A magnetic field detector is provided that makes use of magneto-Impedance in order to switch an oscillator between operating states as a function of magnetic field strengths.
|
1. A magnetic field detector comprising:
a sensor exhibiting giant magneto-impedance (GMI), the sensor being arranged in a substantially closed path and arranged to encircle a current carrying wire; and
a measurement device responsive to the impedance of the sensor, wherein the sensor is positioned on a first magnetic element in the form of a ring arranged to encircle the current carrying wire, wherein the magnetic element is magnetically coupled with the sensor to a level that the sensor is substantially insensitive to the position of the current carrying wire with respect to the sensor.
2. The magnetic field detector of
3. The magnetic field detector of
4. The magnetic field detector of
5. The magnetic field detector of
6. The magnetic field detector of
7. The magnetic field detector of
8. The magnetic field detector of
|
This application claims priority to International Application Number PCT/GB02/00299 filed Jan. 24, 2002, which claims the benefit of priority to Application Number 0102602.0 filed Feb. 1, 2001, in the United Kingdom.
The present invention relates generally to the field of magnetic field detectors and devices, and more specifically to current monitoring devices or current leakage detection devices, including such detectors.
In accordance with the present invention, there is provided a magnetic field detector, comprising a sensor exhibiting an impedance that changes as a function of field strength at the sensor, the sensor comprising at least one wire arranged in a closed path, or a substantially closed path, which in use encircles at least one wire carrying a current, and a measurement device responsive to the impedance of the sensor, characterised in that the sensor is positioned on at least one magnetic element which forms a closed path, wherein said sensor is substantially insensitive to the position of the or each wire with respect to the sensor.
Preferably the sensor comprises material exhibiting giant magneto-impedance or asymmetrical giant magneto-impedance. Magneto-Impedance (MI) is an effect where the presence of a magnetic field causes the impedance of a material to vary. In this context impedance includes both the in-phase (resistive) component and the out of phase (reactive) component of impedance. A suitable sensor can be formed, for example, of cobalt iron silicon boron wire.
By providing a magnetic field detector in which the sensor is placed adjacent a magnetisable material or a material exhibiting relatively high magnetic permeability that forms a closed loop around one or more current carrying conductors, much improved sensor performance is achieved.
Consider the case of an infinitely long current carrying conductor. It is well known that the magnetic field falls of with distance r, as 1/r.
In testing, the inventors had noticed that movement of the current carrying wire(s) away from the axis of the sensor, when the sensor has a circular loop of magnetic wire, could cause variations in the measurements provided by the sensor. These systematic shifts due to changes in geometry need not be a problem if the geometry is, in use, known and static.
However, the magnetic ring of material removes this sensitivity to geometric offset. It is believed that this is because the flux density within the material of the ring must be uniform and, from application of Amperes law ∫B·dl=μ0I. Thus the positioning of the wire passing through the loop becomes unimportant.
Advantageously two magnetic elements are provided with the sensor placed therebetween. In this configuration the magnetic material acts to shield the sensor from external or environmental fields whilst also making the sensor less sensitive to the positioning of the current carrying conductors.
The invention described herein is a magnetic field detector. The magnetic elements are advantageously in the form of a rings or cylinders. Advantageously the sensor may be provided in association with a biasing element so as to alter the response of the sensor. The biasing element may make the sensor more sensitive to a transition in magnetic field strength or may allow the affects of environmental fields to be nulled out. The biasing element may be a permanent magnet, or may be an electromagnet, for example a coil on or adjacent the sensor. Alternatively an AC bias may be provided, for example by a coil adjacent or over the sensor. The coil may be connected in series with the sensor.
In accordance with one aspect of the present invention, the measurement means is arranged to undergo a transition between operating states as a result of the magnetic field at the sensor changing from a first predetermined range of field strengths to a second predetermined range of field strengths. Advantageously the change is a sudden transition, giving rise to a switching action. Alternatively, the change may be more gradual.
In accordance with another aspect of the present invention, the sensor, in combination with the measurement means, forms a resonant circuit. As such, the resonant circuit may be part of an oscillator. The circuit may be arranged such that the sensor forms an inductor within the oscillator. The change in the reactive part of the inductor's impedance gives rise to a change in oscillation frequency. Furthermore, the oscillator may be arranged such that it will not sustain oscillation outside of a predetermined operating range. Thus, for example, if the “gain” of the oscillator is a function of frequency, the gain may be insufficient to sustain oscillation, or the amplitude of the oscillation may vary with the magnetic field strength at the sensor. A feature of disabling the oscillations may be brought about by the use of other components within the oscillator or may rely on the changes of the value of the resistive component of the sensor to dampen the oscillations.
In accordance with another aspect of the present invention, the field strength at the sensor may be determined from the oscillation frequency. Alternatively, the field strength may be determined from the magnitude of the oscillations, or the presence or absence of oscillations.
In accordance with yet another aspect of the present invention, the sensor may be an inductor in the form of a single or multiple turn loop. It is to be expected that the number of turns affects not only the oscillation frequency (since the number of turns affects the inductance of the inductor) but also the sensitivity of the sensor.
The sensor may be placed in the vicinity of a current carrying wire or wires so as to measure the current therein. Additionally and/or alternatively the difference between currents flowing in opposite directions in two or more wires may be measured. In this arrangement the opposing contributions to the magnetic field add. Thus if the currents are equal and opposite then there is no resultant magnetic effect. However, if there is a current difference then the opposing magnetic fields do not cancel out and there is a net magnetic field that may be detected by the sensor.
According to still another aspect of the present invention, there is provided a current measuring device, comprising a magnetic field sensor according to a first aspect of the present invention. The current measuring device may act as a component in a circuit breaker in order to prevent the current in a wire from exceeding a predetermined maximum. Alternatively, the device may be arranged to estimate the sum of the currents flowing in a plurality of wires.
As a further alternative, wires carrying currents in anti-phase may be monitored by the device, and an indication may be given when the difference between the currents exceeds a predetermined value.
Those skilled in the art will further appreciate the above-mentioned advantages and superior features of the invention, together with other important aspects thereof upon reading the detailed description that follows in conjunction with the drawings.
For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying FIGURES in which corresponding numerals in the different FIGURES refer to corresponding parts and in which:
Although making and using various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many inventive concepts that may be embodied in a wide variety of contexts. The specific aspects and embodiments discussed herein are merely illustrative of ways to make and use the invention, and do not limit the scope of the invention.
The magnitude of the reactive component X is given by;
X=ωL (1)
were L is inductance of the wire and ω is the angular frequency of the input signal.
Two measurements were performed, a first in which no DC current was applied (represented on the graphs by the lines labelled Ib=0) and the second in which a bias current of 250 mA DC was applied, represented by the lines labelled Ib=250 mA. In each case an AC signal having a peak to peak voltage of 10 mV was applied.
Looking at the results for the real part of the impedance, it will be noted that at small fields, where the magnitude of the field is between 0 and 2 Oersteds (1 amp meter−1=4π×10−3 Oersted) the resistance is relatively low and unchanging. The field strengths between 2 and 4 Oersted the impedance rises rapidly. For field strengths between 5 and 10 Oersted the impedance only rises slightly and then for field strengths having a magnitude greater than 10 Oersted the resistance asymptotes towards a low value. The response is similar when the wire is biased by a current of 250 mA, although the resistance in the presence of no applied magnetic field is lower.
Turning to the reactive part of the impedance, this shows a similar response. For applied fields having an intensity of between 0 to 2 Oersted, the reactance of the wire remains approximately constant. The inductance of the wire then rises steeply in the presence of fields in the range of 2 to 4 Oersted, peaking at about 4 Oersted. Further increases in field strength result in the inductance of the wire asymptoting towards a relatively low value. It is also to be noted that the inductance of the wire in the presence of no applied magnetic field but with the bias current of 250 mA is much less than that of the wire when no external DC bias is applied. Nevertheless, it is clear that the sensor can exhibit rapid changes in its electrical characteristics for a minor change in the intensity of the external field.
The transistor is biased into operation by voltage Vb applied to its base, from a biasing circuit (not shown for simplicity). The ratio of resistors Rc and Re are selected so as to bring the circuit into oscillation when the in-phase impedance of the sensor is not too high. However, the gain is also selected so that the increase in the resistance of the sensor 2 due to the presence of a magnetic field or a change in oscillation frequency due to a change in the inductance of the sensor can cause the oscillations to cease.
For the circuit, the resonance frequency ωres is given by:
Typically, Rt is very much greater than R and therefore the oscillation frequency is proportional to (L(Hex))−1/2 where R(Hex) is the resistance of the sensor.
The sensor loop may be placed on a soft magnetic element which forms a closed path, such as a ring (or between rings) which can act to detect the magnetic field resulting from a difference in the currents. The ring 27 can also help to screen the sensor from external interference fields. Packing elements, such as washers may be provided adjacent the ring 27 in order to better define the relative positions of the wires 24, 26 and the ring 27 and sensor wire 2. Thus the packing elements may hold the wires 26 towards the axis on the ring 27 or symmetrically disposed about the axis.
Where, as shown in
It is thus possible to provide a magnetic field sensor having a switched type response output and which also can have its response tailored by the application of a bias field. As shown herein, the sensor can be used to measure the magnetic field around a conductor resulting from current flow therein, and hence to infer the current flow within the conductor, or where a plurality of conductors are provided, to sum the contributions from the individual fields.
Additional objects, advantages and novel features of the invention as set forth in the description that follows, will be apparent to one skilled in the art after reading the foregoing detailed description or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instruments and combinations particularly pointed out here.
Mapps, Desmond James, Panina, Larissa V
Patent | Priority | Assignee | Title |
10096988, | Oct 24 2011 | Koninklijke Philips Electronics N V | Auto recovering protection of electromechanical components in a high magnetic field |
10488445, | Jan 24 2011 | Infineon Technologies AG | Current difference sensors, systems and methods |
8679895, | Aug 31 2010 | Infineon Technologies AG | Method of making thin-wafer current sensors |
8680843, | Jun 10 2010 | Infineon Technologies AG | Magnetic field current sensors |
8717016, | Feb 24 2010 | Infineon Technologies AG | Current sensors and methods |
8760149, | Apr 08 2010 | Infineon Technologies AG | Magnetic field current sensors |
8963536, | Apr 14 2011 | Infineon Technologies AG | Current sensors, systems and methods for sensing current in a conductor |
8975889, | Jan 24 2011 | Infineon Technologies AG | Current difference sensors, systems and methods |
9029966, | Aug 31 2010 | Infineon Technologies AG | Thin-wafer current sensors |
9222992, | Dec 18 2008 | Infineon Technologies AG | Magnetic field current sensors |
9395423, | Apr 14 2011 | Infineon Technologies AG | Current sensors, systems and methods for sensing current in a conductor |
9678172, | Jan 24 2011 | Infineon Technologies AG | Current difference sensors, systems and methods |
9733279, | Dec 18 2008 | Infineon Technologies AG | Magnetic field current sensors |
9865802, | Feb 24 2010 | Infineon Technologies AG | Current sensors and methods |
9983238, | Apr 08 2010 | Infineon Technologies AG | Magnetic field current sensors having enhanced current density regions |
Patent | Priority | Assignee | Title |
2922110, | |||
4963827, | Sep 13 1988 | LGZ Landis & Gyr Zug Ag | Intermittently activated magnetic shield arrangement for reducing noise and offsets in solid state magnetic field sensors |
5132608, | Nov 06 1989 | Katsuyuki Nishifuji; Seigo Ando | Current measuring method and apparatus therefor |
5430613, | Jun 01 1993 | Mid-America Commercialization Corporation | Current transformer using a laminated toroidal core structure and a lead frame |
5523677, | Oct 12 1993 | Sumitomo Special Metals Co., Ltd. | DC current sensor |
5994899, | Sep 14 1995 | Research Development Corporation of Japan | Asymmetrical magneto-impedance element having a thin magnetic wire with a spiral magnetic anisotropy |
6028427, | Feb 11 1995 | Canon Denshi Kabushiki Kaisha | Magnetism sensor using a magnetism detecting device of a magnetic impedance effect type and control apparatus using the same |
6121770, | Jul 14 1997 | Frontec Incorporated | Magnetic sensor using magnetic impedance of magnetic wire within biasing coil |
6392401, | Jun 05 1998 | Closely-coupled multiple-winding magnetic induction-type sensor | |
6963195, | Aug 15 1997 | ABB S P A | Apparatus for sensing current |
EP1037056, | |||
JP10232259, | |||
JP2000149223, | |||
JP6418069, | |||
JP646767, | |||
SU1372406, | |||
WO2061445, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 24 2002 | The University of Plymouth | (assignment on the face of the patent) | / | |||
Nov 23 2004 | MAPPS, DESMOND JAMES | The University of Plymouth | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015550 | /0079 | |
Nov 24 2004 | PANINA, LARISSA V | The University of Plymouth | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015550 | /0079 |
Date | Maintenance Fee Events |
Mar 04 2013 | REM: Maintenance Fee Reminder Mailed. |
Mar 18 2013 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Mar 18 2013 | M2554: Surcharge for late Payment, Small Entity. |
Mar 03 2017 | REM: Maintenance Fee Reminder Mailed. |
Mar 09 2017 | ASPN: Payor Number Assigned. |
Jul 21 2017 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jul 21 2012 | 4 years fee payment window open |
Jan 21 2013 | 6 months grace period start (w surcharge) |
Jul 21 2013 | patent expiry (for year 4) |
Jul 21 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 21 2016 | 8 years fee payment window open |
Jan 21 2017 | 6 months grace period start (w surcharge) |
Jul 21 2017 | patent expiry (for year 8) |
Jul 21 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 21 2020 | 12 years fee payment window open |
Jan 21 2021 | 6 months grace period start (w surcharge) |
Jul 21 2021 | patent expiry (for year 12) |
Jul 21 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |