The invention provides a method for 3d modeling of a three-dimensional tubular structure of an examination object from 2D projection images (D) of the structure taken from different projection directions. The method has the following steps: reconstruction of a 3d image from the 2D projection images (D); selection of at least one 3d central line point (MO) in the 3d image, said 3d central line point being located in the structure; segmentation of 3d central line points (M) of the structure in the 3d image; forward projection of the 3d central line points (M), which have been segmented in the 3d image, into 2D projection images (D′); determination of border points of the structure in the 2D projection images (D′) on the basis of 3d central line points (Z) that have been projected in; and back-projection of the border points from the 2D projection image (D′) into the 3d image.

Patent
   7574026
Priority
Feb 12 2003
Filed
Jan 23 2004
Issued
Aug 11 2009
Expiry
Jun 12 2025
Extension
506 days
Assg.orig
Entity
Large
131
6
all paid
9. A computer program embodied in a computer-readable medium and having computer programming means for instructing a computer to carry out the steps of the method:
a) reconstruction of a 3d image (B) from the 2D projection images (D),
b) selection of at least one 3d central line point (M0) in the 3d image (B), said 3d central line point being located in the tubular structure (H),
c) segmentation of other 3d central line points (M) of the tubular structure (H) in the 3d image (B),
d) forward projection of the 3d central line points (M), which have been segmented in the 3d image (B), into the 2D projection images (D′),
e) determination of border points of the tubular structure (H) in the 2D projection images (D′) on the basis of 3d central line points (Z) that have been projected in, and
f) back-projection of the border points from the 2D projection images (D′) into the 3d image (B).
1. A method for the 3d modeling of a three-dimensional tubular structure of an examination object from a number of 2D projection images (D) of the tubular structure (H) taken from different projection directions, comprising the steps:
a) reconstruction of a 3d image (B) from the 2D projection images (D),
b) selection of at least one 3d central line point (M0) in the 3d image (B), said 3d central line point being located in the tubular structure (H),
c) segmentation of other 3d central line points (M) of the tubular structure (H) in the 3d image (B),
d) forward projection of the 3d central line points (M), which have been segmented in the 3d image (B), into the 2D projection images (D′),
e) determination of border points of the tubular structure (H) in the 2D projection images (D′) on the basis of 3d central line points (Z) that have been projected in, and
f) back-projection of the border points from the 2D projection images (D′) into the 3d image (B).
8. A device for the 3d modeling of a three-dimensional tubular structure of an examination object from a number of 2D projection images (D) of the tubular structure (H) taken from different projection directions, comprising:
a) a reconstruction unit for reconstructing a 3d image (B) from the 2D projection images (D),
b) selection means for selecting at least one 3d central line point (M0) in the 3d image (B), said 3d central line point being located in the tubular structure (H),
c) a segmentation unit for segmenting other 3d central line points (M) of the tubular structure (H) in the 3d image (B),
d) a forward projection unit for the forward projection of the 3d central line points (M), which have been segmented in the 3d image (B), into the 2D projection images (D′),
e) a border point determination unit for determining border points of the tubular structure (H) in the 2D projection images (D′) on the basis of the 3d central line points (Z) that have been projected in, and
f) a back-projection unit for the back-projection of the border points from the 2D projection images (D′) into the 3d image (B).
2. A method as claimed in claim 1, characterized in that in step b) at least one start point and one end point of a 3d central line (M) in the tubular structure (H) is selected.
3. A method as claimed in claim 1, characterized in that the 3d image (B) is reconstructed to have a low resolution.
4. A method as claimed in claim 1, characterized in that the determination of border points of the tubular structure (H) in the 2D projection images (D) in step e) takes place automatically, in particular by taking account of the image values along a cross section through the tubular structure (H).
5. A method as claimed in claim 1, characterized in that, in parallel with the taking of the 2D projection images (D), a movement signal (E) that represents a periodic movement of the examination object is recorded, and in that the 3d image (B) is created from 2D projection images (D) taken in the same movement phases.
6. A method as claimed in claim 1, characterized in that an electrocardiogram or a respiratory movement signal is used as movement signal (E).
7. A method as claimed in claim 1, characterized in that the method is used to image the coronary vessels of a patient.

The present invention relates to a method for the 3D modeling of a three-dimensional tubular structure of an examination object from a number of 2D projection images of the tubular structure taken from different projection directions. Furthermore, the invention relates to a corresponding 3D modeling device and also to a computer program for implementing the method.

An accurate quantitative analysis of the coronary arteries is important in order to diagnose ischemic disorders. The necessary user interaction is one limitation of the 3D modeling methods currently used, in which the central lines of the tubular vessel structures are defined in the 2D projection images. Such a method is described, for example, in “3D Reconstruction of Coronary Arterial Treat to optimize Angiographic Visualation”, Chen S. and Carroll J., IEEE Trans. Medical Imaging, 19:318-336 (2000). A method for the 3D modeling of a three-dimensional tubular structure from 2D projection images is moreover also described in European patent application 02 077 203.4 (ID 201823). In that case, a 3D model of a tubular structure, for example the coronary vessels, is obtained from 2D projection images using so-called epipolar lines.

The automatic segmentation of the central lines of tubular structures is currently not possible on account of the superposition of the structures in the 2D projection images and on account of the limited information in a projection. Furthermore, the 2D central lines currently have to be extracted from each projection independently of one another, and this requires a great number of complicated user interactions.

It is therefore an object of the invention to specify an improved method for the 3D modeling of a three-dimensional tubular structure of an examination object, which method can be implemented with considerably less user interaction and thus virtually automatically, with a high degree of accuracy being achieved at the same time.

According to the invention, this object is achieved by a method as claimed in claim 1, comprising the steps:

This object is also achieved by a corresponding device, as specified in claim 8. A computer program for implementing the method according to the invention on a computer is specified in claim 9. Advantageous versions of the invention are specified in the dependent claims.

The invention is based on the concept of determining information that is necessary for the 3D modeling by a combination of the analysis of a volume reconstruction (which has a low resolution) of the 2D projections on which it is based (which have a high resolution). The 3D central line of the tubular structure that is to be modeled is in this case determined by segmenting the reconstructed volume data. In order to obtain the precise border points of the tubular structure, the 3D central line points determined in the volume data are projected forward into the 2D projections on which they are based, and this has the advantage that the correspondences between the 2D central line points resulting in the 2D projections are recognized automatically. The border points of the tubular structure are then determined in the respective 2D projections, and these border points are then combined again by back-projection into the 3D volume in order to obtain a 3D estimate of the border points of the tubular structure. This information is then used to create a 3D model of the tubular structure.

Compared to known methods, the method according to the invention requires hardly any user interaction; in principle, the method merely requires the selection of just one 3D central line point in the 3D image as a start point for the segmentation of other 3D central line points. Moreover, the correspondences between the 3D central line points projected into the 2D projection images are found automatically, so that there is no need for any complicated registering, for example by means of epipolar lines as in the case of the method described in European patent application 02 077 203.4 (ID 210823). This means that the method according to the invention also requires considerably less computation steps while retaining the same high degree of accuracy.

The method according to the invention is independent of the imaging architecture used and can therefore for example process 2D projection images which have been taken using a monoplanar or biplanar X-ray system, provided that the projection geometry, that is to say the position of the detector plane and the focus point of the X-ray tubes, during taking of the 2D projection images is known. One potential field of application of medical imaging, in particular three-dimensional rotation angiography, is the reconstruction of 2D images of objects that have moved, such as the heart or coronary vessels of a patient for example. The periodic movement of the object must be taken into account in the imaging, which is why in one preferred version of the method according to the invention a corresponding movement signal is used, said movement signal recording for example the contraction movement of the heart or the respiratory movement of the patient. A four-dimensional data set is thus recorded and reconstructed, with the time or the individual movement phases of the periodic movement being used as the fourth dimension.

The method according to the invention is preferably used to image the coronary vessels of a patient. The coronary vessels essentially undergo a periodic movement on account of the regular contraction of the heart. This movement is preferably recorded by means of an electrocardiogram (ECG), which is taken at the same time as the 2D projection images are taken and thus makes it possible for the individual 2D projection images to be assigned to individual movement phases of the heart. As an alternative or in addition, it is also possible, for example in other applications, such as an examination of a patient's lung, for a respiratory movement signal to be recorded, said respiratory movement signal representing the respiratory movement of the patient while the 2D projection images are being taken. The respiratory movement is likewise essentially a periodic movement, which can be taken into account and compensated during reconstruction of the 4D image data set of the tubular structure in order to achieve an even higher degree of accuracy. In such applications, it is necessary that the 3D image reconstructed initially from the 2D projection images has a low resolution since 2D projections that are not sufficient for reconstructing a 3D image having a high resolution are present, for example in the same heart movement phase.

The method according to the invention can also be used for tubular structures other than the coronary vessels, for example to reconstruct a 4D image data set of the intestines or airways of a patient. However, the method according to the invention can be used not only in medical imaging but also in principle in industrial imaging.

In a further preferred version of the method, in step b) at least one start point and one end point of a 3D central line in the tubular structure is selected, it also being possible for a number of 3D central line points to be selected although this accordingly requires a greater number of user interactions. Nevertheless, a greater number of selected 3D central line points increases the rapidity and accuracy of the segmentation of other 3D central line points which is to be carried out in the next step.

In a further version, it is provided that the 3D image that is initially reconstructed from the 2D projection images is constructed with a low resolution, as a result of which simpler and more rapid reconstruction is possible. The reconstruction of a 3D image from a two-dimensional data set, that is to say from 2D projection images taken at the same movement phases within a periodic movement, is usually only possible with a low resolution, since data that are insufficient for a high resolution are present in the same movement phase. Nevertheless, the method according to the invention makes it possible for a 3D model of the tubular structure to be created, since the determination of border points of the tubular structure is carried out in the high-resolution 2D projection images.

In an advantageous further embodiment of the method according to the invention, the determination of border points of the tubular structure in the 2D projection images takes place automatically, that is to say without user interactions. In this case, image values along a cross section through the tubular structure are taken into account, and the profile of the gray values in the cross section through the tubular structure in a 2D projection image is thus considered, for example, with the cross section being made through a 3D central line point projected into a 2D projection image. Using this gray value profile, it is possible for the border points of the tubular structure to be determined, since at those points the image value or gray value profile has an extremum. However, other possibilities are also known, such as, for example, methods based on the evaluation of the 1st or 2nd derivation of the image value or gray value profile or the so-called scale space method which is known to the person skilled in the art.

The invention will be further described with reference to examples of embodiments shown in the drawings to which, however, the invention is not restricted.

FIG. 1 shows a flowchart of the method according to the invention and

FIG. 2 shows a pictorial representation of the essential method steps.

The essential steps of the method according to the invention are shown in the flowchart of FIG. 1. Into the 3D construction of a 3D image which in this case has a low resolution, said 3D reconstruction taking place in the first step (1), there flow at least 2D projection data D which have been recorded for example using a CT scanner or C-arm X-ray device from different viewing angles of the examination object, for example the heart of a patient. On account of the movement of the heart during the recording of the 2D projection data, only some of the 2D projections can be used for the 3D volume reconstruction, with those that can be used belonging to the same movement phase of the heart. In order to filter out these 2D projections, ECG data E are recorded at the same time as the 2D projection data are recorded. As a result, the number of usable 2D projection data is of course reduced, which may result in disruptive artifacts in the 3D image and only allows the creation of a 3D image having low resolution. If, of course, an examination object which is not moving is to be considered, the recording of the ECG data E or in general the recording of a movement signal can be omitted, and all recorded 2D projection data D can in principle be used for the 3D reconstruction. An MIP image (MIP=Maximum Intensity Projection) is shown symbolically for the reconstructed 3D image B in FIG. 2, in which MIP image there can also be seen the tubular structure H that is to be modeled, namely a number of vessels.

Whereas the image quality of the reconstructed (low-resolution) 3D image is sufficient for an estimate of 3D central lines within tubular structures in the 3D image, for example for estimating the 3D central lines located within blood vessels when the coronary vessels are under consideration, the resolution is not sufficient for a quantitative analysis of the border regions of the tubular structure H. In step 3, therefore, a segmentation of 3D central line points in the 3D image is first carried out after the user has selected (2) at least one start and/or end point M0 for the segmentation. For this purpose, there may be used, for example, a segmentation based on the so-called “front propagation method”, combined with a “propagation speed response function” based on cylinder models, as described in “Vessel Segmentation for Visualization of MRA with Blood Pool Contrast Agents”, Young S., Pekar V. and Weese J., MICCAI 2001, Utracht, The Netherlands, 491-498. Other 3D central line segmentation methods can also be used for this purpose, as described, for example, in O. Wink, W. J. Niessen and M. A. Viergever, “Minimum Cost Path Determination Using a Simple Heuristic Function” in Proc. International Conference on Pattern Recognition—4, pp. 1010-1013, Barcelona, September 2000 or O. Wink, W. J. Niessen and M. A. Viergever, “Fast Delineation and Visualization of Vessels in 3D Angiographic Images,” in IEEE Transactions on Medical Imaging, Vol. 19, No. 4, pp. 337-346, April 2000. Examples of 3D central line points M obtained for the vessels contained in the 3D image are shown in FIG. 2.

In the next step (4), the 3D central line points M obtained are projected forward into the 2D projections D used initially to reconstruct the 3D image, as is likewise shown in FIG. 2 by way of example for two 2D projections D1′ and D2′. The projected-in 3D central line points Z1, Z2 can also be seen therein. Since these central line points Z1, Z2 have been projected in from the same 3D volume, and since the projection geometry with which the respective 2D projection was taken is known, the correspondences between the individual 3D central line points Z1, Z2 between the individual 2D projections D1′, D2′ are found automatically. There is thus no longer any need for a step to produce these correspondences individually, for example by means of complicated registering, for which purpose known methods use, for example, the so-called epipolar line method.

Subsequently, the border points of the vessels H are then (5) determined in each 2D projection D1′, D2′ on the basis of the central line points Z1, Z2. This may be effected, for example, using the gray value profiles in the 2D projections, since the gray value profile normally has an extremum at the borders of the vessels. This step is not shown in any greater detail in FIG. 2.

The border points that have been found in the individual 2D projections D1′ are then (6) back-projected into the 3D image, with use again being made of the known correspondence of border points that are associated with one another on account of the known correspondence between the central line points Z1, Z2 and in the 2D projections D1′, D2′. Finally, a 3D model R, as shown in FIG. 2, of the vessel system can thus (7) be modeled.

According to the invention, a 3D model of a tubular structure can thus be created in a fully automatic manner, said 3D model having a high degree of accuracy on account of the use of the high-resolution 2D projections to determine border points of the tubular structure. In the extreme, the user need select just one start point for the segmentation of the 3D central line points in the 3D volume. Where appropriate, even this selection can be fully automated. The method according to the invention thus has a considerably lower computational complexity and requires considerably less user interactions while retaining the same degree of accuracy.

Rasche, Volker, Movassaghi, Babak

Patent Priority Assignee Title
10052158, Aug 12 2010 HeartFlow, Inc. Method and system for image processing to determine patient-specific blood flow characteristics
10064605, Aug 10 2012 Maui Imaging, Inc. Calibration of multiple aperture ultrasound probes
10080613, Aug 12 2010 HeartFlow, Inc. Systems and methods for determining and visualizing perfusion of myocardial muscle
10080614, Aug 12 2010 HeartFlow, Inc. Method and system for image processing to determine patient-specific blood flow characteristics
10092360, Aug 12 2010 HeartFlow, Inc. Method and system for image processing and patient-specific modeling of blood flow
10130333, Oct 25 2006 Maui Imaging, Inc. Method and apparatus to produce ultrasonic images using multiple apertures
10149723, Aug 12 2010 HeartFlow, Inc. Method and system for image processing and patient-specific modeling of blood flow
10154883, Aug 12 2010 HeartFlow, Inc. Method and system for image processing and patient-specific modeling of blood flow
10159529, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
10166077, Aug 12 2010 HeartFlow, Inc. Method and system for image processing to determine patient-specific blood flow characteristics
10178978, Dec 13 2010 Orthoscan, Inc. Mobile fluoroscopic imaging system
10179030, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
10206662, Apr 14 2009 Maui Imaging, Inc. Calibration of ultrasound probes
10226234, Dec 01 2011 MAUI IMAGING, INC Motion detection using ping-based and multiple aperture doppler ultrasound
10267913, Mar 13 2013 Maui Imaging, Inc. Alignment of ultrasound transducer arrays and multiple aperture probe assembly
10321958, Aug 12 2010 HeartFlow, Inc. Method and system for image processing to determine patient-specific blood flow characteristics
10327847, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
10354050, Mar 17 2009 The Board of Trustees of Leland Stanford Junior University Image processing method for determining patient-specific cardiovascular information
10376317, Aug 12 2010 HeartFlow, Inc. Method and system for image processing and patient-specific modeling of blood flow
10401493, Aug 18 2014 MAUI IMAGING, INC Network-based ultrasound imaging system
10441361, Aug 12 2010 HeartFlow, Inc. Method and system for image processing and patient-specific modeling of blood flow
10478252, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
10492866, Aug 12 2010 HeartFlow, Inc. Method and system for image processing to determine blood flow
10531923, Aug 12 2010 HeartFlow, Inc. Method and system for image processing to determine blood flow
10617384, Dec 29 2011 Maui Imaging, Inc. M-mode ultrasound imaging of arbitrary paths
10653392, Sep 13 2013 Maui Imaging, Inc. Ultrasound imaging using apparent point-source transmit transducer
10675000, Feb 21 2012 Maui Imaging, Inc. Determining material stiffness using multiple aperture ultrasound
10682180, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
10702339, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
10702340, Aug 12 2010 HeartFlow, Inc. Image processing and patient-specific modeling of blood flow
10835208, Oct 13 2010 Maui Imaging, Inc. Concave ultrasound transducers and 3D arrays
10842568, May 14 2012 HeartFlow, Inc. Method and system for providing information from a patient-specific model of blood flow
10856846, Jan 27 2016 MAUI IMAGING, INC Ultrasound imaging with sparse array probes
11031136, Aug 05 2015 KONINKLIJKE PHILIPS N V Assistance device and method for an interventional hemodynamic measurement
11033332, Aug 12 2010 HeartFlow, Inc. Method and system for image processing to determine blood flow
11051791, Apr 14 2009 Maui Imaging, Inc. Calibration of ultrasound probes
11083524, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
11090118, Aug 12 2010 HeartFlow, Inc. Method and system for image processing and patient-specific modeling of blood flow
11107587, Jul 21 2008 The Board of Trustees of the Leland Stanford Junior University Method for tuning patient-specific cardiovascular simulations
11116575, Aug 12 2010 HeartFlow, Inc. Method and system for image processing to determine blood flow
11135012, Aug 12 2010 HeartFlow, Inc. Method and system for image processing to determine patient-specific blood flow characteristics
11154361, Aug 12 2010 HeartFlow, Inc. Method and system for image processing to determine blood flow
11172911, Mar 26 2012 Maui Imaging, Inc. Systems and methods for improving ultrasound image quality by applying weighting factors
11253233, Aug 10 2012 Maui Imaging, Inc. Calibration of multiple aperture ultrasound probes
11298187, Aug 12 2010 HeartFlow, Inc. Method and system for image processing to determine patient-specific blood flow characteristics
11583340, Aug 12 2010 HeartFlow, Inc. Method and system for image processing to determine blood flow
11615894, Oct 24 2012 CathWorks, LTD. Diagnostically useful results in real time
11666236, May 16 2016 CathWorks Ltd. System for vascular assessment
11707196, Oct 24 2012 CathWorks Ltd. Automated measurement system and method for coronary artery disease scoring
11728037, Oct 24 2012 CathWorks Ltd. Diagnostically useful results in real time
11793575, Aug 12 2010 HeartFlow, Inc. Method and system for image processing to determine blood flow
11816837, Oct 24 2013 CathWorks Ltd. Vascular characteristic determination with correspondence modeling of a vascular tree
11826106, May 14 2012 HeartFlow, Inc. Method and system for providing information from a patient-specific model of blood flow
7903856, Sep 26 2006 Siemens Healthcare GmbH Method for post-processing a three-dimensional image data set of vessel structure
8007439, Oct 25 2006 Maui Imaging, Inc. Method and apparatus to produce ultrasonic images using multiple apertures
8105239, Feb 06 2006 MAUI IMAGING, INC Method and apparatus to visualize the coronary arteries using ultrasound
8157742, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
8200466, Jul 21 2008 The Board of Trustees of the Leland Stanford Junior University Method for tuning patient-specific cardiovascular simulations
8249815, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
8277383, Oct 25 2006 Maui Imaging, Inc. Method and apparatus to produce ultrasonic images using multiple apertures
8311747, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
8311748, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
8311750, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
8315812, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
8315813, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
8315814, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
8321150, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
8386188, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
8473239, Apr 14 2009 MAUI IMAGING, INC Multiple aperture ultrasound array alignment fixture
8496594, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
8523779, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
8548778, May 14 2012 HeartFlow, Inc. Method and system for providing information from a patient-specific model of blood flow
8594950, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
8602993, Aug 08 2008 MAUI IMAGING, INC Imaging with multiple aperture medical ultrasound and synchronization of add-on systems
8606530, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
8630812, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
8684936, Oct 25 2006 Maui Imaging, Inc. Method and apparatus to produce ultrasonic images using multiple apertures
8706457, May 14 2012 HeartFlow, Inc. Method and system for providing information from a patient-specific model of blood flow
8734356, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
8734357, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
8768669, May 14 2012 HeartFlow, Inc. Method and system for providing information from a patient-specific model of blood flow
8768670, May 14 2012 HeartFlow, Inc. Method and system for providing information from a patient-specific model of blood flow
8812245, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
8812246, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
8855984, May 14 2012 HeartFlow, Inc. Method and system for providing information from a patient-specific model of blood flow
8914264, May 14 2012 HeartFlow, Inc. Method and system for providing information from a patient-specific model of blood flow
9002690, May 14 2012 HeartFlow, Inc. Method and system for providing information from a patient-specific model of blood flow
9063634, May 14 2012 HeartFlow, Inc. Method and system for providing information from a patient-specific model of blood flow
9063635, May 14 2012 HeartFlow, Inc. Method and system for providing information from a patient-specific model of blood flow
9072495, Oct 25 2006 Maui Imaging, Inc. Method and apparatus to produce ultrasonic images using multiple apertures
9078564, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
9081882, Aug 12 2010 HeartFlow, Inc Method and system for patient-specific modeling of blood flow
9125611, Dec 13 2010 ORTHOSCAN, INC Mobile fluoroscopic imaging system
9146313, Feb 18 2010 MAUI IMAGING, INC Point source transmission and speed-of-sound correction using multi-aperature ultrasound imaging
9149197, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
9152757, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
9167974, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
9168012, May 14 2012 HeartFlow, Inc. Method and system for providing information from a patient-specific model of blood flow
9192355, Apr 14 2009 Maui Imaging, Inc. Multiple aperture ultrasound array alignment fixture
9220478, Oct 13 2010 Maui Imaging, Inc. Concave ultrasound transducers and 3D arrays
9226672, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
9235679, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
9247926, Oct 13 2010 MAUI IMAGING, INC Concave ultrasound transducers and 3D arrays
9265484, Dec 29 2011 MAUI IMAGING, INC M-mode ultrasound imaging of arbitrary paths
9268902, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
9271657, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
9282945, Apr 14 2009 MAUI IMAGING, INC Calibration of ultrasound probes
9339256, Feb 21 2012 MAUI IMAGING, INC Determining material stiffness using multiple aperture ultrasound
9398675, Mar 20 2009 Orthoscan, Inc. Mobile imaging apparatus
9420994, Oct 25 2006 Maui Imaging, Inc. Method and apparatus to produce ultrasonic images using multiple apertures
9449147, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
9510806, Mar 13 2013 MAUI IMAGING, INC Alignment of ultrasound transducer arrays and multiple aperture probe assembly
9517040, May 14 2012 HeartFlow, Inc. Method and system for providing information from a patient-specific model of blood flow
9526475, Feb 18 2010 Maui Imaging, Inc. Point source transmission and speed-of-sound correction using multi-aperture ultrasound imaging
9572549, Aug 10 2012 MAUI IMAGING, INC Calibration of multiple aperture ultrasound probes
9582876, Feb 06 2006 Maui Imaging, Inc. Method and apparatus to visualize the coronary arteries using ultrasound
9585723, Aug 12 2010 HeartFlow, Inc. Method and system for image processing to determine patient-specific blood flow characteristics
9668714, Mar 26 2012 MAUI IMAGING, INC Systems and methods for improving ultrasound image quality by applying weighting factors
9697330, Aug 12 2010 HeartFlow, Inc. Method and system for image processing to determine patient-specific blood flow characteristics
9706925, Aug 12 2010 HeartFlow, Inc. Method and system for image processing to determine patient-specific blood flow characteristics
9743835, Aug 12 2010 HeartFlow, Inc. Method and system for image processing to determine patient-specific blood flow characteristics
9788813, Oct 13 2010 MAUI IMAGING, INC Multiple aperture probe internal apparatus and cable assemblies
9801689, Aug 12 2010 HeartFlow, Inc. Method and system for patient-specific modeling of blood flow
9833206, Dec 13 2010 Orthoscan, Inc. Mobile fluoroscopic imaging system
9839484, Aug 12 2010 HeartFlow, Inc. Method and system for image processing and patient-specific modeling of blood flow
9855105, Aug 12 2010 HeartFlow, Inc. Method and system for image processing to determine patient-specific blood flow characteristics
9861284, Aug 12 2010 HeartFlow, Inc. Method and system for image processing to determine patient-specific blood flow characteristics
9883848, Sep 13 2013 MAUI IMAGING, INC Ultrasound imaging using apparent point-source transmit transducer
9888971, Aug 12 2010 HeartFlow, Inc. Method and system for image processing to determine patient-specific blood flow characteristics
9986969, Aug 21 2012 MAUI IMAGING, INC Ultrasound imaging system memory architecture
9986975, Feb 18 2010 Maui Imaging, Inc. Point source transmission and speed-of-sound correction using multi-aperture ultrasound imaging
Patent Priority Assignee Title
6148095, Sep 08 1997 IOWA RESEARCH FOUNDATION, UNIVERSITY OF Apparatus and method for determining three-dimensional representations of tortuous vessels
6385285, Sep 24 1999 GE Medical Systems, S.A. Method of reconstruction of a three-dimensional image of an element of interest
6928314, Jan 23 1998 Mayo Foundation for Medical Education and Research System for two-dimensional and three-dimensional imaging of tubular structures in the human body
7079132, Aug 16 2001 Siemens Healthcare GmbH System and method for three-dimensional (3D) reconstruction from ultrasound images
20050249399,
EP1081647,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 23 2004Koninklijke Philips Electronics N.V.(assignment on the face of the patent)
Feb 12 2004RASCHE, VOLKERKONINKLIJKE PHILIPS ELECTRONICS, N V ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0175670268 pdf
Feb 27 2004MOVASSAGHI, BABAKKONINKLIJKE PHILIPS ELECTRONICS, N V ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0175670268 pdf
Date Maintenance Fee Events
Feb 06 2013M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Feb 07 2017M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Feb 04 2021M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Aug 11 20124 years fee payment window open
Feb 11 20136 months grace period start (w surcharge)
Aug 11 2013patent expiry (for year 4)
Aug 11 20152 years to revive unintentionally abandoned end. (for year 4)
Aug 11 20168 years fee payment window open
Feb 11 20176 months grace period start (w surcharge)
Aug 11 2017patent expiry (for year 8)
Aug 11 20192 years to revive unintentionally abandoned end. (for year 8)
Aug 11 202012 years fee payment window open
Feb 11 20216 months grace period start (w surcharge)
Aug 11 2021patent expiry (for year 12)
Aug 11 20232 years to revive unintentionally abandoned end. (for year 12)