing mask and method for fabricating same
8058549, Oct 19 2007 SNAPTRACK, INC Photovoltaic devices with integrated color interferometric film stacks
8077379, Apr 10 2006 SNAPTRACK, INC Interferometric optical display system with broadband characteristics
8081373, Jul 31 2007 SNAPTRACK, INC Devices and methods for enhancing color shift of interferometric modulators
8085458, Oct 28 2005 SNAPTRACK, INC Diffusion barrier layer for MEMS devices
8098417, May 09 2007 SNAPTRACK, INC Electromechanical system having a dielectric movable membrane
8126297, Sep 27 2004 SNAPTRACK, INC MEMS device fabricated on a pre-patterned substrate
8164815, Mar 21 2007 SNAPTRACK, INC MEMS cavity-coating layers and methods
8174752, Mar 07 2008 SNAPTRACK, INC Interferometric modulator in transmission mode
8213075, Sep 27 2004 SNAPTRACK, INC Method and device for multistate interferometric light modulation
8243360, Sep 27 2004 SNAPTRACK, INC Device having a conductive light absorbing mask and method for fabricating same
8278726, Sep 20 2002 SNAPTRACK, INC Controlling electromechanical behavior of structures within a microelectromechanical systems device
8358266, Sep 02 2008 SNAPTRACK, INC Light turning device with prismatic light turning features
8368124, Sep 20 2002 SNAPTRACK, INC Electromechanical devices having etch barrier layers
8368997, Jul 02 2007 SNAPTRACK, INC Electromechanical device with optical function separated from mechanical and electrical function
8390547, Sep 27 2004 SNAPTRACK, INC Conductive bus structure for interferometric modulator array
8488228, Sep 28 2009 SNAPTRACK, INC Interferometric display with interferometric reflector
8638491, Sep 27 2004 SNAPTRACK, INC Device having a conductive light absorbing mask and method for fabricating same
8659816, Apr 25 2011 SNAPTRACK, INC Mechanical layer and methods of making the same
8693084, Mar 07 2008 SNAPTRACK, INC Interferometric modulator in transmission mode
8736939, Nov 04 2011 SNAPTRACK, INC Matching layer thin-films for an electromechanical systems reflective display device
8736949, Jul 31 2007 SNAPTRACK, INC Devices and methods for enhancing color shift of interferometric modulators
8797628, Oct 19 2007 SNAPTRACK, INC Display with integrated photovoltaic device
8797632, Aug 17 2010 SNAPTRACK, INC Actuation and calibration of charge neutral electrode of a display device
8817357, Apr 09 2010 SNAPTRACK, INC Mechanical layer and methods of forming the same
8830557, May 11 2007 SNAPTRACK, INC Methods of fabricating MEMS with spacers between plates and devices formed by same
8885244, Sep 27 2004 SNAPTRACK, INC Display device
8928967, Apr 08 1998 SNAPTRACK, INC Method and device for modulating light
8941631, Nov 16 2007 SNAPTRACK, INC Simultaneous light collection and illumination on an active display
8963159, Apr 04 2011 SNAPTRACK, INC Pixel via and methods of forming the same
8970939, Sep 27 2004 SNAPTRACK, INC Method and device for multistate interferometric light modulation
8971675, Jan 13 2006 SNAPTRACK, INC Interconnect structure for MEMS device
8979349, May 29 2009 SNAPTRACK, INC Illumination devices and methods of fabrication thereof
8988760, Jul 17 2008 SNAPTRACK, INC Encapsulated electromechanical devices
9001412, Sep 27 2004 SNAPTRACK, INC Electromechanical device with optical function separated from mechanical and electrical function
9057872, Aug 31 2010 SNAPTRACK, INC Dielectric enhanced mirror for IMOD display
9081188, Nov 04 2011 SNAPTRACK, INC Matching layer thin-films for an electromechanical systems reflective display device
9086564, Sep 27 2004 SNAPTRACK, INC Conductive bus structure for interferometric modulator array
9097885, Sep 27 2004 SNAPTRACK, INC Device having a conductive light absorbing mask and method for fabricating same
9110200, Apr 16 2010 Flex Lighting II, LLC Illumination device comprising a film-based lightguide
9110289, Apr 08 1998 SNAPTRACK, INC Device for modulating light with multiple electrodes
9121979, May 29 2005 SNAPTRACK, INC Illumination devices and methods of fabrication thereof
9134527, Apr 04 2011 SNAPTRACK, INC Pixel via and methods of forming the same
Patent Priority Assignee Title
2534846,
3439973,
3443854,
3616312,
3653741,
3656836,
3725868,
3813265,
3955880, Jul 20 1973 Organisation Europeenne de Recherches Spatiales Infrared radiation modulator
4099854, Oct 12 1976 The Unites States of America as represented by the Secretary of the Navy Optical notch filter utilizing electric dipole resonance absorption
4196396, Oct 15 1976 Bell Telephone Laboratories, Incorporated Interferometer apparatus using electro-optic material with feedback
4228437, Jun 26 1979 The United States of America as represented by the Secretary of the Navy Wideband polarization-transforming electromagnetic mirror
4377324, Aug 04 1980 Honeywell Inc. Graded index Fabry-Perot optical filter device
4389096, Dec 27 1977 Matsushita Electric Industrial Co., Ltd. Image display apparatus of liquid crystal valve projection type
4392711, Mar 28 1980 Hoechst Aktiengesellschaft Process and apparatus for rendering visible charge images
4403248, Mar 04 1980 U S PHILIPS CORPORATION, ACOR OF DE Display device with deformable reflective medium
4441791, Sep 02 1980 Texas Instruments Incorporated Deformable mirror light modulator
4445050, Dec 15 1981 Device for conversion of light power to electric power
4459182, Mar 04 1980 U.S. Philips Corporation Method of manufacturing a display device
4482213, Nov 23 1982 Texas Instruments Incorporated Perimeter seal reinforcement holes for plastic LCDs
4500171, Jun 02 1982 Texas Instruments Incorporated Process for plastic LCD fill hole sealing
4519676, Feb 01 1982 U S PHILIPS CORPORATION, A DE CORP Passive display device
4531126, May 18 1981 Societe d'Etude du Radant Method and device for analyzing a very high frequency radiation beam of electromagnetic waves
4566935, Jul 31 1984 Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED A CORP OF DE Spatial light modulator and method
4571603, Nov 03 1981 Texas Instruments Incorporated Deformable mirror electrostatic printer
4596992, Aug 31 1984 Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED, A DE CORP Linear spatial light modulator and printer
4615595, Oct 10 1984 Texas Instruments Incorporated Frame addressed spatial light modulator
4617608, Dec 28 1984 AT&T Bell Laboratories Variable gap device and method of manufacture
4662746, Oct 30 1985 Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED, 13500 NORTH CENTRAL EXPRESSWAY, DALLAS, TEXAS 75265, A CORP OF DE Spatial light modulator and method
4663083, May 26 1978 Electro-optical dipole suspension with reflective-absorptive-transmissive characteristics
4681403, Jul 16 1981 U.S. Philips Corporation Display device with micromechanical leaf spring switches
4710732, Jul 31 1984 Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED A CORP OF DE Spatial light modulator and method
4748366, Sep 02 1986 Ocean Power Technologies, INC Novel uses of piezoelectric materials for creating optical effects
4786128, Dec 02 1986 QUANTUM DIAGNOSTICS, LTD Device for modulating and reflecting electromagnetic radiation employing electro-optic layer having a variable index of refraction
4790635, Apr 25 1986 Qinetiq Limited Electro-optical device
4856863, Jun 22 1988 Texas Instruments Incorporated Optical fiber interconnection network including spatial light modulator
4859060, Nov 26 1985 501 Sharp Kabushiki Kaisha Variable interferometric device and a process for the production of the same
4900136, Aug 11 1987 North American Philips Corporation Method of metallizing silica-containing gel and solid state light modulator incorporating the metallized gel
4900395, Apr 07 1989 FSI International, Inc. HF gas etching of wafers in an acid processor
4937496, May 16 1987 Heraeus Noblelight GmbH Xenon short arc discharge lamp
4954789, Sep 28 1989 Texas Instruments Incorporated Spatial light modulator
4956619, Jul 31 1984 Texas Instruments Incorporated Spatial light modulator
4965562, May 13 1987 U S PHILIPS CORPORATION Electroscopic display device
4982184, Jan 03 1989 Lockheed Martin Corporation Electrocrystallochromic display and element
5018256, Jun 29 1990 Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED, A CORP OF DE Architecture and process for integrating DMD with control circuit substrates
5022745, Sep 07 1989 Massachusetts Institute of Technology Electrostatically deformable single crystal dielectrically coated mirror
5028939, Jun 23 1986 Texas Instruments Incorporated Spatial light modulator system
5037173, Nov 22 1989 Texas Instruments Incorporated Optical interconnection network
5044736, Nov 06 1990 Motorola, Inc. Configurable optical filter or display
5061049, Jul 31 1984 Texas Instruments Incorporated Spatial light modulator and method
5075796, May 31 1990 Eastman Kodak Company Optical article for multicolor imaging
5078479, Apr 20 1990 Colibrys SA Light modulation device with matrix addressing
5079544, Feb 27 1989 Texas Instruments Incorporated Standard independent digitized video system
5083857, Jun 29 1990 Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED, A CORP OF DE Multi-level deformable mirror device
5096279, Jul 31 1984 Texas Instruments Incorporated Spatial light modulator and method
5099353, Jun 29 1990 Texas Instruments Incorporated Architecture and process for integrating DMD with control circuit substrates
5124834, Nov 16 1989 Lockheed Martin Corporation Transferrable, self-supporting pellicle for elastomer light valve displays and method for making the same
5136669, Mar 15 1991 Sperry Marine Inc. Variable ratio fiber optic coupler optical signal processing element
5142405, Jun 29 1990 Texas Instruments Incorporated Bistable DMD addressing circuit and method
5142414, Apr 22 1991 Electrically actuatable temporal tristimulus-color device
5153771, Jul 18 1990 Northrop Corporation Coherent light modulation and detector
5162787, Feb 27 1989 Texas Instruments Incorporated Apparatus and method for digitized video system utilizing a moving display surface
5168406, Jul 31 1991 Texas Instruments Incorporated Color deformable mirror device and method for manufacture
5170156, Feb 27 1989 Texas Instruments Incorporated Multi-frequency two dimensional display system
5172262, Oct 30 1985 Texas Instruments Incorporated Spatial light modulator and method
5179274, Jul 12 1991 Texas Instruments Incorporated; TEXAS INSTRTUMENTS INCORPORTED, A CORP OF DE Method for controlling operation of optical systems and devices
5192395, Oct 12 1990 Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED, A CORP OF DELAWARE Method of making a digital flexure beam accelerometer
5192946, Feb 27 1989 Texas Instruments Incorporated Digitized color video display system
5206629, Feb 27 1989 Texas Instruments Incorporated Spatial light modulator and memory for digitized video display
5212582, Mar 04 1992 Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED A CORP OF DELAWARE Electrostatically controlled beam steering device and method
5214419, Feb 27 1989 Texas Instruments Incorporated Planarized true three dimensional display
5214420, Feb 27 1989 Texas Instruments Incorporated Spatial light modulator projection system with random polarity light
5216537, Jun 29 1990 Texas Instruments Incorporated Architecture and process for integrating DMD with control circuit substrates
5218472, Mar 22 1989 NOVELIS, INC Optical interference structures incorporating porous films
5226099, Apr 26 1991 Texas Instruments Incorporated Digital micromirror shutter device
5228013, Jan 10 1992 Clock-painting device and method for indicating the time-of-day with a non-traditional, now analog artistic panel of digital electronic visual displays
5231532, Feb 05 1992 Texas Instruments Incorporated Switchable resonant filter for optical radiation
5233385, Dec 18 1991 Texas Instruments Incorporated White light enhanced color field sequential projection
5233456, Dec 20 1991 Texas Instruments Incorporated Resonant mirror and method of manufacture
5233459, Mar 06 1991 MASSACHUSETTS INSTITUTE OF TECHNOLOGY, A CORP OF MA Electric display device
5254980, Sep 06 1991 Texas Instruments Incorporated DMD display system controller
5272473, Feb 27 1989 Texas Instruments Incorporated Reduced-speckle display system
5278652, Apr 01 1991 Texas Instruments Incorporated DMD architecture and timing for use in a pulse width modulated display system
5280277, Jun 29 1990 Texas Instruments Incorporated Field updated deformable mirror device
5287096, Feb 27 1989 Texas Instruments Incorporated Variable luminosity display system
5293272, Aug 24 1992 SANWA BANK CALIFORNIA High finesse holographic fabry-perot etalon and method of fabricating
5296950, Jan 31 1992 Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED A CORP OF DELAWARE Optical signal free-space conversion board
5299041, Jul 11 1991 Fahrenheit Thermoscope LLC; Fahrenheit Thermoscope, LLC Active matrix, high definition, liquid crystal display structure
5305640, Oct 12 1990 Texas Instruments Incorporated Digital flexure beam accelerometer
5311360, Apr 28 1992 LELAND STANFORD, JR UNIVERSITY Method and apparatus for modulating a light beam
5312513, Apr 03 1992 Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED A CORP OF DELAWARE Methods of forming multiple phase light modulators
5323002, Mar 25 1992 Texas Instruments Incorporated Spatial light modulator based optical calibration system
5324683, Jun 02 1993 Freescale Semiconductor, Inc Method of forming a semiconductor structure having an air region
5325116, Sep 18 1992 Texas Instruments Incorporated Device for writing to and reading from optical storage media
5326430, Sep 24 1992 International Business Machines Corporation Cooling microfan arrangements and process
5327286, Aug 31 1992 Texas Instruments Incorporated Real time optical correlation system
5330617, Nov 16 1990 Fahrenheit Thermoscope LLC; Fahrenheit Thermoscope, LLC Method for etching integrated-circuit layers to a fixed depth and corresponding integrated circuit
5331454, Nov 13 1990 Texas Instruments Incorporated Low reset voltage process for DMD
5339116, Apr 01 1991 Texas Instruments Incorporated DMD architecture and timing for use in a pulse-width modulated display system
5345328, Aug 12 1992 Sandia Corporation Tandem resonator reflectance modulator
5347377, Jun 17 1992 Eastman Kodak Company Planar waveguide liquid crystal variable retarder
5355357, Jan 20 1990 Sony Corporation Disc player and disc loading device
5358601, Sep 24 1991 Micron Technology, Inc. Process for isotropically etching semiconductor devices
5365283, Jul 19 1993 Texas Instruments Incorporated Color phase control for projection display using spatial light modulator
5381232, May 19 1992 Akzo Nobel N.V. Fabry-perot with device mirrors including a dielectric coating outside the resonant cavity
5381253, Nov 14 1991 BOARD OF REGENTS OF THE UNIVERSITY OF COLORADO, THE Chiral smectic liquid crystal optical modulators having variable retardation
5401983, Apr 08 1992 Georgia Tech Research Corporation Processes for lift-off of thin film materials or devices for fabricating three dimensional integrated circuits, optical detectors, and micromechanical devices
5411769, Nov 13 1990 Texas Instruments Incorporated Method of producing micromechanical devices
5444566, Mar 07 1994 Texas Instruments Incorporated Optimized electronic operation of digital micromirror devices
5446479, Feb 27 1989 Texas Instruments Incorporated Multi-dimensional array video processor system
5448314, Jan 07 1994 Texas Instruments Method and apparatus for sequential color imaging
5452024, Nov 01 1993 Texas Instruments Incorporated DMD display system
5454906, Jun 21 1994 Texas Instruments Inc. Method of providing sacrificial spacer for micro-mechanical devices
5457493, Sep 15 1993 Texas Instruments Incorporated Digital micro-mirror based image simulation system
5457566, Nov 22 1991 Texas Instruments Incorporated DMD scanner
5459602, Oct 29 1993 Texas Instruments Micro-mechanical optical shutter
5459610, Apr 28 1992 BOARD OF TRUSTEES OF THE LELAND STANFORD, JUNIOR UNIVERSITY, THE Deformable grating apparatus for modulating a light beam and including means for obviating stiction between grating elements and underlying substrate
5461411, Mar 29 1993 AGFA-GEVAERT N V Process and architecture for digital micromirror printer
5474865, Nov 21 1994 Sematech, Inc. Globally planarized binary optical mask using buried absorbers
5488505, Oct 01 1992 Enhanced electrostatic shutter mosaic modulator
5489952, Jul 14 1993 Texas Instruments Incorporated Method and device for multi-format television
5497172, Jun 13 1994 Texas Instruments Incorporated Pulse width modulation for spatial light modulator with split reset addressing
5497197, Nov 04 1993 Texas Instruments Incorporated System and method for packaging data into video processor
5499037, Sep 30 1988 Sharp Kabushiki Kaisha Liquid crystal display device for display with gray levels
5499062, Jun 23 1994 Texas Instruments Incorporated Multiplexed memory timing with block reset and secondary memory
5500635, Feb 20 1990 Products incorporating piezoelectric material
5500761, Jan 27 1994 AT&T Corp. Micromechanical modulator
5503952, Mar 22 1994 Sumitomo Chemical Company, Limited Method for manufacture of color filter and liquid crystal display
5506597, Feb 27 1989 Texas Instruments Incorporated Apparatus and method for image projection
5515076, Feb 27 1989 Texas Instruments Incorporated Multi-dimensional array video processor system
5517347, Dec 01 1993 Texas Instruments Incorporated Direct view deformable mirror device
5523803, Apr 01 1991 Texas Instruments Incorporated DMD architecture and timing for use in a pulse-width modulated display system
5526051, Oct 27 1993 Texas Instruments Incorporated Digital television system
5526172, Jul 27 1993 Texas Instruments Incorporated Microminiature, monolithic, variable electrical signal processor and apparatus including same
5526327, Mar 15 1994 Spatial displacement time display
5526688, Oct 12 1990 Texas Instruments Incorporated Digital flexure beam accelerometer and method
5535047, Apr 18 1995 Texas Instruments Incorporated Active yoke hidden hinge digital micromirror device
5548301, Jan 11 1993 Texas Instruments Incorporated Pixel control circuitry for spatial light modulator
5551293, Oct 12 1990 Texas Instruments Incorporated Micro-machined accelerometer array with shield plane
5552924, Nov 14 1994 Texas Instruments Incorporated Micromechanical device having an improved beam
5552925, Sep 07 1993 BAKER, JOHN M Electro-micro-mechanical shutters on transparent substrates
5559358, May 25 1993 Honeywell INC Opto-electro-mechanical device or filter, process for making, and sensors made therefrom
5563398, Oct 31 1991 Texas Instruments Incorporated Spatial light modulator scanning system
5567334, Feb 27 1995 Texas Instruments Incorporated Method for creating a digital micromirror device using an aluminum hard mask
5570135, Jul 14 1993 Texas Instruments Incorporated Method and device for multi-format television
5578976, Jun 22 1995 TELEDYNE SCIENTIFIC & IMAGING, LLC Micro electromechanical RF switch
5579149, Sep 13 1993 Colibrys SA Miniature network of light obturators
5581272, Aug 25 1993 Texas Instruments Incorporated Signal generator for controlling a spatial light modulator
5583688, Dec 21 1993 Texas Instruments Incorporated Multi-level digital micromirror device
5589852, Feb 27 1989 Texas Instruments Incorporated Apparatus and method for image projection with pixel intensity control
5597736, Aug 11 1992 Texas Instruments Incorporated High-yield spatial light modulator with light blocking layer
5600383, Jun 29 1990 Texas Instruments Incorporated Multi-level deformable mirror device with torsion hinges placed in a layer different from the torsion beam layer
5602671, Nov 13 1990 Texas Instruments Incorporated Low surface energy passivation layer for micromechanical devices
5606441, Apr 03 1992 Texas Instruments Incorporated Multiple phase light modulation using binary addressing
5608468, Jul 14 1993 Texas Instruments Incorporated Method and device for multi-format television
5610438, Mar 08 1995 Texas Instruments Incorporated Micro-mechanical device with non-evaporable getter
5610624, Nov 30 1994 Texas Instruments Incorporated Spatial light modulator with reduced possibility of an on state defect
5610625, May 02 1992 Texas Instruments Incorporated Monolithic spatial light modulator and memory package
5619059, Sep 28 1994 National Research Council of Canada Color deformable mirror device having optical thin film interference color coatings
5619365, Jun 08 1992 Texas Instruments Incorporated Elecronically tunable optical periodic surface filters with an alterable resonant frequency
5619366, Jun 08 1992 Texas Instruments Incorporated Controllable surface filter
5622814, Apr 20 1988 Matsushita Electric Industrial Co., Ltd. Method for fabricating active substrate
5629790, Oct 18 1993 RPX CLEARINGHOUSE LLC Micromachined torsional scanner
5633652, Feb 17 1984 Canon Kabushiki Kaisha Method for driving optical modulation device
5636052, Jul 29 1994 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Direct view display based on a micromechanical modulation
5636185, Mar 10 1995 Boit Incorporated Dynamically changing liquid crystal display timekeeping apparatus
5638084, May 22 1992 NEW VISUAL MEDIA GROUP, L L C Lighting-independent color video display
5638946, Jan 11 1996 Northeastern University Micromechanical switch with insulated switch contact
5641391, May 15 1995 Three dimensional microfabrication by localized electrodeposition and etching
5646768, Jul 29 1994 Texas Instruments Incorporated Support posts for micro-mechanical devices
5647819, Nov 05 1993 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Speed change control method for an automatic transmission
5650834, Jul 05 1994 MITSUBISHI DENKI KABUSHIKI KAISHA 50% Active-matrix device having silicide thin film resistor disposed between an input terminal and a short-circuit ring
5650881, Nov 02 1994 Texas Instruments Incorporated Support post architecture for micromechanical devices
5654741, May 17 1994 TEXAS INSTRUMENTS INCORPORATION; Sony Corporation Spatial light modulator display pointing device
5657099, Aug 09 1994 Texas Instruments Incorporated Color phase control for projection display using spatial light modulator
5659374, Oct 23 1992 Texas Instruments Incorporated Method of repairing defective pixels
5665997, Mar 31 1994 Texas Instruments Incorporated Grated landing area to eliminate sticking of micro-mechanical devices
5673139, Jul 19 1993 ROYAL BANK CAPITAL PARTNERS Microelectromechanical television scanning device and method for making the same
5674757, May 28 1994 SAMSUNG DISPLAY CO , LTD Process of fabricating a self-aligned thin-film transistor for a liquid crystal display
5683591, May 25 1993 Robert Bosch GmbH Process for producing surface micromechanical structures
5703710, Sep 09 1994 GEMFIRE CORPORATION, A CALIFORNIA CORPORATION Method for manipulating optical energy using poled structure
5706022, Mar 15 1994 Fujitsu Limited Optical display device having an optically transparent driver circuit
5710656, Jul 30 1996 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Micromechanical optical modulator having a reduced-mass composite membrane
5726480, Jan 27 1995 CALIFORNIA, UNIVERSITY OF THE REGENTS, THE Etchants for use in micromachining of CMOS Microaccelerometers and microelectromechanical devices and method of making the same
5737050, Aug 25 1992 Matsushita Electric Industrial Co., Ltd. Light valve having reduced reflected light, high brightness and high contrast
5739945, Sep 27 1996 HANGER SOLUTIONS, LLC Electrically tunable optical filter utilizing a deformable multi-layer mirror
5745193, Apr 01 1991 Texas Instruments Incorporated DMD architecture and timing for use in a pulse-width modulated display system
5745281, Dec 29 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD ; AVAGO TECHNOLOGIES GENERAL IP PTE LTD Electrostatically-driven light modulator and display
5771116, Oct 21 1996 Texas Instruments Incorporated Multiple bias level reset waveform for enhanced DMD control
5771321, Jan 04 1996 MASSACHUSETTS INST OF TECHNOLOGY Micromechanical optical switch and flat panel display
5784189, Mar 06 1991 Massachusetts Institute of Technology Spatial light modulator
5784190, Apr 27 1995 BAKER, JOHN M Electro-micro-mechanical shutters on transparent substrates
5784212, Nov 02 1994 Texas Instruments Incorporated Method of making a support post for a micromechanical device
5793504, Aug 07 1996 Northrop Grumman Systems Corporation Hybrid angular/spatial holographic multiplexer
5808780, Jun 09 1997 Texas Instruments Incorporated Non-contacting micromechanical optical switch
5818095, Aug 11 1992 Texas Instruments Incorporated; TEXAS INSSTRUMENTS INCORRPORATED High-yield spatial light modulator with light blocking layer
5822170, Oct 09 1997 Honeywell Inc.; Honeywell INC Hydrophobic coating for reducing humidity effect in electrostatic actuators
5824608, Jun 27 1995 Nippondenso Co., Ltd. Semiconductor physical-quantity sensor and method for manufacturing same
5825528, Dec 26 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Phase-mismatched fabry-perot cavity micromechanical modulator
5835255, Apr 23 1986 SNAPTRACK, INC Visible spectrum modulator arrays
5835256, Jun 18 1996 Texas Instruments Incorporated Reflective spatial light modulator with encapsulated micro-mechanical elements
5838484, Aug 19 1996 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Micromechanical optical modulator with linear operating characteristic
5842088, Jun 17 1994 Texas Instruments Incorporated Method of calibrating a spatial light modulator printing system
5867302, Aug 07 1997 Sandia Corporation Bistable microelectromechanical actuator
5912758, Sep 11 1996 Texas Instruments Incorporated Bipolar reset for spatial light modulators
5926309, Apr 18 1997 Intel Corporation Light valve target comprising electrostatically-repelled micro-mirrors
5943155, Aug 12 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Mars optical modulators
5943158, May 05 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Micro-mechanical, anti-reflection, switched optical modulator array and fabrication method
5959763, Mar 06 1991 Massachusetts Institute of Technology Spatial light modulator
5967163, Jan 30 1996 Abbott Laboratories Actuator and method
5972193, Oct 10 1997 Industrial Technology Research Institute Method of manufacturing a planar coil using a transparency substrate
5976902, Aug 03 1998 Industrial Technology Research Institute Method of fabricating a fully self-aligned TFT-LCD
5986796, Mar 17 1993 SNAPTRACK, INC Visible spectrum modulator arrays
6016693, Feb 09 1998 The Regents of the University of California Microfabrication of cantilevers using sacrificial templates
6028690, Nov 26 1997 Texas Instruments Incorporated Reduced micromirror mirror gaps for improved contrast ratio
6031653, Aug 28 1997 California Institute of Technology Low-cost thin-metal-film interference filters
6038056, May 06 1998 Texas Instruments Incorporated Spatial light modulator having improved contrast ratio
6040937, May 05 1994 SNAPTRACK, INC Interferometric modulation
6049317, Feb 27 1989 Texas Instruments Incorporated System for imaging of light-sensitive media
6055090, Apr 23 1986 SNAPTRACK, INC Interferometric modulation
6057903, Aug 18 1998 AU Optronics Corporation Liquid crystal display device employing a guard plane between a layer for measuring touch position and common electrode layer
6061075, Jan 23 1992 Texas Instruments Incorporated Non-systolic time delay and integration printing
6088162, Aug 28 1995 ALPS Electric Co., Ltd. Multilayered filter films
6097145, Apr 27 1998 Copytele, Inc. Aerogel-based phase transition flat panel display
6099132, Sep 23 1994 Texas Instruments Incorporated Manufacture method for micromechanical devices
6100477, Jul 17 1998 Texas Instruments Incorporated Recessed etch RF micro-electro-mechanical switch
6100872, May 25 1993 Canon Kabushiki Kaisha Display control method and apparatus
6113239, Sep 04 1998 Sharp Kabushiki Kaisha Projection display system for reflective light valves
6115326, Oct 22 1998 INTEGRATED MEDICAL SYSTEMS, INC Ultrasonic micro-machined selectable transducer array
6137150, Oct 28 1994 Nippondenso Co., Ltd. Semiconductor physical-quantity sensor having a locos oxide film, for sensing a physical quantity such as acceleration, yaw rate, or the like
6147790, Jun 02 1998 Texas Instruments Incorporated Spring-ring micromechanical device
6149190, May 26 1993 GEFUS SBIC II, L P Micromechanical accelerometer for automotive applications
6158156, Oct 30 1995 John McGavigan Limited Display panels
6160833, May 06 1998 Xerox Corporation Blue vertical cavity surface emitting laser
6166422, May 13 1998 Bell Semiconductor, LLC Inductor with cobalt/nickel core for integrated circuit structure with high inductance and high Q-factor
6180428, Dec 12 1997 Xerox Corporation Monolithic scanning light emitting devices using micromachining
6194323, Dec 16 1998 Bell Semiconductor, LLC Deep sub-micron metal etch with in-situ hard mask etch
6195196, Mar 13 1998 FUJIFILM Corporation Array-type exposing device and flat type display incorporating light modulator and driving method thereof
6201633, Jun 07 1999 Xerox Corporation Micro-electromechanical based bistable color display sheets
6204080, Oct 31 1997 QUARTERHILL INC ; WI-LAN INC Method for manufacturing thin film actuated mirror array in an optical projection system
6232936, Dec 03 1993 Texas Instruments Incorporated DMD Architecture to improve horizontal resolution
6243149, May 17 1995 Massachusetts Institute of Technology Method of imaging using a liquid crystal display device
6246398, Dec 15 1997 MAGNACHIP SEMICONDUCTOR LTD Application specific integrated circuit (ASIC) for driving an external display device
6249039, Sep 10 1998 BOURNS, INC. Integrated inductive components and method of fabricating such components
6282010, May 14 1998 Texas Instruments Incorporated Anti-reflective coatings for spatial light modulators
6284560, Dec 18 1998 Eastman Kodak Company Method for producing co-planar surface structures
6295154, Jun 05 1998 Texas Instruments Incorporated Optical switching apparatus
6323982, May 22 1998 Texas Instruments Incorporated Yield superstructure for digital micromirror device
6327071, Oct 16 1998 FUJIFILM Corporation Drive methods of array-type light modulation element and flat-panel display
6329297, Apr 21 2000 Applied Materials, Inc.; Applied Materials, Inc Dilute remote plasma clean
6333556, Oct 09 1997 Micron Technology, Inc. Insulating materials
6335831, Dec 18 1998 Eastman Kodak Company Multilevel mechanical grating device
6351329, Oct 08 1999 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Optical attenuator
6356254, Sep 25 1998 FUJIFILM Corporation Array-type light modulating device and method of operating flat display unit
6376787, Aug 24 2000 Texas Instruments Incorporated Microelectromechanical switch with fixed metal electrode/dielectric interface with a protective cap layer
6391675, Nov 25 1998 Raytheon Company Method and apparatus for switching high frequency signals
6392233, Aug 10 2000 Sarnoff Corporation Optomechanical radiant energy detector
6392781, Sep 15 1999 INTELLECTUAL DISCOVERY CO LTD High speed semiconductor optical modulator and fabricating method thereof
6407851, Aug 01 2000 Cheetah Omni, LLC Micromechanical optical switch
6446486, Apr 26 1999 National Technology & Engineering Solutions of Sandia, LLC Micromachine friction test apparatus
6447126, Nov 02 1994 Texas Instruments Incorporated Support post architecture for micromechanical devices
6452124, Jun 28 2000 Regents of the University of California, The Capacitive microelectromechanical switches
6452465, Jun 27 2000 M-SQUARED FILTERS, L L C High quality-factor tunable resonator
6456420, Jul 27 2000 Micross Advanced Interconnect Technology LLC Microelectromechanical elevating structures
6465355, Apr 27 2001 Hewlett-Packard Company Method of fabricating suspended microstructures
6466354, Sep 19 2000 Silicon Light Machines Corporation Method and apparatus for interferometric modulation of light
6466358, Dec 30 1999 Texas Instruments Incorporated Analog pulse width modulation cell for digital micromechanical device
6473274, Jun 28 2000 Texas Instruments Incorporated Symmetrical microactuator structure for use in mass data storage devices, or the like
6480177, Jun 02 1998 Texas Instruments Incorporated Blocked stepped address voltage for micromechanical devices
6496122, Jun 26 1998 Sharp Laboratories of America, Inc Image display and remote control system capable of displaying two distinct images
6513911, Jun 04 1999 Canon Kabushiki Kaisha Micro-electromechanical device, liquid discharge head, and method of manufacture therefor
6522801, Oct 10 2000 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Micro-electro-optical mechanical device having an implanted dopant included therein and a method of manufacture therefor
6531945, Mar 10 2000 Round Rock Research, LLC Integrated circuit inductor with a magnetic core
6537427, Feb 04 1999 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Deposition of smooth aluminum films
6545335, Dec 27 1999 MAJANDRO LLC Structure and method for electrical isolation of optoelectronic integrated circuits
6548908, Dec 27 1999 MAJANDRO LLC Structure and method for planar lateral oxidation in passive devices
6549338, Nov 12 1999 Texas Instruments Incorporated Bandpass filter to reduce thermal impact of dichroic light shift
6552840, Dec 03 1999 Texas Instruments Incorporated Electrostatic efficiency of micromechanical devices
6574033, Feb 27 2002 SNAPTRACK, INC Microelectromechanical systems device and method for fabricating same
6577785, Aug 09 2001 National Technology & Engineering Solutions of Sandia, LLC Compound semiconductor optical waveguide switch
6589625, Aug 01 2001 SNAPTRACK, INC Hermetic seal and method to create the same
6600201, Aug 03 2001 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Systems with high density packing of micromachines
6606175, Mar 16 1999 Sharp Laboratories of America, Inc. Multi-segment light-emitting diode
6608268, Feb 05 2002 MEMtronics, a division of Cogent Solutions, Inc.; MEMTRONICS, A DIVISION OF COGENT SOLUTIONS, INC Proximity micro-electro-mechanical system
6610440, Mar 10 1998 Bipolar Technologies, Inc Microscopic batteries for MEMS systems
6618187, Jul 13 2000 KODAK I L, LTD Blazed micro-mechanical light modulator and array thereof
6624944, Mar 29 1996 Texas Instruments Incorporated Fluorinated coating for an optical element
6625047, Dec 31 2000 Texas Instruments Incorporated Micromechanical memory element
6630786, Mar 30 2001 Canon Kabushiki Kaisha Light-emitting device having light-reflective layer formed with, or/and adjacent to, material that enhances device performance
6632698, Aug 07 2001 HEWLETT-PACKARD DEVELOPMENT COMPANY L P Microelectromechanical device having a stiffened support beam, and methods of forming stiffened support beams in MEMS
6635919, Aug 17 2000 Texas Instruments Incorporated High Q-large tuning range micro-electro mechanical system (MEMS) varactor for broadband applications
6639724, Jun 05 2001 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Device having a barrier layer located therein and a method of manufacture therefor
6642913, Jan 20 1999 FUJIFILM Corporation Light modulation element, exposure unit, and flat-panel display unit
6643069, Aug 31 2000 Texas Instruments Incorporated SLM-base color projection display having multiple SLM's and multiple projection lenses
6650455, May 05 1994 SNAPTRACK, INC Photonic mems and structures
6653997, Feb 24 2000 RAMBUS DELAWARE Display device comprising a light guide
6657832, Apr 26 2001 Texas Instruments Incorporated Mechanically assisted restoring force support for micromachined membranes
6666561, Oct 28 2002 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Continuously variable analog micro-mirror device
6674562, May 05 1994 SNAPTRACK, INC Interferometric modulation of radiation
6674563, Apr 13 2000 NeoPhotonics Corporation Method and apparatus for device linearization
6680792, May 05 1994 SNAPTRACK, INC Interferometric modulation of radiation
6710908, May 05 1994 SNAPTRACK, INC Controlling micro-electro-mechanical cavities
6720267, Mar 19 2003 United Microelectronics Corp. Method for forming a cantilever beam model micro-electromechanical system
6736987, Jul 12 2000 Techbank Corporation Silicon etching apparatus using XeF2
6741377, Jul 02 2002 SNAPTRACK, INC Device having a light-absorbing mask and a method for fabricating same
6741384, Apr 30 2003 Taiwan Semiconductor Manufacturing Company Limted Control of MEMS and light modulator arrays
6741503, Dec 04 2002 Texas Instruments Incorporated SLM display data address mapping for four bank frame buffer
6743570, May 25 2001 Cornell Research Foundation, Inc Method of using heat-depolymerizable polycarbonate sacrificial layer to create nano-fluidic devices
6747785, Oct 24 2002 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P MEMS-actuated color light modulator and methods
6747800, Dec 27 2002 SNAPTRACK, INC Optical interference type panel and the manufacturing method thereof
6756317, Apr 23 2001 NeoPhotonics Corporation Method for making a microstructure by surface micromachining
6768097, Feb 05 2001 Centre National de la Recherche Scientifique; Ecole Centrale de Lyon Optoelectronic device with wavelength filtering by cavity coupling
6775174, Dec 28 2000 Texas Instruments Incorporated Memory architecture for micromirror cell
6778155, Jul 31 2000 Texas Instruments Incorporated Display operation with inserted block clears
6778306, Apr 23 2001 NeoPhotonics Corporation Surface micromachined optical system with reinforced mirror microstructure
6781239, Dec 05 2001 National Semiconductor Corporation Integrated circuit and method of forming the integrated circuit having a die with high Q inductors and capacitors attached to a die with a circuit as a flip chip
6791441, May 07 2002 Raytheon Company Micro-electro-mechanical switch, and methods of making and using it
6794119, Feb 12 2002 SNAPTRACK, INC Method for fabricating a structure for a microelectromechanical systems (MEMS) device
6811267, Jun 09 2003 Hewlett-Packard Development Company, L.P. Display system with nonvisible data projection
6812482, Apr 21 1999 National Technology & Engineering Solutions of Sandia, LLC Method to fabricate layered material compositions
6819469, May 05 2003 High-resolution spatial light modulator for 3-dimensional holographic display
6822628, Jun 28 2001 Canon Kabushiki Kaisha Methods and systems for compensating row-to-row brightness variations of a field emission display
6829132, Apr 30 2003 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Charge control of micro-electromechanical device
6853129, Jul 28 2000 Canon Kabushiki Kaisha Protected substrate structure for a field emission display device
6855610, Sep 18 2002 ProMOS Technologies, Inc. Method of forming self-aligned contact structure with locally etched gate conductive layer
6859218, Nov 07 2000 HEWLETT-PACKARD DEVELOPMENT COMPANY L P Electronic display devices and methods
6861277, Oct 02 2003 Taiwan Semiconductor Manufacturing Company Limted Method of forming MEMS device
6862022, Jul 20 2001 VALTRUS INNOVATIONS LIMITED Method and system for automatically selecting a vertical refresh rate for a video display monitor
6862029, Jul 27 1999 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Color display system
6867896, May 05 1994 SNAPTRACK, INC Interferometric modulation of radiation
6870581, Oct 30 2001 Sharp Laboratories of America, Inc. Single panel color video projection display using reflective banded color falling-raster illumination
6870654, May 26 2003 SNAPTRACK, INC Structure of a structure release and a method for manufacturing the same
6882458, Apr 21 2003 SNAPTRACK, INC Structure of an optical interference display cell
6882461, Feb 18 2004 SNAPTRACK, INC Micro electro mechanical system display cell and method for fabricating thereof
6912022, Dec 27 2002 SNAPTRACK, INC Optical interference color display and optical interference modulator
6940631, Jul 03 2000 Sony Corporation Optical multilayer structure, optical switching device, and image display
6952303, Aug 29 2003 SNAPTRACK, INC Interferometric modulation pixels and manufacturing method thereof
6952304, Jan 30 2001 MATSUSHITA ELECTRIC INDUSTRIAL CO LTD Variable mirror and information apparatus comprising variable mirror
6958847, Jan 20 2004 SNAPTRACK, INC Structure of an optical interference display unit
7016099, Jul 06 2001 Sony Corporation MEMS element, GLV device, and laser display
7110158, May 05 1994 SNAPTRACK, INC Photonic MEMS and structures
7123216, May 05 1994 SNAPTRACK, INC Photonic MEMS and structures
7250315, Feb 12 2002 SNAPTRACK, INC Method for fabricating a structure for a microelectromechanical system (MEMS) device
20010003487,
20010010953,
20010026951,
20010040649,
20010040675,
20010055208,
20020015215,
20020021485,
20020024711,
20020036304,
20020054424,
20020055253,
20020058422,
20020070931,
20020071169,
20020075555,
20020086455,
20020109899,
20020126364,
20020131682,
20020135857,
20020137072,
20020149828,
20020149850,
20020167072,
20020168136,
20020171610,
20020186209,
20020195681,
20030006468,
20030007107,
20030015936,
20030016428,
20030021004,
20030029705,
20030043157,
20030053078,
20030054588,
20030062186,
20030072070,
20030077843,
20030090350,
20030112096,
20030132822,
20030138213,
20030152872,
20030156315,
20030164350,
20030201784,
20030202264,
20030202265,
20030202266,
20030210851,
20030231373,
20040010115,
20040027636,
20040027671,
20040027701,
20040028849,
20040035821,
20040051929,
20040053434,
20040056742,
20040058532,
20040061543,
20040063322,
20040080807,
20040080832,
20040100677,
20040124073,
20040125281,
20040125282,
20040136076,
20040145049,
20040145811,
20040147056,
20040147198,
20040148009,
20040150869,
20040160143,
20040174583,
20040175577,
20040179281,
20040191937,
20040207897,
20040209192,
20040209195,
20040212026,
20040217378,
20040217919,
20040218251,
20040218334,
20040218341,
20040227493,
20040240027,
20040240032,
20040240138,
20040245588,
20040263944,
20050001828,
20050003667,
20050020089,
20050024557,
20050035699,
20050036095,
20050036192,
20050038950,
20050042117,
20050046922,
20050046948,
20050057442,
20050068583,
20050068605,
20050068606,
20050069209,
20050078348,
20050168849,
20050195462,
20050195467,
20050202649,
20060050350,
20060066932,
20060066935,
20060261330,
20070121205,
20080026328,
CH680534,
CH681047,
CN92109265,
DE10228946,
EP35299,
EP173808,
EP667548,
EP694801,
EP695959,
EP788005,
EP878824,
EP1170618,
EP1197778,
EP1258860,
EP1452481,
FR2824643,
JP10116996,
JP10148644,
JP10267658,
JP10500224,
JP11211999,
JP11243214,
JP11263012,
JP200040831,
JP2002062490,
JP2002062493,
JP2002270575,
JP2002355800,
JP2003001598,
JP2004102022,
JP2004106074,
JP2004212656,
JP2005051007,
JP405275401,
JP6281956,
JP745550,
JP9036387,
JP9127439,
KR20000033006,
KR20029270,
TW157313,
WO114248,
WO224570,
WO3007049,
WO3052506,
WO3069413,
WO3073151,
WO2004006003,
WO2004026757,
WO2005019899,
WO2005085932,
WO9210925,
WO9530924,
WO9717628,
WO9934484,
WO9952006,
////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Aug 29 2002KOTHARI, MANISHIRIDGIM DISPLAY CORPORATIONASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0133240545 pdf
Aug 30 2002CHUI, CLARENCEIRIDGIM DISPLAY CORPORATIONASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0133240545 pdf
Aug 30 2002MILES, MARK W IRIDGIM DISPLAY CORPORATIONASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0133240545 pdf
Sep 03 2002BATEY, JOHNIRIDGIM DISPLAY CORPORATIONASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0133240545 pdf
Sep 20 2002IDC, LLC(assignment on the face of the patent)
Feb 10 2004BATEY, JOHNIDC, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0161200835 pdf
Oct 01 2004Iridigm Display CorporationIDC, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0161200835 pdf
Dec 10 2004CHUI, CLARENCEIDC, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0161200835 pdf
Dec 10 2004KOTHARI, MANISHIDC, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0161200835 pdf
Mar 03 2005MILES, MARK W Iridigm Display CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0161200831 pdf
Sep 25 2009IDC,LLCQualcomm Mems Technologies, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0234490614 pdf
Aug 30 2016Qualcomm Mems Technologies, IncSNAPTRACK, INCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0398910001 pdf
Date Maintenance Fee Events
Feb 01 2011ASPN: Payor Number Assigned.
Oct 04 2012M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Nov 28 2016M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Sep 28 2020M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jun 23 20124 years fee payment window open
Dec 23 20126 months grace period start (w surcharge)
Jun 23 2013patent expiry (for year 4)
Jun 23 20152 years to revive unintentionally abandoned end. (for year 4)
Jun 23 20168 years fee payment window open
Dec 23 20166 months grace period start (w surcharge)
Jun 23 2017patent expiry (for year 8)
Jun 23 20192 years to revive unintentionally abandoned end. (for year 8)
Jun 23 202012 years fee payment window open
Dec 23 20206 months grace period start (w surcharge)
Jun 23 2021patent expiry (for year 12)
Jun 23 20232 years to revive unintentionally abandoned end. (for year 12)