An optical module includes a first optics group, a second optics group, and an image sensor, wherein the first optics group and second optics group are configured to provide an image having a focus and a magnification to the image sensor. In some embodiments of the present invention, a first optics assembly includes a first optics group coupled to a threaded portion of a first lead screw so that translation of the first lead screw results in translation of the first optics group along an axis of the first lead screw, a first actuator for rotating the first lead screw; and a first sensing target configured to permit detection of rotation of the first lead screw. In some embodiments of the present invention a second optics assembly includes a second optics group coupled to a threaded portion of a second lead screw so that translation of the second lead screw results in translation of the second optics group along an axis of the second lead screw, a second actuator for rotating the second lead screw, and second means for sensing configured to detect rotation of the second lead screw.
|
22. An actuator module, comprising:
a) a vibrational actuator of the type that oscillates in a standing wave pattern to drive a threaded shaft placed therein to rotate, thus translating the threaded shaft, having a preferred standing wave pattern;
b) a lead screw comprising a threaded portion, a first end, and a second end, the threaded portion coupled to the vibrational actuator;
c) an actuator housing, with an actuator retention region therein; and
d) a flexible coupling structure, coupled to the vibrational actuator at a node point of the preferred standing wave pattern, and also coupled to the actuator housing.
1. An optical module, comprising:
a) a first optics group coupled to a first lead screw so that translation of the first lead screw results in translation of the first optics group along an axis parallel to the first lead screw;
b) a first actuator for translating the first lead screw;
c) a first sensing target configured to permit detection of translation of the first lead screw;
d) a second optics group coupled to a second lead screw so that translation of the second lead screw results in translation of the second optics group along an axis parallel to the second lead screw;
e) a second actuator for translating the second lead screw;
f) a second sensing target configured to permit detection of translation of the second lead screw; and
g) an image sensor.
21. An auto focus and zoom module, comprising:
a) a housing
b) an optics assembly, comprising:
i) a lead screw including a threaded portion, a first end, and a second end;
ii) an optics group coupled to the lead screw so that translation of the lead screw results in translation of the optics group along an axis parallel to the lead screw;
iii) a vibrational actuator of the type that oscillates in a standing wave pattern to drive a threaded shaft placed therein to rotate, thus translating the threaded shaft, coupled to the threaded portion of the lead screw and constrained at a node point of its preferred standing wave pattern by a flexible coupling with the housing; and
iv) means for sensing configured to detect rotation of the lead screw; and
c) an image sensor, wherein the optics group is configured to provide an image having a focus and a magnification to the image sensor.
10. An auto-focus and zoom module, comprising:
a) a housing;
b) a first optics assembly, comprising:
i) a first lead screw including a threaded portion, a first end, and a second end
ii) a first optics group coupled to first end of the first lead screw so that translation of the first lead screw results in translation of the first optics group along an axis of the first lead screw;
iii) a first actuator module including a first actuator for translating the first lead screw threaded portion; and
iv) first means for sensing configured to detect rotation of the first lead screw;
c) a second optics assembly, comprising:
i) a second lead screw including a threaded portion, a first end, and a second end;
ii) a second optics group coupled to the first end of the second lead screw so that rotation of the second lead screw results in translation of the second optics group along an axis of the second lead screw;
iii) a second actuator module including a second actuator for translating the second lead screw; and
iv) second means for sensing configured to detect translation of the second optics group; and
d) an image sensor.
18. An auto-focus and zoom module, comprising:
a) a first guide pin;
b) a second guide pin;
c) a first optics assembly, comprising:
i) a first lead screw including a threaded portion, a first end, and a second end;
ii) a first optics group coupled to the first guide pin and the second guide pin and including a drive target and a spring interface feature;
iii) a first spring coupled to the spring interface feature and configured to urge the drive target of the first optics group against the first end of the first lead screw;
iv) a first actuator module including a first actuator for translating the first lead screw; and
v) first means for sensing configured to detect rotation of the first lead screw;
d) a second optics assembly, comprising:
i) a second lead screw including a threaded portion, a first end, and a second end
ii) a second optics group coupled to the first guide pin and the second guide pin and including a drive target and a spring interface feature;
iii) a second spring coupled to the spring interface feature and configured to urge the drive target of the second optics group against the first end of the second lead screw;
iv) a second actuator module including a second actuator for translating the second lead screw; and
v) second means for sensing configured to detect translation of the second optics group; and
e) an image sensor.
2. The module of
3. The module of
4. The module of
5. The module of
6. The module of
7. The module of
8. The module of
9. The module of
11. The auto-focus and zoom module of
12. The auto-focus and zoom module of
13. The auto-focus and zoom module of
14. The auto-focus and zoom module of
15. The auto-focus and zoom module of
16. The auto-focus and zoom module of
17. The auto-focus and zoom module of
19. The auto-focus and zoom module of
20. The auto-focus and zoom module of
23. The actuator module of
|
This patent application claims priority under 35 U.S.C. 119(e) of the co-pending U.S. Provisional Pat. App. No. 60/836,616, filed Aug. 8, 2006, entitled “Miniaturized zoom module with rotational piezo actuator with anti-lock feature, even force distribution, shock damage prevention and a novel position sensing methods”, which is hereby incorporated by reference.
In addition, this patent application is a continuation-in-part of co-pending U.S. patent application Ser. No. 11/514,811, filed on Sep. 1, 2006 and entitled “Auto-focus and zoom module”, which claims priority under 35 U.S.C. 119(e) of the co-pending U.S. Provisional Pat. App. No. 60/715,533, filed Sep. 8, 2005, entitled “3× zoom module”, both of which are also hereby incorporated by reference.
The invention relates to camera optics, including video optics. More particularly, this invention is directed toward an auto-focus and zoom module.
Recently, there have been numerous developments in digital camera technology. One such development is the further miniaturization of optical and mechanical parts to the millimeter and sub millimeter dimensions. The reduction in size of the moving parts of cameras has allowed the implementation of modem digital camera and optical technology into a broader range of devices. These devices are also being designed and constructed into smaller and smaller form factor embodiments. For example, typical personal electronic devices such as cellular phones, personal digital assistants (PDAs), and wrist and/or pocket watches are commercially available that include a miniature digital camera. Moreover, larger form factor devices are also packed with additional features. For example, a typical video camcorder often has an entire digital camera for “still” photography built into the camcorder device along with the mechanisms and circuitry for motion video recording.
Typically, however, modern digital camera implementations suffer from a variety of constraints. Some of these constraints include cost, size, features, and complexity. For instance, with a reduction in size typically comes an increase in cost, a reduction in features and/or an increase in complexity.
An optical module comprises a first optics group, a second optics group, and an image sensor. The first optics group and second optics group are configured to provide an image having a focus and a magnification to the image sensor.
In some embodiments of the present invention, an optics module comprises a first optics group that is coupled to a threaded portion of a first lead screw. Translation of the first lead screw results in translation of the first optics group along an axis of the first lead screw. A first actuator rotates the first lead screw. A first sensing target is configured to permit detection of rotation of the first lead screw. The optical module further comprises a second optics group coupled to a threaded portion of a second lead screw. Translation of the second lead screw results in translation of the second optics group along an axis of the second lead screw. A second actuator rotates the second lead screw. A second means for sensing configured to detect translation of the second lead screw.
A housing is included in some embodiments to hold the first optics assembly, the second optics assembly, and the image sensor. The first optics group and the second optics group are configured to provide an image having a focus and a magnification to the image sensor. In some embodiments, the first actuator and/or the second actuator are configured within an actuator module. Preferably the axes substantially parallel to both the first lead screw and second lead screw are parallel to a first guide pin.
Preferably, an actuator module includes a vibrational actuator of the type that oscillates in a standing wave pattern to drive a threaded shaft placed therein to rotate, thus translating the threaded shaft. The actuator has a preferred standing wave pattern. The module further includes an actuator housing, with an actuator retention region therein, and a flexible coupling structure. The flexible coupling structure is coupled to the vibrational actuator at a node point of the preferred standing wave pattern, and also coupled to the actuator housing. The module is coupled with a lead screw comprising a threaded portion, a first end, and a second end. Specifically, the threaded portion is coupled to the vibrational actuator.
In some embodiments, the actuator retention region is a five-sided chamber, with an opening on one side. The opening is sized to fit a parallelepiped containing the vibrational actuator so that a surface of the vibrational actuator is parallel with the opening.
Preferably, the first sensing target is configured to permit measurement of translation of the first optics group along the first lead screw and the second sensing target is configured to permit measurement of translation of the second optics group along the second lead screw. Most preferably, the first sensing target permits measurement over a range of at least 10 mm with a resolution of 70 microns or less, while the second sensing target permits measurement over a range of at least 2 mm with a resolution of less than 10 microns.
The first optics assembly can include a first lead screw which has a threaded portion having a first outer thread diameter, a first end, and a second end. The first optics group is coupled to the first end of the first lead screw so that translation of the first lead screw results in translation of the first optics group along the axis of the first lead screw. A first vibrational actuator translates the first lead screw, which is constrained at a node point by a flexible coupling to the housing. The first means for sensing is configured to detect rotation of the first lead screw.
The second optics assembly can include a second lead screw, which has a threaded portion, a first end, and a second end. The second optics group is coupled to the second lead screw so that translation of the second lead screw results in translation of the second optics group along an axis of the second lead screw. A second vibrational actuator translates the second lead screw and constrained at a node point by a flexible coupling to the housing. The second means for sensing is configured to detect rotation of the second lead screw.
Some embodiments of the present invention relate to an auto focus and zoom module that includes a vibrational actuator of the type that oscillates in a standing wave pattern to drive a threaded shaft placed therein to rotate, thus translating the threaded shaft. The vibrational actuator is coupled to a threaded portion of a lead screw and is constrained at a node point of its preferred standing wave pattern by a flexible coupling with the housing. The vibrational actuator and the lead screw are configured as part of an optics assembly, that also includes an optics group coupled to the lead screw. The coupling between the lead screw and the optics group means that translation of the lead screw results in translation of the optics group. The assembly further includes a means for sensing configured to detect rotation of the lead screw. In addition, the module includes an image sensor. The optics group is configured to provide an image having a focus and a magnification to the image sensor. The lead screw of the assembly has a first end and a second end in addition to the threaded portion.
In some embodiments of the present invention an auto-focus and zoom module comprises a first guide pin, a second guide pin, a first optics assembly, a second optics assembly, and an image sensor, wherein the first optics group and second optics group are configured to provide an image having a focus and a magnification to the image sensor.
In another aspect, a hard stop is implemented on a body driven along an axis by threads disposed orthogonal to that axis. The method comprises coupling a feature to the body to form an assembly having non-symmetric region relative to the axis. The body is driven by the threads using an actuator. A movable element is coupled to a point fixed relative to the actuator. The movable element has a latch feature configured to mate with the non-symmetric region. The movable element is disposed at a position such that the latch feature mates with the non-symmetric region and prevents rotation of the body.
In some embodiments, the step of disposing the movable element is performed in part by moving the movable element by driving the body against it. In some embodiments, the feature coupled to the body is a cam.
The novel features of the invention are set forth in the appended claims. However, for purpose of explanation, several embodiments of the invention are set forth in the following figures.
In the following description, numerous details and alternatives are set forth for purpose of explanation. However, one of ordinary skill in the art will realize that the invention can be practiced without the use of these specific details. In other instances, well-known structures and devices are shown in block diagram form in order not to obscure the description of the invention with unnecessary detail.
As shown, the module is built over an image sensor board 10. The module 1000 comprises a stiffener 1 disposed on a first side of the image sensor board 10, and a main structure 20 disposed opposite the stiffener 1. Preferably, the stiffener 1 and the main body 20 are coupled with one another and with the image sensor board 10.
The main structure 20 comprises a base guide portion 22. The base guide portion 22 includes features configured to retain the guide pins 601 and 602. The end guide plate 2 is disposed opposite the base guide portion 22. The holes 2a and 2b interface with retain the guide pins 601 and 602, respectively. The base guide portion 22 further includes a void region (not shown) configured to permit passage of radiation, e.g. visible light, through the lens structure of the module (discussed below) to the image sensor (discussed below) of the image sensor board 10. In addition, the base guide portion 22 includes a pass-thru 25 configured to permit the image sensor board extension 11 to pass through.
Disposed between the base guide portion 22 and the end guide plate 2 are the remainder of the main body 20 and other components of the module 1000. The main body 20 further includes the upper structure 24, and the lower structure 26. Both the lower 26 and upper 24 structures include specialized features configured to mate with or allow pass-through of working components of the module 1000. Thus, the main body 20 provides both a structure framework and functional support to the workings of the module 1000.
For example, the lower structure 26 includes the pivot boss 32, configured to act as a fulcrum for the low-variation preload lever assembly (discussed below). In addition, the lower structure 26 includes the pass through 27, configured to permit movement of the lever assembly through a desired range. Similarly, the upper portion 24 includes a pass through configured to permit coupling between a main PCB and the sensor 901 discussed below.
A variety of components of the module 1000 are coupled to the main body 20. Some of these components are immobilized relative to the main body 20. In addition to the guide pins 601 and 602, the actuator housings 1020 and 1030 are coupled to the main body 20 in an immobile position. Thus, the actuator housings 1020 and 1030 are in a fixed position relative to the guide pins 601 and 602.
Optionally attached to the main body 20 and the end guide plate 2 is a prism 40, (shown in
Image Sensor
As shown in the figures, the image sensor 14 is substantially planar. The plane of the image sensor is perpendicular to the axes of the guide pins 601 and 701. Typically, the module 1000 is configured to provide an image to the image sensor 14 along an image vector parallel to these axes.
Guide Pins
Typically, the guide pins 601 and 602 are coupled to the main body 20 and the end guide plate 2 as outlined above. Preferably, the guide pins are coupled on opposite sides of the image vector of the image sensor 14. However, one skilled in the art will recognize that other configurations are possible. The lead screws 200 and 300 are typically disposed parallel to one another, along an edge of the image sensor 14 and parallel to its optical axis.
In some embodiments, the range of motion provided to the rear barrel 530 by the guide pins 601 and 602 is approximately 7 millimeters. In some embodiments, the range of motion provided to the front barrel 430 the guide pins 601 and 602 is approximately 2 millimeters. Due to this range of motion, however, the guide pins 601 and 602 of some embodiments often affect the form factor of the module 1000. Hence, some embodiments further include means for modifying and/or concealing the form factor of the module 1000.
Prism Feature
For instance, some embodiments additionally include a prism feature, e.g. 40 of
Referring to
Lens System
As shown in
The front optics group 400 further includes the front barrel 430, the front guide sleeve 410, and the front guide slot 420. The front barrel typically houses the front lens group 440. The front barrel 430 is a substantially cylindrical body with a central axis. The front lens group 440 is configured to direct light along the central axis of the front barrel 430. The front guide sleeve 410 (
Lens-Guide Pin Interface
Referring now to
Referring now to
The rear optics group 500 also includes the rear guide slot 520, configured to couple with the secondary guide pin 602. The coupling between the guide slot 520 and the secondary guide pin 602 prevents the rear optics group 500 from rotating around the axis of the primary guide pin 601. The coupling between the rear optics group 500 and guide pins 601 and 602 permits the rear optics group 500 to translate along an axis substantially parallel to the two guide pins.
Actuator Modules
Preferably, the actuators used within embodiments of the present invention are vibrational actuators. Most preferably, these vibrational actuators are of the type that oscillates in a standing wave pattern to drive a threaded shaft placed therein to rotate, thus translating the threaded shaft. Embodiments of the present invention include certain preferred standing wave patterns for driving the vibrational actuators. However, a variety of standing wave patterns are contemplated.
The present invention contemplates a variety of actuator constructions. These include vibrational actuators as disclosed in U.S. Pat. No. 5,966,248 issued Oct. 12, 1999 and U.S. Pat. No. 6,940,209 issued Sep. 6, 2005. These also include actuators as shown for example in
In order to effectively drive a threaded shaft by using the preferred vibrational actuators, some embodiments of the present invention include specialized actuator housings, designed to constrain the actuator to only the degree necessary and also to provide shock protection for the actuator. In addition, the actuator housings permit close positioning of actuator relative to the guide pin and optics group. Typically, each actuator within the embodiment is combined with an actuator housing to form an actuator module.
Some embodiments of the present invention include actuator modules such as those illustrated in
The flexible coupling 710 constrains a portion of the actuator 700′ to a substantially fixed position relative to the actuator housing 1030′. This permits the actuator to drive a lead screw to translate relative to the actuator housing 1030′. For example, the contact pads 710 prevent the actuator 700′ from rotating relative to the housing.
However, by constraining only a portion of the actuator 700′, the embodiment permits relatively free vibration of the actuator 700′ to impart movement to a lead screw, e.g. 360′. Further, because the flexible coupling 710 preferably constrains the actuator 700′ at a node point of the preferred standing wave pattern of the actuator 700′, the effect of the constraint on the efficiency of the actuator is reduced. Preferably, the fixed location is chosen to be a node point of a variety of standing wave patterns, thus permitting efficient operation of the actuator under a variety of conditions.
As illustrated, the actuator housing 1030′ includes openings 1034 and 1036 to admit the lead screw 360′. In addition, the housing includes openings 1032 and 1038 configured to admit electrical connections to a main PCB board (not shown). In addition, the actuator housing 1030′ is specialized to prevent shock damage to the actuator 700′. The actuator housing 1030′ is preferably a five-sided chamber that forms a parallelepiped therein. This parallelepiped, called the actuator retention region, is larger in volume than the actuator 700′. Further, the actuator retention region is larger along every dimension than the corresponding dimension of the actuator 700′. In addition, when the actuator 700′ is constrained within the actuator retention region by the flexible coupling 710, preferably a surface of the actuator 700′ is parallel with the surface of the parallelepiped that does not include a portion of the actuator housing. Further, the ends of the actuator 700′ are preferably approximately equidistant from the openings 1034 and 1036, respectively. Thus, the actuator 700′ is suspended within the retention region with a buffer distance between it and each adjacent surface of the actuator housing 1030′.
Further, the size of the parallelepiped actuator retention region and the actuator 700′ are matched to one another, and to the type of flexible coupling 710 used to retain the actuator. Preferably, the buffer distance between the actuator 700′ and the inner surfaces of the housing 1030′ adjacent to the openings 1034 and 1036 are chosen relative to the maximum displacement permitted prior to failure by the flexible coupling 710. Thus, during a mechanical shock, the actuator 700′ will encounter an inner surface of the housing 1030′ prior to stretching the flexible coupling 710 to failure. In addition, similar stretching along axes perpendicular to the lead screw 360′ is prevented by the coupling between the lead screw 360′ and the actuator 700′.
The actuator housings 1030 and 1020 permit close positioning of actuators 700 and 500 relative to the primary guide pin 601. As shown in
Close positioning increases precision by minimizing torque effects as the actuators 200 and 300 drive the optics modules 400 and 500, respectively. The center of mass of the optics modules 400 and 500 lies between the guide pins 601 and 602. The lead screw coupling surfaces 480 and lie off center. Thus, driving the optics modules 400 and 500 by the coupling surfaces 480 and 570 tends to introduce a torque. The guide pins, including the primary guide pin 601, counteract the torque effect. However, configuring the modules so that the actuators 500 and 700, and the coupling surfaces, are nearly aligned with the guide pin 601 reduces the amount of torque on the guide pins.
Lead Screw Assemblies
Referring now to
Lead Screw-Optics Group Interface
Referring now to
In the preferred configuration, movement of a lead screw transmits force through its counterpart lead screw coupling surface. Since the coupling surfaces are each a rigidly coupled component of an optics group, translation of a coupling surface results in translation of its counterpart optics group. However, a simple rigid connection between a coupling surface and a lead screw could accomplish this function. The illustrated configuration provides additional benefits by isolating the optics group from non-translational movements of the lead screw. Preferably, a reference cap coupled to the first end of a lead screw contacts the coupling surface, for example, see the reference cap 340 of
The small contact area between the reference cap and the coupling surface serves to minimize friction, permitting movement of the coupling surface relative to the reference cap and the lead screw in the axes orthogonal to the axis of the lead screw. This configuration isolates most mechanical vibration or disturbance of the lead screw from the optics group. Further, the isolation means that only the translational degree of freedom of the lead screw need be controlled to achieve a required precision for positioning of the optics group. Though non-translational movement of the lead screw is not present in the preferred embodiment, these features permit embodiments of the present invention to deal with this type of wobble when present.
To maintain coupling between a coupling surface and lead screw, some embodiments of the present invention rely on preload springs otherwise required for accurate operation of the actuators.
Preload Springs
In addition to the features mentioned above, the actuators used within embodiments of the present invention typically require a low-variation preload force. This preload is provided by a spring with a low force constant. In small displacement implementations this method works well.
Some embodiments of the present invention rely on spring forces acting on the optics groups to provide preload to the lead screws used to drive the groups. Thus, to an extent, the required displacement of the optics group determines the type of spring force transmission mechanism required.
For example, in some embodiments of the present invention the front optics group 400 is used for focusing and zoom operations and need only be displaced a millimeter or two. Because the preferred range of motion of the front optics group 400 is less than two millimeters, choosing a low force constant spring for the spring and coupling it to directly exert spring forces on the optics group results in a relatively low variation preload.
As illustrated in
In another example, the rear optics group 500 is used for zoom operations and need be displaced several millimeters or more. Because the preferred range of motion of the front optics group 500 is more than four millimeters, choosing a low force constant spring for the spring and coupling it to directly exert spring forces on the optics group results to high a variation in preload.
As illustrated in
Thus, the preload spring 110 is configured on the opposite end of a preload lever 100. The zoom preload lever 100 includes a pivot hole 140 configured to mate with the pivot boss 32 of the main body 20. In addition, the preload lever 100 includes a preload spring hook 130 and a preload force transfer point 120.
The pivot hole 140 is skewed toward the preload spring hook 130 so that movement at the hook end of the preload lever 100 is amplified at the force transfer point end. By the same mechanism, large movements at the force transfer point 120 end of the zoom lever 100 translate into relatively smaller movements at the spring hook 130 end. Preferably, the location of the pivot hole 140 is chosen to decrease the travel from the force transfer end to the spring hook end, in this example by a factor of five. Other embodiments employ a different factor.
The spring hook 130 is coupled with the preload spring 110, and the force transfer point 120 is coupled with one face of the rear lead screw coupling surface 570. The coupling surface 570 is also adjacent to the lead screw 360. To couple the surface with the lead screw and provide preload, the preload spring must urge the surface against the lead screw. Indirectly providing the spring force from the rear preload spring 110 through the lever 100 means that travel of the rear optics group 500 translates indirectly into extension of the preload spring 110. The specific proportionality of group travel to spring extension depends on the positioning of the lever pivot relative to the force transfer point and spring hook. As described above, the preferred ratio is one-fifth.
In either case, indirect or direct preload spring force application, the opposite end of the preload spring is preferably coupled to the main body 20.
Sensing Target
Some embodiments of the present invention include sensing targets to provide feedback on positioning. In some embodiments, a sensing target is disposed on a lead screw. In some embodiments, a sensing target is disposed on an optics group. Both linear and rotational targets can be used with the present invention.
A lead screw assembly in accordance with some embodiments of the present invention includes a sensing target. Some lead screw assemblies, such as the assembly 300′ of
Typically, a sensing target adapted for coupling to a lead screw includes a feature that interfaces with a registering feature of lead screw. In some embodiments the sensing target interfaces with the threads of a lead screw. The position sensing target 290 is configured to engage with the position sensor 902.
In some embodiments, a sensing target is included as part of an optics group. For example, in
In addition, the sensing target 590 is a linear sensing target. Linear targets are acceptable in relatively low precision positioning applications. Further, linear targets are preferred in applications where the target need move over a relatively large range. Here, the linear target is employed in the rear optics group 500 because the group is used for zoom purposes.
In
In
Mechanical Hard Stop Latch
Preferably, embodiments of the present invention include features configured to permit referencing of the optics group via a mechanical hard stop.
Referring now to
The pivot hole 318 is mated with the spring boss 21 and configured to pivot around the boss 21. The group interface surface 314 is configured to mate with the spring driver 580 of the rear lens group 500. At rest, the latch 316 is disposed out of line with the actuator housing 1030, e.g.
The hard stop latch spring 210 is mounted to the actuator housing 1020 on the spring boss 1028, as shown in
The pivot hole 218 is mated with the spring boss 1028 and configured to pivot around the boss 1028. The group interface surface 214 is configured to mate with the spring driver 480 of the front lens group 400. At rest, the latch 216 is disposed out of line with the actuator housing 1020, e.g.
Position Sensing
Embodiments of the present invention include position-sensing elements configured to provide feedback to an actuator control system. These elements permit the module to accurately position functional groups, e.g. optics, by using non-linear actuator motors.
Preferred embodiments of the present invention employ a sensing target that moves in concert with a functional group of the module, and a sensor configured to detect and encode data representing movement of the sensing target. For example, some embodiments use reflection encoding of a mobile sensing target that comprises regions of differing reflectance. An exemplary position sensing system comprises the position sensors 1030 and the position sensing targets 250 and 350 of the module 1000 of
Reflection Encoding
In the exemplary reflection encoding system, a sensor includes an element that emits radiation and an element that detects radiation. A target includes dark and light bands, for example. The dark bands tend to absorb a greater proportion of the emitted radiation than do the light bands. The radiation reflected by the bands is detected by the sensor. As the target moves relative to the sensor, the absorption and reflectance of the sensing target portion aligned with the sensor varies. The sensor encodes this variation. A variety of encoding algorithms and processes are consistent with the present invention. For example, a sensor could simply detect each transition between a dark and light band.
System Resolution
The resolution of a reflection encoding system is determined by several factors. The distance between the emitter/detector and the target, the beam spread of the radiation used, and the native target resolution all play important roles in determining a system's resolution. These three factors do not act separately, rather they interact, and each must be tuned relative to the others.
Native target resolution is essentially a function of feature size. The smaller the critical dimension—the dimension parallel to sensor movement—of a target's features, the greater its native target resolution. For example the target 250 of
However, a position sensing system does not guarantee high resolution simply by using a high native target resolution. A suitable combination of low beam spread radiation and tight emitter-target tolerances is required to achieve a maximal resolution permitted by a given feature size. The beam spread and tolerance specifications are complementary: a decrease in beam spread combined with an appropriate increase in tolerance can maintain a given resolution, and vice versa.
For a given feature size, there is a maximum radiation beam spread above which the features are not resolvable via reflection encoding.
Under set diffusion conditions, the maximum tolerable spread and desired resolution determine a maximum spacing between a radiation source and the target. This spacing, distance d in
Native Target Resolution
Some embodiments of the present invention employ position sensing systems with beam spread and tolerance optimized to operate at native target resolution. In reflection encoding, a variety of methods, strategies, and devices are available to achieve this goal.
Tolerances
One method of achieving native target resolution is closely spacing the emitter/detector and the scanning target. However, tightening tolerances increases the precision required in manufacturing both the target, and the device as a whole. For example, the cross-sectional roundness of a cylindrical target becomes increasingly important as the spacing decreases. For these and other reasons, embodiments of the present invention preferably space the emitter/detector and scanning target at distances achievable within tolerances typical of mass-manufacturing.
Active Area—Emitter/Detector Modification
Several combinations of features and methods can be employed to lessen the spacing requirements tolerances or decrease problems caused by diffusion of the radiation. In reflection encoding, a portion of the sensing target is excited by radiation and a detector receives a signal from the sensing target. The signal received represents the characteristics of an active area of the sensing target. Preferably, the active area is sized and located to match critical feature dimensions of the sensing target. For example,
The size and location of the active area are determined by characteristics of both the emitter and the detector. In some cases, the radiation is conditioned to limit the portion of the sensing target excited by radiation. In some cases, the field of view of the detector is cropped.
Some techniques involve radiation processing measures that permit the use of higher resolution targets at manufacturable spacings than would be possible using more diffusive radiation.
Some techniques involve elements configured to limit the field of view of a sensor to a portion of its native field of view.
Though certain embodiments of the present invention do employ active area cropping strategies, such as radiation conditioning, the additional devices or features needed to carry out these strategies increases the cost and complexity of the manufactured module. Preferably, embodiments of the present invention employ other means to achieve desired resolutions.
Beyond Native Target Resolution
At certain thresholds, achieving high system resolution though use of high native target resolution begins to necessitate radiation conditioning or tight spacing. As outlined above, these elements increase the complexity of a module and the precision required in manufacturing. Therefore, for resolutions above these thresholds, embodiments of the present invention preferably employ a lower native target resolution combined with at least one of a variety of strategies for achieving system resolution greater than native target resolution.
Active Area—Target Modification
The methods of defining an active area referred to above relate to conditioning radiation from an emitter, selecting a detector with an appropriate field of view, or modifying the field of view using an external device. However, alternative methods relate to configuring the sensing target to limit the portion thereof excited by radiation at any one time, and thus cropping the active area.
For example, the cross-sectional view of
Preferably, the sensing target and detector are configured such that a single feature dominates the field of view. For example, as illustrated in
Data Processing
Preferably, embodiments of the present invention process data from a sensor to achieve resolutions higher than native target resolution. A variety of processing techniques, methods and elements are employed within various embodiments of the invention, including threshold-based signal conversion and interpolation.
Preferably, embodiments of the present invention encode a portion of the sensing target within the active area into an voltage. The voltage varies depending on the character of the portion of the sensing target within the active area at time of encoding.
Embodiments of the present invention preferably match the dimensions of the active area to the critical dimensions of the sensing target features in order to produce a smoothly varying signal.
Over time, as the sensing target moves through the active area, the system forms a signal representing the portions of the sensing region that have passed through the area. As shown in
In some embodiments the signal is a continuous encoding of the voltage, in other embodiments the signal is a series of discrete samples taken at a particular frequency. In either case, the signal preferably contains multiple samples related to each feature of the sensing target as it moves across the sensor's field of view.
The encoding process produces a variable signal representing the movement of the sensing target. The minima and maxima of the signal represent movement of the sensing target at its native target resolution. Preferably, this variable signal is an analog voltage. In some embodiments, interpolation is used to construct higher resolution data between the minima and maxima of the variable signal. Preferably the interpolation error occurs only within a given period of the native target resolution and is reset with each minimum or maximum of the signal. This limits the error introduced by interpolation to a substantially fixed percentage of the native resolution.
A processing system receives a variable signal from the sensor and produces corrected movement data at a resolution higher than native target resolution. For example, in some embodiments, the analog voltage signal is supplied to an analog to digital converter (ADC). The analog signal, which was produced at a sampling rate that results in multiple samples per feature, contains sufficient information to support ADC production of digital signal with a resolution greater than native target resolution. In some embodiments, an ADC process using multiple thresholds is used to encode an analog signal to a higher-resolution digital signal.
The corrected movement data is then translated into position data which represents the position of a functional group coupled to the sensing target. For example, in some embodiments digital data from the ADC is supplied to a controller where it is analyzed and translated into position data.
One method in accordance with the present invention is illustrated in
Preferably, embodiments include additional calibration of processing circuitry. In the preferred embodiment, an initial calibration is accomplished automatically during power on. For example, in an ADC-based system, self-calibration during power-on preferably determines the input range needed for data. Embodiments that use self-calibration do not require initial calibration during manufacturing or storage of fixed calibration parameters over their lifetime. In addition, the calibration preferably defines the initial position for each functional group. In some embodiments, these initial positions are determined by a hard reference stop discussed elsewhere in greater detail. In some embodiments, the positions are determined via information embedded into the sensing target. In some embodiments, position is referenced by the absence of interaction between the sensor and sensing target.
Specifically, referring to
Referring now to
However, some embodiments also include continuous calibration during sensing to handle signals with noisy time-variance. A variety of configurations produce signals with slight instabilities over time. For example,
In some embodiments, non-volatile memory elements are included in the control or processing circuitry and used to provide additional manufacturing and calibration data. Preferably, this additional data is used to adjust for component variation and manufacturing tolerances.
Some embodiments that employ interpolation use additional hardware and/or firmware (e.g. a clock for timing and for analysis). If the actuator is very non-linear, interpolation can introduce positioning error. Preferably, embodiments of the present invention use ADC techniques.
Configurations
Embodiments of the present invention include position sensing systems that employ a variety of different configurations of sensors and sensing targets. Some embodiments include cylindrical sensing targets, closed surfaces configured to rotate along with a lead screw or other rotational drive mechanism. Since the functional group is coupled with the lead screw, which has known thread pitch, lead screw rotation is proportional to translation of the functional group along the lead screw axis. In addition, some embodiments include linear sensing targets coupled to a functional group and configured to move therewith. The sensing systems discussed in the examples below are illustrated with cylindrical sensing targets; however, the methods, strategies and equipment described are also contemplated for use with linear targets within some embodiments of the present invention.
For example, a system employing a rotational sensing target is illustrated in
In another example, illustrated in
The dark bands of the sensing target 4350 absorb radiation emitted from the emitter, while the light bands of the sensing target reflect radiation emitted from the emitter. The sensors detect transitions in absorption and reflectance as the bands move relative to the sensor windows. Preferably, the sensor 4034 separately detects transitions in both sensor windows 4032′ and 4034″. In some embodiments the emitter/detector 4030 is a photoreflector.
In yet another example, illustrated in
Radiation from the emitter 3032 is substantially absorbed by dark bands and substantially reflected by the light bands of the sensing target 3350. The sensors 3034A and 3034B detect transitions in absorption and reflectance as the bands move relative to the sensor windows. Both the first sensor 3034A and the second sensor 3034B detect transitions.
In some embodiments, a detector encodes a given transition at different points in time. In addition, in some embodiments, a detector includes means for encoding a transition in two data forms that differ by a constant, such as a phase. In some embodiments, e.g.
In a cylindrical sensing target within the above configurations, each feature preferably covers 60 degrees of the circumference. Thus, in one embodiment, a cylindrical target having a 12 mm circumference includes six 2 mm stripes in an alternating reflective/absorptive pattern. In addition, processing steps as outlined above are preferably employed to increase resolution above that offered natively by this type of target.
A position sensing system provides position data for a lens group over its range of motion. In some embodiments of the present invention, a position sensing system tracks the relative position of an optics group to within 70 microns over a range of 10 mm.
Operation
Preferred systems employ the position sensor data to control an actuator. In some embodiments, the data is used to predict the movement per cycle of the actuator. In some embodiments, the data is used to predict the movement per unit time that the actuator is engaged and powered on. In some embodiments, the data are used on a real-time basis with a correction cycle for increased accuracy. Preferably, the particular implementation used is determined in accordance with the particular actuator used.
Some embodiments of the present invention use the position data during zoom and auto-focus operation to accurately position and track optics groups. Preferably, during zoom operation, multiple lens groups are moved and tracked. The actuator control circuitry preferably accurately interprets position data to accomplish tracking and movement. In some embodiments, the control circuitry uses tracking interpretation data that is stored in a table. In some embodiments, the control circuitry uses tracking interpretation data that is stored as a mathematical function. Sometimes, this data is defined in a calibration cycle. Preferably, this calibration cycle takes place during manufacturing.
In addition, the actuator control circuitry preferably accomplishes zoom operations within a specified time frame. Preferably, in embodiments that relate to video optics, the zoom operations are accomplished in a manner that does not disturb video recording. In some embodiments, the zoom range and frame rate are used to determine an optimal step size. For example, the total zoom range is divided by the number of frames within the desired seek time to yield the step size. Thus, each step can occur within a frame. Preferably, when zoom operations occur, the steps are synchronized with the frame rate. In addition, the movement of multiple groups during zoom operations is preferably interleaved. Thus, as each group is moved, the remaining groups are stationary. Interleaving reduces driver and instantaneous power requirements.
In addition, during auto focus operation, typically a single group is moved. Preferably, a group is moved through a focus range in small increments. Preferably, an accurate position sensor and actuator control circuit is employed to permit s positioning in increments below 20 micrometers. In addition, though a variety of circuitry and hardware can be used to implement the auto-focus algorithm, preferred implementations permit reliable return of the group to the position that shows best focus.
As described above, the optical elements of some embodiments are divided into two groups, one group housed in a front barrel, the other group housed in a rear barrel. Typically, the precise motion of these optics groups group within confined spaces is achieved by using the mechanism(s) described above.
The form factor of the auto-focus and zoom module of some embodiments is approximately 9×14×22 mm without a prism or approximately 9×14×30 mm including a prism.
While the invention has been described with reference to numerous specific details, one of ordinary skill in the art will recognize that the invention can be embodied in other specific forms without departing from the spirit of the invention. Thus, one of ordinary skill in the art will understand that the invention is not to be limited by the foregoing illustrative details, but rather is to be defined by the appended claims.
Westerweck, Lothar, Raschke, Klaus, Toor, John, Grziwa, Wolfram, Raschke, Alexander
Patent | Priority | Assignee | Title |
8488046, | Dec 27 2007 | NAN CHANG O-FILM OPTOELECTRONICS TECHNOLOGY LTD | Configurable tele wide module |
8564715, | Sep 08 2005 | NAN CHANG O-FILM OPTOELECTRONICS TECHNOLOGY LTD | System for stabilizing an optics assembly during translation |
8937681, | Jul 19 2007 | NAN CHANG O-FILM OPTOELECTRONICS TECHNOLOGY LTD | Camera module back-focal length adjustment method and ultra compact components packaging |
9407121, | May 31 2012 | CLAVERHAM LTD | Electromechanical rotary actuator and method |
Patent | Priority | Assignee | Title |
2279372, | |||
3087384, | |||
3599377, | |||
3609270, | |||
4879592, | May 02 1988 | Senshin Capital, LLC | Camera with two-bladed shutter mechanism with multiple filter apertures disposed for relative movement to provide sequential color separation exposures |
5016993, | Oct 02 1987 | Olympus Optical Company Ltd.; OLYMPUS OPTICAL COMPANY LTD | Zoom mechanism for zoom lenses |
5095204, | Aug 30 1990 | PRESSCO TECHNOLOGY INC | Machine vision inspection system and method for transparent containers |
5177638, | Nov 09 1990 | Konica Corporation | Zoom lens-barrel |
5196963, | Mar 18 1991 | FUJIFILM Corporation | Zoom lens device |
5272567, | Oct 23 1990 | Sony Corporation | Lens barrel having reference shafts movably supporting lenses |
5546147, | Nov 30 1994 | Eastman Kodak Company | Lens deployment mechanism for compact camera |
5754210, | Apr 05 1995 | Konica Corporation | Optical system assembling device for an image forming apparatus |
5805362, | Apr 11 1997 | Trimble Navigation Limited | Focusing mechanism using a thin diaphragm |
5835208, | May 27 1997 | RAYTHEON COMPANY, A CORP OF DELAWARE | Apparatus to measure wedge and centering error in optical elements |
5926965, | Jul 26 1996 | Asahi Kogaku Kogyo Kabushiki Kaisha | Tilt sensor and top cover plate thereof |
5954192, | Oct 30 1997 | YAESU MUSEN CO , LTD | Knob positioning structure |
5966248, | Oct 16 1996 | Nikon Corporation | Lens driving mechanism having an actuator |
6091902, | Feb 25 1998 | FUJI PHOTO FILM CO , LTD ; FUJI PHOTO OPTICAL CO , LTD | Zoom camera with pseudo zooming function |
6292306, | May 19 1999 | Optical Gaging Products, Inc. | Telecentric zoom lens system for video based inspection system |
6330400, | Jan 28 2000 | Concord Camera Corp | Compact through-the-lens digital camera |
6417601, | Oct 27 1999 | The United States of America as represented by the Secretary of the Navy | Piezoelectric torsional vibration driven motor |
6597516, | Jul 04 2001 | PENTAX Corporation | Lens frame structure for optical axis adjustment |
6760167, | Apr 25 2000 | ASML US, INC; ASML HOLDING N V | Apparatus, system, and method for precision positioning and alignment of a lens in an optical system |
6762888, | Feb 18 2003 | Arc Design, Inc. | Control system of zoom lens for digital still cameras |
6792246, | Apr 10 2000 | Mitsubishi Denki Kabushiki Kaisha | Noncontact transmitting apparatus |
6805499, | Sep 23 2002 | Concord Camera Corp | Image capture device door mechanism |
6869233, | Sep 23 2002 | Concord Camera Corp | Image capture device |
6940209, | Sep 08 2003 | New Scale Technologies | Ultrasonic lead screw motor |
7010224, | Aug 27 2002 | PENTAX Corporation | Lens barrel incorporating the rotation transfer mechanism |
7088525, | Nov 21 2001 | THALES AVIONICS, INC. | Universal security camera |
7193793, | Mar 30 2004 | Nidec Copal Corporation | Imaging lens |
7301712, | Jan 09 2003 | Olympus Corporation | Image-formation optical system, and imaging system incorporating the same |
7330648, | Oct 22 2003 | Seiko Precision Inc.; SEIKO PRECISION INC | Optical module |
7394602, | Oct 30 2006 | Largan Precision Co., Ltd | Optical system for taking image |
7400454, | Apr 19 2007 | MAXELL HOLDINGS, LTD ; MAXELL, LTD | Digital camera imaging lens |
7420609, | Jul 11 2003 | Konica Minolta Opto, Inc. | Image pick-up lens, image pick-up unit, and mobile terminal provided with this image pick-up unit |
20020018140, | |||
20020102946, | |||
20030174419, | |||
20040056970, | |||
20040203532, | |||
20040258405, | |||
20050264670, | |||
20060049720, | |||
20060056389, | |||
20060113867, | |||
20060291061, | |||
20070053672, | |||
20070074966, | |||
20070077051, | |||
20070077052, | |||
20070086777, | |||
20070122146, | |||
CN1324012, | |||
EP1148406, | |||
EP1357726, | |||
GB1378515, | |||
GB2315186, | |||
GB2387063, | |||
JP1172678, | |||
JP2002286987, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 03 2007 | Flextronics AP, LLC | (assignment on the face of the patent) | / | |||
Aug 23 2007 | WESTERWECK, LOTHAR | Flextronics AP, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020241 | /0024 | |
Sep 05 2007 | GRZIWA, WOLFRAM | Flextronics AP, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020241 | /0024 | |
Sep 11 2007 | RASCHKE, ALEXANDER | Flextronics AP, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020241 | /0024 | |
Oct 26 2007 | TOOR, JOHN | Flextronics AP, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020241 | /0024 | |
Dec 03 2007 | RASCHKE, KLAUS | Flextronics AP, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020241 | /0024 | |
Jun 28 2012 | Flextronics AP, LLC | DigitalOptics Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028948 | /0790 | |
Nov 14 2014 | DigitalOptics Corporation | NAN CHANG O-FILM OPTOELECTRONICS TECHNOLOGY LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034883 | /0237 | |
Nov 14 2014 | DigitalOptics Corporation MEMS | NAN CHANG O-FILM OPTOELECTRONICS TECHNOLOGY LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034883 | /0237 | |
Nov 14 2014 | FotoNation Limited | NAN CHANG O-FILM OPTOELECTRONICS TECHNOLOGY LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034883 | /0237 |
Date | Maintenance Fee Events |
Feb 11 2013 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 24 2017 | REM: Maintenance Fee Reminder Mailed. |
Sep 11 2017 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 11 2012 | 4 years fee payment window open |
Feb 11 2013 | 6 months grace period start (w surcharge) |
Aug 11 2013 | patent expiry (for year 4) |
Aug 11 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 11 2016 | 8 years fee payment window open |
Feb 11 2017 | 6 months grace period start (w surcharge) |
Aug 11 2017 | patent expiry (for year 8) |
Aug 11 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 11 2020 | 12 years fee payment window open |
Feb 11 2021 | 6 months grace period start (w surcharge) |
Aug 11 2021 | patent expiry (for year 12) |
Aug 11 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |