A reduced storage capacitor is used for shrinking a memory cell in DRAM, and local bit line is divided into short line for reducing parasitic capacitance. For reading, a first reduced swing amplifier as a local sense amp reads the memory cell through the local bit line, and a second reduced swing amplifier as a global sense amp reads the local sense amp through a global bit line. With the multi-stage sense amps, time domain sensing scheme is realized such that a voltage difference in the local bit line is converted to a time difference, for differentiating high data and low data, and also fast read operation is realized. And write operation is executed by a reduced swing write driver. With reduced voltage swing, pseudo negative word line scheme is realized for retaining data, and power consumption is reduced. In addition, various alternative circuits and memory cell structures are implemented.
|
1. A memory device, comprising:
a memory cell including a pass transistor and a capacitor; and
a local sense amp including a first reduced swing amplifier and a write transistor, wherein the first reduced swing amplifier is used for limiting voltage swing of a local bit line connecting to the memory cell from a pre-charge voltage to a supply voltage, such that the first reduced swing amplifier is composed of a local pre amplifier and a local main amplifier, the local pre amplifier includes a local pre-charge transistor for pre-charging the local bit line to the pre-charge voltage, a local pre-amp transistor for detecting whether the local bit line is higher than the pre-charge voltage or not; and the local main amplifier includes a local pre-set transistor for pre-setting a local pre-amp node connecting to the local pre-amp transistor, a local main-amp transistor connecting to the local pre-amp node for driving a global bit line through a local select transistor; and the write transistor is connected to the local bit line for receiving a voltage output of the global bit line; and
a global sense amp including a global read circuit, a global write circuit, a global latch circuit, a data transfer circuit and a data receive circuit, wherein
the global read circuit is composed of a second reduced swing amplifier for limiting voltage swing of the global bit line, such that the second reduced swing amplifier is composed of a global pre amplifier and a global main amplifier, the global pre amplifier includes a global pre-charge transistor for pre-charging the global bit line to the pre-charge voltage, a global pre-amp transistor for detecting whether the global bit line is higher than the pre-charge voltage or not; and the global main amplifier includes a global pre-set transistor for pre-setting a global pre-amp node connecting to the global pre-amp transistor, a global main-amp transistor connecting to the global pre-amp node, and a global select transistor connecting to the global main-amp transistor serially; and
the global write circuit is composed of a reduced swing write driver for driving the global bit line to the pre-charge voltage when writing data “0” and the supply voltage when writing data “1”; and
the global latch circuit is connected to the global read circuit and the global write circuit; and
the data transfer circuit receives a read output from the global latch circuit and transfers to a read line; and
the data receive circuit receives a write input from a write line and sends to the global latch circuit; and
a locking signal generator for locking the global select transistor of the global read circuit, wherein the locking signal generator includes a tunable delay circuit receiving an output from the global latch circuit.
2. The memory device of
3. The memory device of
4. The memory device of
5. The memory device of
6. The memory device of
7. The memory device of
8. The memory device of
9. The memory device of
11. The memory device of
12. The memory device of
13. The memory device of
14. The memory device of
15. The memory device of
16. The memory device of
17. The memory device of
18. The memory device of
|
The present invention is a continuation of application Ser. No. 11/877,044, filed on Oct. 23, 2007, now, U.S. Pat. No. 7,443,714, and application Ser. No. 12/202,313, filed on Aug. 31, 2008, which are herein incorporated by reference.
The present invention relates generally to integrated circuits, in particular to DRAM (Dynamic Random Access Memory).
For its high-density, the DRAM (Dynamic Random Access Memory) is utilized extensively as a main memory in computer systems, even though it requires refresh cycle to sustain stored data within a predetermined refresh time. As such, the DRAM constitutes a key component that holds sway on the performance of the computer system. Efforts of research and development have been under way primarily to boost the density and also speed improvement.
In the conventional DRAM, hierarchical bit line architecture is applied to achieve high-speed operation, as published, “Hierarchical bitline DRAM architecture system” as U.S. Pat. No. 6,456,521, and “A hierarchical bit-line architecture with flexible redundancy and block compare test for 256 Mb DRAM” in VLSI Circuits, Digest of Technical Papers, May 1993. pp 93-94. More specifically,
For writing data, a write data line (not shown) is connected to the sense amp 141. Conventionally, the write data line is heavily loaded with no buffers, so that the write data line always drives full length in a memory bank or multiple memory blocks, which increases driving current and RC delay time. For reading data, a read data line (not shown) is connected to the sense amp with full length of the memory bank as well. Moreover, access time is different depending on location of a selected memory cell. For example, access time from the sense amp near a data output circuit is faster than that of the sense amp far from the data output circuit, so that it is difficult to latch the sense amp output at high speed, because a latching clock is fixed (not shown).
And there is a prior art for improving DRAM with adding a local sense amp, as published, “High speed DRAM local bit line sense amplifier”, U.S. Pat. No. 6,426,905, wherein the local sense amplifier detects a change of charge out of an input node, and comprises a first current source and a first field effect transistor. The current source is provided for removing charge from the input node. The field effect transistor includes (i) a source coupled to the input node, (ii) a gate electrode coupled to a first voltage, and (iii) a drain coupled to one side of a first capacitor, to an output node, and to a pre-charge circuit for setting the voltage of the output node to a second voltage, providing a voltage difference between the drain and source of said first transistor. The other side of the capacitor is coupled to ground. However, many transistors (total 11 transistors) for each local sense amplifier are required, such that chip area is sacrificed for the improvement.
And more prior arts are shown for dividing the bit line into short lines, “A 322 MHz Random-Cycle Embedded DRAM With High-Accuracy Sensing and Tuning”, IEEE Journal of Solid-State Circuits, Vol. 40, No. 11, November 2005, and “A 500 MHz Random Cycle 1.5 ns-Latency, SOI Embedded DRAM Macro Featuring a 3T Micro Sense Amplifier”, IEEE International Solid-State Circuits Conference, pp. 486, 2007. However, those prior arts still use conventional differential sense amplifier for reading data from the memory cell. In consequence, the area of the chip is increased more, which is one of obstacles for realizing very high density and high speed memory with local sense amps.
Furthermore, memory cell structure of the conventional DRAM includes a cup-like stacked capacitor as published U.S. Pat. No. 7,183,603 and a deep trench capacitor as published U.S. Pat. No. 6,608,341. Hence, scaling big storage capacitor is one of major obstacles, because total storage capacitance should be maintained around 20-30fF for reading the memory cell through a heavy bit line and also retaining data within same or longer refresh time. In order to avoid forming the big storage capacitor, sensing scheme should be improved to read a reduced capacitor memory cell, which also should improve access time. And in order to retain data for long time even though the capacitor is reduced, leakage current of the memory cell should be reduced with circuit techniques.
In this respect, there is still a need for improving the DRAM. In the present invention, sophisticated circuit techniques are introduced for reducing a storage capacitor in a memory cell. And the memory cell can be formed on the surface of the wafer. And the steps in the process flow should be compatible within the current CMOS manufacturing environment. Alternatively, the memory cell can be formed from thin film polysilicon layer, because lightly loaded bit line can be quickly discharged by the memory cell with light bit line architecture, even though the thin film pass transistor can flow relatively low current. In doing so, multi-stacked memory is realized with thin film transistor, which can increase the density within the conventional CMOS process with additional process steps, because the conventional CMOS process is reached to a scaling limit for fabricating transistors on a surface of a wafer. In addition, a body-tied TFT (Thin Film Transistor) transistor can be used as the thin film transistor for alleviating self heating problem of short channel TFT.
In the present invention, sophisticated circuit techniques are introduced for reducing a storage capacitor in the DRAM, so that a reduced storage capacitor, for instance, 1fF capacitor, can be used for configuring the DRAM. For reading the 1fF capacitor, bit line capacitance is proportionally reduced to around 1fF by multi-dividing the bit line, which realizes fast read operation with multi-stage sense amps including reduced swing amplifiers. When writing, the 1fF capacitor is quickly charged, so that write operation is improved. And write-back operation is executed by a global write circuit with reduced voltage swing. With reduced swing voltage, pseudo negative word line scheme is realized for retaining the stored charges for long time. In doing so, high density DRAM can be fabricated with a large amount of logic circuits on a chip for configuring high performance system on chip, because 1fF capacitor or below can be formed without complex capacitor forming process. On the contrary, the conventional DRAM uses a cup-like big capacitor, such as, 20˜30fF, as the storage capacitor. Hence, it is more difficult to fabricate the big capacitor on the wafer in the future, because feature size is approaching to almost scaling limit.
More specifically, for realizing high speed and low power DRAM with the small storage capacitor, bit line is multi-divided for reducing parasitic capacitance of the bit line, so that the lightly loaded bit line is quickly charged or discharge by the memory cell having the small capacitor when reading. And multi-stage sense amps are used, such that the memory cell is read by a first reduced swing amplifier serving as a local sense amp through the lightly loaded local bit line, and the local sense amp is read by a second reduced swing amplifier serving as a global sense amp through a global bit line. With multi-stage amps, fast read operation is realized. Furthermore, low power operation is realized with reduced swing amplifiers because voltage swing is reduced during operation. And also a global write circuit is connected to the memory cell through the local bit line and the global bit line for limiting the voltage swing.
During read operation, a voltage difference in the local bit line is converted to a time difference for differentiating high data and low data. For example, high data is quickly transferred to an output latch circuit through the amplifiers with high gain, but low data is rejected by a locking signal based on high data as a reference signal. In this manner, time domain sensing scheme is realized to differentiate high (voltage) data and low (voltage) data. In detail, a reference signal is generated by one of fast changing data with high gain from reference cells, which signal serves as a reference signal to generate a locking signal in order to reject latching another data which is slowly changed with low gain, such that high voltage data is arrived first while low voltage data is arrived later, or low voltage data is arrived first while high voltage data is arrived later depending on configuration. The time domain sensing scheme effectively differentiates high voltage data and low voltage data with time delay control, while the conventional sensing scheme is current-domain or voltage-domain sensing scheme. In the convention memory, the selected memory cell charges or discharges the bit line, and the charged or discharged voltage of the bit line is compared by a comparator which determines an output at a time. With time domain sensing, there are many advantages to read the memory cell, so that the sensing time is easily controlled by a tunable delay circuit, which compensates cell-to-cell variation and wafer-to-wafer variation, thus there is a need for adding a delay time before locking the output latch circuit with a statistical data for all the memory cells, such as mean time between fast data and slow data. Thereby the tunable delay circuit generates a delay time for optimum range. And the read output from the memory cell is transferred to the output latch circuit through a returning read path, thus the access time is equal regardless of the location of the selected memory cell, which is advantageous to transfer the read output to the external pad at a time.
For storing the charges in the small storage capacitor within a predetermined retention time, pseudo negative word line scheme is devised, so that the word line of the memory cell is forced to ground voltage and the bit line is pre-charged to a limited voltage as a pre-charge voltage. Thus, negative word line is virtually forced for storing data “1” when a storage node voltage is charged near supply voltage because drain/source voltage to word line as a gate voltage is negative. This means that data “1” is stored under pseudo negative word line even though the word line is actually forced to ground voltage. However data “0” is rejected to be read by the locking signal in the time domain sensing scheme. In doing so, subthreshold leakage current is significantly reduced in exponential subthreshold region of a MOS transistor while storing data “1”. Furthermore, back bias voltage for a pass transistor of the memory cell is not required because back bias voltage is used for avoiding forward biasing from overshoot when storing data “0”, while data “1” is reversed biased from the body. Without negative biasing to the body of the pass transistor, reverse leakage current is reduced with reduced potential difference between the storage node and the body while storing data “1” for long time. And, the time domain sensing scheme can effectively reject to be read data “0”.
Configuring memory is more flexible, such that multiple memory macros can be configured with small segmented memory array and multi-stage sense amps, instead of big macro with the conventional sense amp which includes differential amps, write circuits and equalization circuits. And number of sense amps can be determined by the target speed. For example, high speed application needs more segmented array with more sense amps, while high density application needs more memory cells with reduced number of sense amps, thus cell efficiency is increased.
And, the local sense amp has high gain with wider channel MOS transistor than that of the memory cell. Hence, the stored data in the memory cell is quickly transferred to the latch in the global sense amp. After then, the data transfer circuit transfers a read output to data output node through buffers, which realizes fast read operation with no extra waiting time.
A buffered data path is connected to the global sense amp for writing and reading a data, wherein a write line serving as a forwarding write path is used for writing, such that the forwarding write path is selected by block select signals, which realizes to reduce driving current and RC time constant, because unselected portion of the data line is not charging or discharging when writing. Furthermore, unselected portion of the data line is used as a returning read path. Thus, the returning read path receives a read output from the memory cell through multi-stage sense amps. And the returning read path is also buffered and connected to data output node through multiple buffers. With the returning read path, access time is almost same regardless of selected memory cell location, which realizes to latch the read output at a time with enough set-up and hold time even though a latch clock is fixed.
And fingered shape capacitor can be used as a storage capacitor for increasing memory cell capacitance in a given area, which realizes very high density memory, wherein the fingered shape capacitor is composed of a first fingered shape plate and a second fingered shape plate with no cup-like capacitor and no deep trench capacitor. And also multiple fingered shape capacitors can be formed in between metal routing layers for eliminating deep contact, where each capacitor is connected through relatively shallow contact. In doing so, the memory cell can be miniaturized further with reduced capacitor.
The present invention realizes multi-stacked memory cell structure including thin film transistor because the memory cell only drives lightly loaded bit line even though thin film polysilicon transistor can flow lower current, 10˜20 times lower, for example.
Furthermore, example memory cell layout and cross sectional views are illustrated to minimize cell area. And the fabrication method is compatible with the conventional CMOS process including single-crystal-based regular transistor. And alternatively, additional steps are required for using thin film transistor as a pass transistor of the memory cell. And the memory cell can be formed from various semiconductor materials, such as silicon-germanium and germanium.
Still, furthermore, various dielectric materials can be used for forming the capacitor. For example, DRAM uses ordinary dielectric material, such as silicon dioxide, silicon nitride, Ta2O5, TiO2, Al2O3, TiN/HfO2/TiN(TIT), and Ru/Insulator/TiN(RIT). And PIP (Polysilicon Insulator Polysilicon) capacitor structure and MIM (Metal Insulator Metal) capacitor structure can be used for forming the capacitor.
These and other objects and advantages of the present invention will no doubt become obvious to those of ordinary skill in the art after having read the following detailed description of the preferred embodiments which are illustrated in the various drawing figures.
The accompanying drawings which are incorporated in and form a part of this specification, illustrate embodiments of the invention and together with the description, serve to explain the principles of the invention.
Reference is made in detail to the preferred embodiments of the invention. While the invention is described in conjunction with the preferred embodiments, the invention is not intended to be limited by these preferred embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the invention, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, as is obvious to one ordinarily skilled in the art, the invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so that aspects of the invention will not be obscured.
The present invention is directed to DRAM including a reduced storage capacitor as shown in
For reading and writing the memory cell, the pass transistor 212 is connected to a word line 211, and the local sense amp 220 is connected to the memory cell through a local bit line 221. For receiving the local sense amp output, the global sense amp 240 is connected to the local sense amp 220 through a global bit line 231. And the global sense amp 240 is also connected to next memory block 280.
For reading and writing data, a buffered data path is connected to the global sense amp, such that the buffered data path includes a forwarding write path and a returning read path, which realize to improve performance, because data line is divided into short lines for transferring data while unselected portion of the data line is not discharging for reducing discharging current when writing. Hence, a write line 264′ serves as the forwarding write path, such that the write line 264′ receives an inverting write data from a write inverter 264 when a receive switch 267 of a data receive circuit 260 is enabled. When reading, unselected portion of the data line is used as a read line 278 serving as the forwarding read path, such that the read line 278 receives a read output from the memory cell through multi-stage sense amps. And the read line 278 is buffered by multiple buffers including returning buffers 284 and 286 through a returning read line 285. With the returning read path, access time is almost same regardless of selected memory cell location, which realizes to latch the read output at a time with enough set-up and hold time even though a latch clock is fixed. More detailed read operation and write operation will be explained as below.
For reading stored charges in the memory cell, the local sense amp 220 is connected to the memory cell 210 through the local bit line 221, wherein the local sense amp 220 is composed of a first reduced swing amplifier for reducing swing voltage, which reduces power consumption during operation. Furthermore, the first reduced swing amplifier limits the bit line swing above the pre-charge voltage, so that word line voltage is always negative from the stored voltage in a storage node of the memory cell. In this manner, pseudo negative word line scheme is realized, which significantly reduces subthreshold leakage current for storing data.
The local sense amp 220 includes the first reduced swing amplifier for reading and a write transistor for writing, wherein the first reduced swing amplifier is connected to the memory cell 210 through the local bit line 221, such that the first reduced swing amplifier is composed of a local pre amplifier including a local pre-charge transistor 222 for pre-charging the local bit line 221 to a pre-charge voltage VL as a low limit voltage, a local pre-amp transistor 223 for detecting whether the local bit line 221 is higher than the pre-charge voltage VL or not, a local pre-set transistor 225 for pre-setting a local pre-amp node 224 connecting to the local pre-amp transistor 223, and a local main amplifier including a local main-amp transistor 226 for pulling up a global bit line 231 through a local select transistor 227 when the local pre-amp node 224 is discharged by the local pre-amp transistor 223, and the write transistor 228 is connected to the local bit line 221 for receiving a voltage output of the global bit line 231. For obtaining high gain, the local pre-amp transistor 223 is used as the pre amplifier for discharging the local pre-amp node 225, and the main amplifier pulls up the global bit line 231 strongly, because the local pre-amp node 225 is extremely light and the global bit line 231 is relatively heavy. And the pre-charge voltage is set around 0.5V for pre-charging the local bit line, for instance.
And the global sense amp 240 is connected to the local sense amp 220 through the global bit line 231, wherein the global sense amp 240 is composed of multiple components including second reduced swing amplifiers 241, 242, 243 and 244 as global read circuits, global write circuits 245, 246, 247 and 248, global latch circuits 251, 252, 253, and 254, a data transfer circuit 270 and a data receive circuit including 260 and 260′, for realizing one of four column decoding in the right hand side and another one of four column decoding is realized in the left hand side with same circuit (not shown).
More specifically, the second reduced swing amplifier serves as the global read circuit 241 for reading the memory cell 210 through the global bit line 231, wherein the second reduced swing amplifier 241 is composed of a global pre amplifier including a global pre-charge transistor 232 for pre-charging the global bit line 231 to the pre-charge voltage VL, a global pre-amp transistor 233 for detecting whether the global bit line 231 is higher than the pre-charge voltage VL or not, and a global main amplifier including a global pre-set transistor 235 for pre-setting a global pre-amp node 234 connecting to the global pre-amp transistor 233, a global main-amp transistor 236 for transferring output to the global latch circuit 251 through a global select transistor 237 when the global pre-amp node 224 is discharged by the global pre-amp transistor 223. The global main amp transistor 236 is much stronger than the global pre-amp transistor 233 for pulling up a latch node 250 of the global latch circuit 251 when reading data “1”. And the global pre-set transistor 235 receives the global bit line voltage for pre-setting the global pre-amp node 234, which configures an inverter. Alternatively, the global pre-set transistor 235 can be controlled by a pre-set control signal (not shown), as the local pre-set transistor 225 is controlled.
And the global write circuit 245 is used for driving the global bit line 231 to the pre-charge voltage VL when writing data “0” or a supply voltage when writing data “1”, wherein the global write circuit 245 is composed of a reduced swing inverter including a pull up transistor 239 and a pull down transistor 238 which is connected to VL voltage, and a write drive transistor 249, for transferring write data to the global bit line 231 through another latch node 250′ of the global latch circuit 251, where the global latch circuit 251 receives write data through the receive switch 267.
And the global latch circuit 251 is connected to the global read circuit 241 through a latch node 250, and the global write circuit 245 through a select transmission gate 258 and an internal node 259, wherein the global latch circuit 251 is composed of a cross coupled inverters 255 and 256, a latch reset transistor 257 and the select transmission gate 258 which is controlled by column select signals 258A and 258B. And the global latch circuit 251 is connected to a locking signal 295 for disabling the global select transistor 237 after the read output is reached to the global latch circuit 251, such that the global select transistor 237 is disabled by asserting the locking signal 295 which is generated by a locking signal generator 290, wherein the locking signal generator 290 is composed of an AND gate 292 for receiving an output from the global latch circuit 251, a tunable delay circuit 293 (shown in
And one of the read outputs in the global latch circuits is selected by the select transmission gate 258. A data transfer circuit 270 is connected to the transmission gate 258 for receiving the read output from the global latch circuit and transferring the read output to the read line 278, and also a data receive circuit 260 is connected to the global latch circuit 251 for receiving and a write input from a write line 264′. And a returning buffer 286 is located in the global sense amp for buffering the read line 285 which serves as the returning read line connecting to next memory block 280.
For enabling write path, a column write signal 261 is connected to a NAND gate 263 which is part of the data receive circuit 260′. And an inverter 263′ is connected to the NAND gate 263, so that the receive switch 267 is enabled by the NAND gate 263 and the inverter 263′ in the data receive circuit 260′, when a block write signal 262 is asserted to high. And a buffer 268 is added in order to buffer the column write signal 261 to the next memory block 280. And for reducing the repeating circuits further, the receive control circuit 260′ is shared with adjacent memory block 200′. And the receive switch 267 is connected to the global latch circuit 251 for transferring a write input to the memory cell through the global write circuit 245 and the write transistor 228 of the local sense amp 220.
And the data transfer circuit 270 is used for receiving a read output from the global latch circuit 251 and transferring to the read line 278, wherein the data transfer circuit 270 includes a bypass tri-state inverter 273 connecting to the write line 264′, a read inverter 277 connecting to a common node 276, and a read switch 274 connecting the global latch circuit 251 through the internal node 259 for transferring the read output, wherein the common node 276 is reset by a common reset transistor 275 when the block write signal 262 connecting to the data receive circuit 260′ is asserted to high during write operation. During read operation, the common node 276 receives an output from the global latch circuit 251 through the read switch 274 while the bypass tri-state inverter 273 in the selected block 200 and 200′ is turned off but the bypass tri-state inverter 281 in unselected blocks 280 and 280′ is turned on for bypassing the read output. And the read switch 274 is selected by a NAND gate 266 and an inverter 266′ in the data receive circuit 260′, when a block read signal 265 is asserted to high. Thus, the read output is transferred to an output node 287 from the common node 276 through inverting buffers including 277, 281, 282, 283, 284 and 286.
During read operation, a stored data in the memory cell 210 is transferred to the global latch circuit 251 by the local sense amp 220 through the global bit line 231, for instance, high data is transferred to the global latch circuit 251 by the local sense amp 220 with high gain, but low data is not transferred by the local sense amp with low gain because the global read circuit 241 connecting to the global latch circuit 251 is disabled by the locking signal 295 which is based on high data, before low data is arrived. Furthermore, the global latch circuit 251 is also used for write-back operation when the memory cell is accessed because the stored data in the memory cell 210 is destructed by the charges of the local bit line 221 when reading.
Alternatively, in order to realize low power consumption during standby, the local pre-amp transistor 223, the local main-amp transistor 226 and the global pre-map transistor 233 are composed of slightly longer transistor than those of the local pre-charge transistor 222, the local pre-set transistor 225, the global pre-charge transistor 232, and the write drive transistor 249, while output of the reduced swing inverter including transistors 238 and 239 keeps low during standby. In doing so, turn-off current of the pre-amp and the main-amp transistors is reduced during operation and standby mode.
In the present invention, the local sense amp need not reference bit line because the local sense amp does not compare voltage or current with reference bit line, but the local sense amp detects whether the local pre-amp transistor 223 is turned on or not by the selected memory cell through the local bit line 221. Additionally, the local pre-amp transistor 223 and the global pre-amp transistor 233 can be composed of a low threshold MOS transistor as an alternative configuration for high speed application. Alternatively, the write transistor 228 can be composed of a low threshold MOS transistor as well for reducing threshold voltage drop.
For writing data, the data receive circuit 260 receives a write data through the write line 264′. Thus, the write data is transferred to the memory cell 210 through the global write circuit 245, the global latch circuit 251, and the receive switch 267, when the write transistor 228 in the local sense amp 220 is turned on by asserting the write enable signal 228A to VDD voltage. Alternatively for avoiding NMOS threshold voltage drop, the write enable signal 228A is asserted to higher than VDD+VT voltage, where VDD is a supply voltage and VT is threshold voltage of the MOS transistor. Or the write transistor 228 is composed of a PMOS transistor alternatively. And the word line 211 is raised to VDD voltage or VDD+VT voltage as well. During write operation, the local select transistor 227 and the global select transistor 237 are disabled for transferring the write data to the memory cell through the global bit line 231 and the global write circuit 245.
Referring now to
On the contrary, when the memory cell 210 stores data “0”, the local bit line 221 keeps pre-charge voltage VL as shown V0. Thereby gate-source voltage is 0V (VGS=0V), which flows only low current ID0 through the local pre-amp transistor 223 and discharges the local pre-amp node 225 very slowly, such as thousand times slow. In doing so, bit line voltage is converted to current difference, and the current difference is converted to discharging time difference. And the discharging time difference between data “1” and data “0” is transferred to the global sense amp. For example, data “1” is transferred to the global sense amp in thousand times earlier than data “0”. Thus, data “1” can be used as a reference signal for rejecting to be read data “0”.
Referring now to
Referring now to
Referring now to
By discharging the pre-amp node (PM1) 224, the local main-amp transistor 226 is turned on, which pulls up the global bit line (GBL) 231, while the local select transistor 227 is turned on, but the global pre-charge transistor 232 and the write drive transistor 249 are turned off. When the global bit line 231 is raised to VDD voltage from VL voltage, the global latch circuit 251 including inverters 255 and 256 is changed from the reset state by turning on the global main amp transistor 236 when the global select transistor 237 is also turned on, but the latch reset transistor 257 is turned off. And the latched high data in the global latch circuit 251 raises the common node 276 to high from reset state through column selector 258 and the read switch 274, so that the column selector signals 258A and 258B select 1 of 4 columns and the read switch 274 is selected by NAND gate output 266 and inverter output 266′, while the receive switch 267 is turned off. And then, high data in the common node voltage 276 is transferred to the output node (DO) 287 through inverting buffers including 277, 281, 282, 283, 284 and 286.
After reading, write-back operation is executed, such that the read data in each global latch circuit is written back to each memory cell through each write transistor, when a write enable signal 228A is asserted to VDD or VDD+VT voltage. Or read-modify-write operation can be executed, where broken lines in the local bit line (LBL) 221 and the global bit line (GBL) 231 illustrate to modify from data “1” to data “0”, so that the local bit line 221 and the storage node (not shown) is inverted by the modified data. After write-back operation, all the control signals including the pre-charge signal (PR) 222A, the word line, and other control signals, are returned to a pre-charge state or standby mode. And, during standby, the write line 264′ keeps high for resetting the common node 276 to low, because the bypass tri-state inverter 273 is turned on, which prevents a conflict with low data in the global latch circuit 251 when reading. And the plate line (PL) 214 of the memory cell is supplied by half VDD voltage for reducing stress to the insulation layer of the capacitor.
Referring now to
In this manner, the locking signal 295 effectively differentiates high data and low data where the memory block 200 and 280 serve as reference memory blocks storing data “1” while main memory blocks 200′ and 280′ store main data, so that this sensing scheme is called “time domain sensing scheme”, which can differentiate high data and low data within a predetermined time domain even though the leakage current is relatively high. Thereby, data “1” in the memory cell 210 is quickly transferred to the global latch circuit 251 through the local sense amp with high gain, which generates the locking signal, but data “0” is not transferred with low gain, thus the locking signal effectively rejects data “0” not to be latched. In other words, fast cycle memory (with no page mode) does not require the locking signal which is generated by the reference signal based on reference cells storing data “1”, because data “0” is not reached to the latch within a short cycle. Thus, an enable signal from a control circuit is used to control the global select transistor 237 for fast cycle operation, which does not require reference cells and related circuits. And by applying multi-divided bit line architecture, fast read operation and write operation are realized. And also the memory cell can be reduced, because the memory cell drives only lightly loaded bit line, which means that the capacitor can be reduced for realizing very high density memory.
In
In
In
In
In
In
In
In
More detailed array configuration is illustrated in
In
In
In
In
Methods of Fabrication
The memory cells can be formed from single crystal silicon as the conventional DRAM cell. Alternatively, the memory cells can be formed from thin-film polysilicon layer within the current CMOS process environment. Furthermore, the memory cells can be formed in between the routing layers. In this manner, fabricating the memory cells is independent of fabricating the peripheral circuits on the surface of the wafer. In order to form the memory cells in between the metal routing layers, LTPS (Low Temperature Polycrystalline Silicon) can be used, as published, U.S. Pat. Nos. 5,395,804, 6,852,577 and 6,951,793. The LTPS has been developed for the low temperature process (around 500 centigrade) on the glass in order to apply the display panel. Now the LTPS can be also used as a thin film polysilicon transistor for the memory device. The thin film based transistor can drive multi-divided bit line which is lightly loaded, even though thin film polysilicon transistor can flow less current than single crystal silicon based transistor on the surface of the wafer, for example, 10-20 times weaker than that of conventional transistor, as published, “Poly-Si Thin-Film Transistors: An Efficient and Low-Cost Option for Digital Operation”, IEEE Transactions on Electron Devices, Vol. 54, No. 11, November 2007, and “A Novel Blocking Technology for Improving the Short-Channel Effects in Polycrystalline Silicon TFT Devices”, IEEE Transactions on Electron Devices, Vol. 54, No. 12, December 2007. During LTPS process, the MOS transistor in the control circuit and routing metal are not degraded. And the steps in the process flow should be compatible with the current CMOS manufacturing environment as published, U.S. Pat. Nos. 6,710,391, 7,368,343 and No. 7,265,051 for forming DRAM memory cell. And forming the thin film transistor is similar to TFT (thin film transistor) SRAM, as published, U.S. Pat. No. 6,670,642. In this respect, detailed manufacturing processes for forming the memory cell, such as width, length, thickness, temperature, forming method, or any other material related data, are not described in the present invention.
In
In
And various capacitors can be used as the storage capacitor. For example, PIP (Polysilicon Insulator Polysilicon) capacitor structure and MIM (Metal Insulator Metal) capacitor structure can be used for forming the capacitor. Forming PIP capacitor and MIM capacitor is similar to the conventional method as published, “MIM Capacitor Integration for Mixed-Signal/RF Applications”, IEEE Transactions on Electron Devices, Vol. 52, No. 7, June 2005. The capacitance value is determined by the thickness and dielectric material. Furthermore, various dielectric materials can be used, such as silicon dioxide, silicon nitride, Ta2O5, TiO2, Al2O3, TiN/HfO2/TiN(TIT), and Ru/Insulator/TiN(RIT).
In
In
In
In
In
In
In
In
While the descriptions here have been given for configuring the memory circuit and structure, alternative embodiments would work equally well with reverse configuration, such that PMOS transistor can be used as the pass transistor. Other circuits including the local sense amp and the global sense amp are reversed. And signal polarities are also reversed to control the reverse configuration such that the first reduced swing amplifier is limited to swing from ground voltage to a pre-determined voltage.
The foregoing descriptions of specific embodiments of the invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to explain the principles and the application of the invention, thereby enabling others skilled in the art to utilize the invention in its various embodiments and modifications according to the particular purpose contemplated. The scope of the invention is intended to be defined by the claims appended hereto and their equivalents.
Patent | Priority | Assignee | Title |
10665277, | Oct 12 2018 | Nuvoton Technology Corporation | Timing calibration system and a method thereof |
7679979, | Aug 30 2008 | Fronteon Inc | High speed SRAM |
7733724, | Nov 30 2007 | Taiwan Semiconductor Manufacturing Company, Ltd. | Controlling global bit line pre-charge time for high speed eDRAM |
7933141, | Apr 04 2008 | Longitude Licensing Limited | Semiconductor memory device |
8199559, | Sep 15 2009 | PS4 LUXCO S A R L | Semiconductor device, semiconductor memory device and data processing system comprising semiconductor system |
8400848, | Sep 24 2010 | Kabushiki Kaisha Toshiba | Bit line negative potential circuit and semiconductor storage device |
9275719, | Jun 22 2010 | Taiwan Semiconductor Manufacturing Company, Ltd. | Voltage regulator |
9489989, | Jun 22 2010 | Taiwan Semiconductor Manufacturing Company, Ltd. | Voltage regulators, memory circuits, and operating methods thereof |
9502098, | Jun 22 2010 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of operating a voltage regulator to reduce contention current |
RE45819, | Sep 15 2009 | Longitude Licensing Limited | Semiconductor device, semiconductor memory device and data processing system comprising semiconductor system |
Patent | Priority | Assignee | Title |
5715189, | Apr 13 1993 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device having hierarchical bit line arrangement |
6426905, | Feb 07 2001 | GLOBALFOUNDRIES Inc | High speed DRAM local bit line sense amplifier |
6456521, | Mar 21 2001 | GLOBALFOUNDRIES Inc | Hierarchical bitline DRAM architecture system |
20030002349, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Feb 04 2013 | REM: Maintenance Fee Reminder Mailed. |
May 28 2013 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
May 28 2013 | M2554: Surcharge for late Payment, Small Entity. |
Feb 03 2017 | REM: Maintenance Fee Reminder Mailed. |
Jun 23 2017 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 23 2012 | 4 years fee payment window open |
Dec 23 2012 | 6 months grace period start (w surcharge) |
Jun 23 2013 | patent expiry (for year 4) |
Jun 23 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 23 2016 | 8 years fee payment window open |
Dec 23 2016 | 6 months grace period start (w surcharge) |
Jun 23 2017 | patent expiry (for year 8) |
Jun 23 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 23 2020 | 12 years fee payment window open |
Dec 23 2020 | 6 months grace period start (w surcharge) |
Jun 23 2021 | patent expiry (for year 12) |
Jun 23 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |