A modular light fixture specially adapted for flexible, cost-effective, and safe retrofit and maintenance, particularly in large commercial lighting applications. The light fixture preferably includes a frame with one or more lampholders and a detachable power pack with a ballast, with modular connectors used to provide an electrical connection between the detachable power pack and the lampholders. Other aspects of the invention relate to methods of redeploying lighting, and a modular light fixture kit, for example to be used in lighting retrofit and maintenance.
|
17. A light fixture kit comprising:
a frame having a top side and a bottom side;
a first raceway and a second raceway disposed proximate opposite ends of the frame;
a first lampholder mounted to the first raceway and a second lampholder mounted to the second raceway, wherein the lampholders are electrically connected to a lampholder harness connector; and
a plurality of detachable power packs, wherein each detachable power pack comprises:
a ballast channel cover configured to detachably engage the top side of the frame;
a ballast mounted to the ballast channel cover, wherein the ballast comprises power input wiring; and
a power input connector mounted to the ballast channel cover and electrically connected to the ballast input wiring, wherein the power input connector is configured to receive electrical from a power supply line electrically connected to a power source.
1. A light fixture comprising:
a fixture body comprising a frame having a top side and a bottom side, the top side defining a ballast channel and the bottom side having a reflector formed from a sheet material;
a lampholder mounted to the frame and configured to receive and electrically connect to a fluorescent tube positioned adjacent to the reflector; and
a detachable power pack that is removable from the top side of the frame substantially free from interference, the detachable power pack comprising:
a ballast channel cover configured to detachably engage the ballast channel on the top side of frame;
a ballast mounted to the ballast channel cover, wherein the ballast comprises power input wiring and ballast output wiring, and further wherein the ballast output wiring is configured to be electrically connected to the lampholder such that electrical power is provided to the lampholder; and a power input connector mounted to the ballast channel cover, wherein the power input connector is electrically connected to the power input wiring of the ballast and configured to receive the electrical power from a power source.
10. A method of redeploying lighting in a building, comprising:
(a) providing a light fixture, wherein the light fixture comprises
a fixture body comprising a frame having a top side and a bottom side, the top side defining a ballast channel;
a lampholder mounted to the frame, wherein the lampholder comprises a lampholder harness connector; and
a detachable power pack comprising:
a ballast channel cover configured to detachably mount to the top side of the frame and over the ballast channel;
a ballast mounted to the ballast channel cover, wherein the ballast comprises power input wiring and ballast output wiring; and
a ballast output connector electrically connected to the ballast output wiring and configured to engage the lampholder harness connector such that electrical power is provided to the lampholder;
(b) disengaging the ballast channel cover from the top side of the frame such that the ballast output connector and the lampholder harness connector are exposed; and
(c) disengaging the ballast output connector from the lampholder harness connector such that the detachable power pack is detached from the fixture body.
21. A method of redeploying lighting in a building using existing light fixtures, comprising:
(a) accessing the existing light fixture, wherein the existing light fixture comprises:
a frame having a top side and a bottom side, the top side defining a power side adapted to receive any one of a plurality of detachable power packs having different ballast factors, the bottom side defining a light-emitting side with lamp holders coupled to the frame and to a fluorescent lamp and a reflector coupled to the frame to reflect light emitted from the fluorescent lamp into a space beneath the existing light fixture; and
a detachable power pack comprising a ballast having a first ballast factor, the ballast detachably mounted to the top side of the frame and directly removable from the top side of the frame substantially free from interference with the existing light fixture;
(b) evaluating a first lighting level within the space provided by the fluorescent lamp and the ballast having the first ballast factor; and
(c) changing the first lighting level within the space to a second lighting level within the space using the existing light fixtures by removing the ballast with the first ballast factor from the top side of the frame of the existing fixture and installing a second ballast with a second ballast factor on the top side of the frame of the existing light fixture.
2. The light fixture of
3. The light fixture of
4. The light fixture of
5. The light fixture of
6. The light fixture of
7. The light fixture of
8. The light fixture of
9. The light fixture of
11. The method of
12. The method of
(d) providing a second detachable power pack comprising a second ballast mounted to a second ballast channel cover, wherein the second ballast comprises second power input wiring and second ballast output wiring, wherein the second ballast output wiring is electrically connected to a second ballast output connector;
(e) engaging the second ballast output connector with the lampholder harness connector; and
(f) engaging the second ballast channel cover with the top side of the frame such that the second ballast is mounted to the frame.
13. The method of
14. The method of
15. The method of
16. The method of
removing the ballast from the ballast channel cover;
mounting a second ballast to the ballast channel cover; and
re-engaging the ballast channel cover with the top side of the frame.
18. The kit of
19. The kit of
20. The kit of
22. The method of
23. The method of
24. The method of
|
The present invention relates generally to energy management and utilization in large commercial buildings, and more particularly to a modular light fixture apparatus and method therefor.
In large commercial buildings, recurring electricity costs for lighting can be more than half of the total energy budget. Consequently, there are considerable economic benefits to be obtained through more efficient lighting techniques. For example, simple devices such as motion sensor switches or light timers are often used to reduce wasted energy by reducing unnecessary lighting.
Long term energy and lighting management in large commercial lighting applications presents greater challenges. Lighting requirements in different areas of a store or manufacturing plant may change as departments move or reorganize. Lighting technologies change over time, delivering improved performance and efficiency. Thus, it may become necessary or desirable to replace obsolete lighting technology with newer technology, or to relocate, enhance, or maintain existing lighting fixtures. Especially as energy costs continue to rise, many existing commercial buildings will eventually consider some form of lighting retrofit or redeployment.
Existing commercial buildings vary widely in age, construction, and intended use, so the available electric power sources may have any of several different voltage levels, and access to that power may be provided using a variety of electrical connection types. Support and mounting techniques will vary. Further, lighting requirements, such as light level, spectrum, and timing, are as diverse as the range of intended uses.
Many large commercial lighting applications depend heavily on fluorescent light fixtures driven by a ballast. The type of ballast determines, for example, the power consumption and optimal type of lamp to be used in the fixture. Along with characteristics of the light fixture itself, such as the geometry of the fixture, heat management, and the shapes of the reflectors, the choice of ballast and lamp largely determine the gross light production, expected maintenance interval, and energy consumption of the fixture. Consequently, effective lighting redeployment may require changing the ballast and/or type of lamp used in the fixture.
Light fixtures having enhanced features are familiar to consumers. For example, light fixtures can include photodetectors or motion detectors. A light fixture can be continuously dimmable, or it may include two or more separately controllable light circuits for lighting that can be completely off, partially on, or fully on. A lighting redeployment may introduce or change the use of such enhanced features to help conserve electrical power.
In a typical prior art light fixture, the ballast and any enhanced features are usually hard wired inside the fixture, and the fixture is hard-wired to building power. So, except for changing the lamp, changes to a typical prior art light fixture may often require services of a relatively highly skilled worker, such as an electrician, and/or replacement of the entire fixture.
Thus, it can be costly to remove and replace existing light fixtures, or even to reposition existing light fixtures. It can also be costly to modify or enhance existing light fixtures with different ballast technology or enhanced features to improve their effectiveness or efficiency. Because of these economic barriers, existing light fixtures tend to remain in place even when they are obsolete or lighting requirements change, resulting in wasted electrical power and lost productivity due to ineffective lighting.
Thus, what is needed is a modular light fixture architecture specially adapted for flexible, cost-effective, and safe retrofit to existing commercial buildings. What is further needed is a modular light fixture architecture specially adapted for flexible, cost-effective, and safe long term maintenance and redeployment in response to changing lighting requirements and improvements in technology.
A first aspect of the invention relates to a modular light fixture having a fixture body with a lampholder mounted to a frame and electrically connected to a modular lampholder harness connector, and a detachable power pack with a ballast electrically connected to a modular ballast output connector, where the modular ballast output connector is adapted to engage the modular lampholder harness connector and provide an electrical connection between the ballast output wiring and the lampholder.
In preferred embodiments, the light fixture is at least partially formed of sheet aluminum, and the lampholder holds a fluorescent tube.
The modular light fixture may also include a modular power cord assembly connectable to a source of electrical power. The modular connections are preferably polarized, so the connections are engageable in only one orientation.
The modular light fixture may also include a reflector formed of a sheet material and mounted on the frame. The reflector is preferably made of sheet aluminum.
In another aspect, the invention relates to a method of redeploying lighting in a building, by providing a modular light fixture which has a detachable power pack, mechanically disengaging the detachable power pack from the fixture body, and electrically disengaging the power pack from the fixture body.
The method may also include providing a power supply line supplying electrical power to the light fixture. In preferred embodiments, the method includes breaking the supply of electrical power to the light fixture before performing any other steps, and/or restoring power to the light fixture after any other steps are performed.
The method may include replacing the entire detachable power pack. Alternatively, the ballast only can be replaced, so that the other components of the detachable power pack can be recycled.
The ballast can be replaced with a similar ballast, for repair, or with a ballast having a different ballast factor to adjust the energy consumption or light production from the light fixture.
A third aspect of the invention relates to a modular light fixture kit that includes a fixture body and a plurality of detachable ballast assemblies. Such a kit may be kept, for example, by a maintenance department at a particular installation, or it may be carried by a mobile crew on a truck, to allow flexible maintenance or redeployment of lighting with a rapid turnaround time.
The plurality of detachable ballast assemblies can be provided in a range of ballast factors, allowing the kit to be used for redeployment or adjustment of lighting in a commercial building.
The kit may also include a plurality of power cord assemblies. The plurality of power cord assemblies can be provided with a range of electrical connection types, allowing the kit to be used in a wide range of applications in buildings of varying ages and constructions, and with various sources of electrical power.
The fixture body 66 preferably includes a pair of raceways 12 connected by a ballast channel 14 to form a generally I-frame configuration. Each raceway 12 is preferably enclosed with a raceway cover 16, so that the raceway 12 and raceway cover 16 together form a raceway channel 18, as shown in
Each end of each raceway 12 preferably includes a suspension point 68, for suspending the light fixture 10 above an area to be illuminated, for example using one or more chains connected between the suspension points 68 and the ceiling. The suspension points 68 are preferably located at or near the corners of the fixture, to ensure that the suspension hardware does not interfere with maintenance of the light fixture including but not limited to replacement of the detachable power pack 64.
One or more light reflectors 22 are secured to each of the raceways 12 such as by rivets, bolts, screws or the like. Six reflectors are shown in the drawings, however, it should be noted that any number of light reflectors can be used with the present invention. Each light reflector 22 can be fabricated from a single piece of material or can be fabricated of individual pieces of material. Any exposed edges of the light reflectors 22 are preferably folded back (hemmed) to reduce sharp edges and improve safety. In the exemplary embodiment of
The fixture body 66 includes lampholder harnesses 26 housed in the two raceway channels 18 at the opposite ends of the light fixture. Each lampholder harness 26 includes one or more lampholders (sockets) 28 and a lampholder harness connector 32. Each lampholder 28 preferably extends through a corresponding aperture 34 in a raceway 12 adjacent to the end of a reflector channel 24. In normal operation, a single fluorescent tube lamp extends between a pair of lampholders 28 at opposite ends of each reflector channel 24.
As perhaps best shown in
As perhaps best shown in
The ballast channel cover preferably includes a power line connector aperture 42 adapted to receive a modular power input connector 56, and a feature connector aperture 43 adapted to receive a feature connector (not shown). The modular power input connector 56 is preferably a polarized modular power input socket 210 configured for the available electrical power supply voltage and configuration, as discussed in more detail below in reference to
The exemplary detachable power pack 64 of the light fixture 10 includes two ballasts 48, for example a model 49776 electronic ballast available from GE Lighting of Cleveland, Ohio. However, this is not required, and other makes and models of ballasts can be employed with the present invention. Further, while the exemplary light fixture 10 includes two ballasts 48, a greater or lesser number of ballasts 48 can be used.
Each ballast 48 has a first (input) end 50 and a second (output) end 52. Power input wiring 54 electrically connects the modular power input connector 56 to the first end 50 of each ballast 48. As discussed in more detail below in reference to
Ballast output wiring 58 electrically connects the second (output) end 52 of each ballast 48 to a modular ballast output connector 60. The modular ballast output connector 60 mates with a corresponding lampholder harness connector 32. The modular ballast output connector 60 is preferably quickly and easily disconnected from the lampholder harness connector 32 without the use of tools.
Each ballast 48 is fastened to the ballast channel cover 36, for example using threaded fasteners to engage mounting ears 62 on each ballast 48 through holes in the ballast channel cover 36. However, threaded fasteners are not required and other means can be utilized to fasten each ballast 48 to the ballast channel cover 36, such as adhesives or interference mounting techniques.
When the ballast 48 is secured to the ballast channel cover 36, the modular power input connector 56 preferably extends through the aperture 42 for connection to a modular power cord assembly 180 (not shown in
In the embodiment of
When the modular ballast output connectors 60 mate with the modular lampholder harness connectors 32, the ballasts 48 are electrically connected to deliver power to the lampholder harnesses 26, the lampholders 28, and the lamps 30 (not shown in
First, the modular power cord 180 is disconnected from the modular power input connector 56, thereby positively and verifiably cutting off electrical power from the light fixture 10 to improve the safety of the procedure. Second, the old detachable power pack 64 is separated from the body 66 of the light fixture by uncoupling the cover clip portions 41 from the body clip portions 40, and by disconnecting the modular ballast output connectors 60 from their corresponding lampholder harness connectors 32. The old power pack 64 can then be set aside for eventual disposal or repair.
When reassembling the light fixture 10 with a new or replacement power pack 64, the reverse of the above procedure is performed. First, the ballast output connectors 60 on the new power pack 64 are mated with their corresponding lampholder harness connectors 32. Next, the new power pack 64 is detachably fastened to the body 66 of the light fixture by coupling the cover clip portions 41 with the body clip portions 40. Finally, modular power cord 180 is reconnected to the modular power input connector 56 to restore power to the light fixture 10 for normal operation.
It should be noted that the present invention can be employed with other fixtures, and the invention is not limited to the light fixture shown and described herein. For example, another fluorescent tube light fixture embodiment in which the present invention can be employed is that shown and described in U.S. Pat. No. 6,585,396, which is hereby incorporated by reference.
The detachable power pack 64 of
While the exemplary circuit diagrams of
The detachable power pack of
The detachable power pack of
The detachable power pack of
The detachable power pack of
The detachable power pack of
The modular power cord assembly 180 includes a suitable length of conventional insulated power cord 181 with 3 or 4 insulated conductors surrounded by an insulated jacket. The power cord 181 can be any standard electrical power cord having suitable power handling and other specifications, for example 18 gauge 3-conductor or 18 gauge 4-conductor power cord can be used. In a preferred embodiment of the invention, a variety of cord lengths, for example from 3′ to 35′ in length, are kept in stock, allowing the appropriate cord length to be chosen from stock at the time the light fixture is installed, without requiring any delay for custom manufacturing of a modular power supply cord having the appropriate length.
The polarized modular power supply plug is preferably a 6-pin “Mate-N-Lock” plug connector of the type sold by the AMP division of Tyco Electronics of Harrisburg, Pa. However, this is not required and other types, makes and models of modular power supply connectors can be used with the present invention. The polarized modular power supply plug preferably includes strain relief, for example two strain relief pieces 184 and a plastic insert 185 (such as AMP P/N 640715-1), and a plug body 188. The strain relief 184, plastic insert 185, and plug body 188 can be held together with screws 186, such as #6×⅝″ sheet metal screws.
In a preferred embodiment, the plug body 188 has six positions for holding electrical pins, although a plug body having a greater or lesser number of pin positions could be used. A short portion of the insulation is stripped from the end of each conductor in the electrical cord 181, and an electrical pin is electrically and mechanically connected to the stripped portion. The electrical pins and attached conductors are then inserted into specific pin positions in the plug body 188 to form a polarized modular power supply plug, as discussed in more detail below in reference to
The “extra long” electrical pin 190 used for the green (safety ground) line is preferably slightly longer than the “standard length” electrical pins 192 used for the black (power supply or “hot”), white (power return or neutral), and red (switched power) lines. This helps ensure that the safety ground connection is made first and broken last when the plug 158 is inserted into or removed from its corresponding socket. A suitable extra long electrical pin 190 for the safety ground would be AMP PN 350669, and a suitable standard length electrical pin 192 for the other lines would be AMP PN 350547-1.
The conventional power plug 182 can be any standard electrical plug configuration, such as a NEMA 5, NEMA L5, NEMA L7, NEMA 6, or NEMA L6 plug. In a preferred embodiment of the invention, a variety of plug configurations are kept in stock, allowing the appropriate plug configuration to be chosen from stock at the time the light fixture is installed, without requiring any delay for custom manufacturing of a modular power supply cord having the appropriate plug configuration.
One end of the power input wiring terminates in a modular power input connector 56, which is preferably a polarized modular power input socket 210 such as a 6-pin “Mate-N-Lock” socket connector of the type sold by the AMP division of Tyco Electronics of Harrisburg, Pa.
In a preferred embodiment, the polarized modular power input socket 210 includes a socket body 208 having six positions for holding single conductor sockets, although a socket having a greater or lesser number of single conductor socket positions could be used. A short portion of the insulation is stripped from the end of each conductor, and a single conductor socket 193, for example AMP PN 350550-1, is electrically and mechanically connected to the stripped portion, for example by crimping and/or soldering. The single conductor socket 193 and attached conductor are then inserted into a specific single conductor socket position in the socket body 208 to form the polarized modular power input socket 210, as discussed in more detail below in reference to
The UNV plug 218 and the UNV socket 226 each include at least a safety ground (green) wire 200 and a power return (white) wire 202, in the same pin and socket positions as the 120V, 277V, and 347/480V configurations. However, the UNV plug 218 and the UNV socket 226 each include two power supply (black) wires 204, one power supply (black) wire 204 at each of the two pin positions used for the power supply (black) wire 204 in the 120V and 277V configurations. When used in a 120V or 277V dual-switched configuration, the plug 218 and socket 226 also include a second or switched power (red) wire 206.
As shown in
The light fixture preferably includes a power source 82, such as an electrical connector which is connected to line voltage during normal operation, able to deliver electrical power to the controller 80 through a controller power supply line 84.
The light fixture according to the invention preferably includes a plurality of independently controllable lamp circuits. For example, the block diagram of
Each independently controllable lamp circuit preferably includes a ballast and an optional switch. For example, lamp circuit for lamp one 102 includes a switch one 86 that receives electrical power from the power source 82 on a power supply line 88. The switch one 86 delivers electrical power to a ballast one 94 on a switched power supply line 96, and the ballast one 94 provides power to the lamp one 102 on a ballasted power supply line 104.
The lamp circuit for lamp two 106 preferably includes a corresponding switch two 90 that receives electrical power from the power source 82 on a power supply line 92. The switch two 90 delivers electrical power to a ballast two 98 on a switched power supply line 100, and the ballast two 98 provides power to the lamp two 106 on a ballasted power supply line 108.
Each switch in a lamp circuit, such as switch one 86 and switch two 90, is preferably adapted to be placed into either an open condition (where the switch is an electrical open circuit through which no current flows) or in a closed condition (where the switch is an electrical closed circuit through which current can flow). To maximize efficiency, a mechanical relay switch, instead of a solid state switch, can be used so that essentially no trickle current passes through the switch when the switch is in an open condition.
The open or closed condition of each switch is preferably independently controllable by the controller 80. For example, the controller 80 can be connected to switch one 86 by a switch control line 110, whereby the controller can place switch one 86 into either a closed or an open condition. Similarly, the controller 80 can be connected to switch two 90 by a switch control line 112, whereby the controller can place switch two 90 into either a closed or an open condition.
Each ballast in a lamp circuit, such as ballast one 94 and ballast two 98, is preferably dimmable to allow the light output from its lamp to be adjusted by the controller 80. For example, the controller 80 can be connected to ballast one 94 by a ballast control line 114, so the controller can adjust the power output of ballast one 94 to adjust the light output from lamp one 102. Similarly, the controller 80 can be connected to ballast two 98 by a ballast control line 116, so the controller can adjust the power output of ballast two 98 to adjust the light output from lamp two 106.
The light fixture can include one or more sensors to provide information about the environment in which the light fixture operates. For example, the fixture can include an ambient light sensor 120 providing an ambient light signal to the controller 80 on an ambient light signal line 122. Using the ambient light signal, the controller 80 can adjust the light output from the fixture, for example to reduce the artificial light produced by the fixture on a sunny day when ambient light provides adequate illumination, or to increase the artificial light produced by the fixture on a cloudy day when ambient light is inadequate. The sensor can be mounted directly on the light fixture, or it can be mounted elsewhere, such as part of the incoming power cord. For example, in U.S. Pat. No. 6,746,274, the contents of which are incorporated herein by reference, teaches a motion detector built into a modular power cord.
The fixture can include a motion sensor 124 providing a motion signal to the controller 80 on an motion signal line 126. Using the motion signal, the controller 80 can turn on the fixture when the motion signal indicates the presence of motion near the fixture. Similarly, the controller 80 can turn off the fixture when the motion signal indicates the absence of any motion near the fixture.
The fixture can include a temperature sensor 128 providing a temperature signal to the controller 80 on an temperature signal line 130. The temperature signal can indicate, for example, the air temperature in the vicinity of the fixture. Alternatively, the temperature signal can indicate the temperature of the ballast or other components of the light fixture, so that any temperature rise resulting from abnormal operation or impending failure can be promptly detected to avoid ongoing inefficiency, the possibility of a fire, or a catastrophic failure of the ballast.
The fixture can include a proximity sensor 132 providing a proximity signal to the controller 80 on a proximity signal line 134. Using the proximity signal, the controller 80 can turn on the fixture on or off when the proximity signal indicates the presence or absence of a person or other object near the fixture.
The fixture can also include a communicator 136 to allow communication between the controller 80 and an external system (not shown). The communicator can be, for example, of the type commonly known as X-10. For example, the communicator 136 can be connected to the controller 80 for bidirectional communication on a communicator signal line 138. With bidirectional communication, the controller 80 can receive a command from an external system, for example to dim, turn on, or turn off a lamp, and the controller 80 can acknowledge back to the external system whether or not the command has been performed successfully. Similarly, the external system could request the current temperature of the ballast of the fixture, and the controller 80 could reply with that temperature.
However, bidirectional communication is not required and one-way communication could also be used. With one-way communication, the fixture could simply receive and execute commands from an external system without providing any confirmation back to the external system as to whether the command was executed successfully or not. Similarly, the fixture could periodically and automatically transmit its status information to an external system, without requiring any request from the external system for the status information.
The fixture can include a smoke detector 140 providing a smoke detector signal to the controller 80 on a smoke detector signal line 142. Using the smoke detector signal, the controller 80 can provide a local alarm, for example with a flashing light or a siren, whenever the smoke detector signal indicates the presence of a fire or smoke. Similarly, the controller 80 can provide the smoke detector signal to an external system, for example through the communicator 136, to a security office or fire department.
The fixture can include a camera and/or microphone 144 providing a camera/microphone signal to the controller 80 on a camera/microphone signal line 146. The controller 80 can provide the camera/microphone signal to an external system, for example through the communicator 136, to a security office, time-lapse recorder, or supervisory station.
The fixture can include an audio output device 148, for example a speaker. The controller 80 can drive the audio output device 148, for example with an audio signal on an audio signal line 150, to provide an alarm, paging, music, or public address message to persons in the vicinity of the fixture. The alarm, paging, music, or public address message can be received by the controller 80 via the communicator 136 from an external system, although this is not required and the alarm, paging, music, or public address message may be internally generated.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limited.
The use of “including,” “comprising,” “supporting,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. The terms “mounted,” “connected,” “supported,” and “coupled” are used broadly and encompass both direct and indirect mounting, connecting, supporting, and coupling. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings, and can include electrical connections or couplings, whether direct or indirect.
Furthermore, and as described in subsequent paragraphs, the specific mechanical configurations illustrated in the drawings are intended to exemplify embodiments of the invention and other alternative mechanical configurations are possible.
It is important to note that the construction and arrangement of the elements of the modular light fixture and other structures shown in the exemplary embodiments discussed herein are illustrative only. Those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, materials, transparency, color, orientation, etc.) without materially departing from the novel teachings and advantages of the invention.
Further, while the exemplary application of the device is in the field of fluorescent lighting, the invention has a much wider applicability.
The particular materials used to construct the exemplary embodiments are also illustrative. For example, although the reflectors in the exemplary embodiment are preferably made of aluminum, other materials having suitable properties could be used. All such modifications, to materials or otherwise, are intended to be included within the scope of the present invention as defined in the appended claims.
The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes and/or omissions may be made in the design, operating conditions and arrangement of the preferred and other exemplary embodiments without departing from the spirit of the present invention as expressed in the appended claims.
The components of the invention may be mounted to each other in a variety of ways as known to those skilled in the art. As used in this disclosure and in the claims, the terms mount and attach include embed, glue, join, unite, connect, associate, hang, hold, affix, fasten, bind, paste, secure, bolt, screw, rivet, solder, weld, and other like terms. The term cover includes envelop, overlay, and other like terms.
It is understood that the invention is not confined to the embodiments set forth herein as illustrative, but embraces all such forms thereof that come within the scope of the following claims.
Patent | Priority | Assignee | Title |
10098213, | Jun 29 2007 | Orion Energy Systems, Inc. | Lighting fixture control systems and methods |
10164374, | Oct 31 2017 | Express Imaging Systems, LLC | Receptacle sockets for twist-lock connectors |
10187557, | Jun 29 2007 | Orion Energy Systems, Inc. | Outdoor lighting fixture and camera systems |
10206251, | Oct 03 2005 | Orion Energy Systems, Inc. | Modular light fixture with power pack |
10206265, | Jun 29 2007 | Orion Energy Systems, Inc. | Outdoor lighting fixtures control systems and methods |
10264652, | Oct 10 2013 | DIGITAL LUMENS, INC | Methods, systems, and apparatus for intelligent lighting |
10306733, | Nov 03 2011 | OSRAM SYLVANIA Inc | Methods, systems, and apparatus for intelligent lighting |
10330298, | May 17 2010 | Orion Energy Systems, Inc. | Lighting system with customized intensity having a plurality of LED strips and controller and drive mounted to each strip |
10334704, | Mar 27 2008 | Orion Energy Systems, Inc. | System and method for reducing peak and off-peak electricity demand by monitoring, controlling and metering lighting in a facility |
10352511, | Mar 04 2016 | Energy Bank Incorporated | Lighting fixture |
10362658, | Apr 14 2008 | OSRAM SYLVANIA Inc | Lighting fixtures and methods for automated operation of lighting fixtures via a wireless network having a mesh network topology |
10477636, | Oct 28 2014 | KORRUS, INC | Lighting systems having multiple light sources |
10485068, | Apr 14 2008 | OSRAM SYLVANIA Inc | Methods, apparatus, and systems for providing occupancy-based variable lighting |
10539311, | Apr 14 2008 | OSRAM SYLVANIA Inc | Sensor-based lighting methods, apparatus, and systems |
10660172, | Oct 03 2005 | Orion Energy Systems, Inc. | Modular light fixture with power pack |
10694594, | Jun 29 2007 | Orion Energy Systems, Inc. | Lighting fixture control systems and methods |
10694605, | Jun 29 2007 | Orion Energy Systems, Inc. | Outdoor lighting fixtures control systems and methods |
10731800, | May 17 2010 | Orion Energy Systems, Inc. | Lighting system with customized intensity and profile having a frame including LED mounting panels mounting in elongated channels of the frame and drivers mounted on the panels |
10830419, | Mar 20 2015 | Energy Bank Incorporated | Lighting fixture |
11026302, | Jun 29 2007 | Orion Energy Systems, Inc. | Outdoor lighting fixtures control systems and methods |
11193652, | Apr 14 2008 | OSRAM SYLVANIA Inc | Lighting fixtures and methods of commissioning light fixtures |
11202355, | Jun 29 2007 | Orion Energy Systems, Inc. | Outdoor lighting fixture and camera systems |
11306897, | Feb 09 2015 | KORRUS, INC | Lighting systems generating partially-collimated light emissions |
11375599, | Apr 03 2017 | Express Imaging Systems, LLC | Systems and methods for outdoor luminaire wireless control |
11432390, | Jun 29 2007 | Orion Energy Systems, Inc. | Outdoor lighting fixtures control systems and methods |
11614217, | Feb 09 2015 | KORRUS, INC. | Lighting systems generating partially-collimated light emissions |
11653436, | Apr 03 2017 | Express Imaging Systems, LLC | Systems and methods for outdoor luminaire wireless control |
11758853, | Jul 19 2018 | NEW AEROFARMS, INC | Fixtureless lamp |
7880405, | Apr 09 2007 | Lutron Technology Company LLC | System and method for providing adjustable ballast factor |
8035513, | Oct 18 2006 | BANK OF AMERICA, N A ; ALTER DOMUS US LLC | Wireless variable illumination level lighting system |
8136958, | Oct 03 2005 | JPMORGAN CHASE BANK, N A | Modular light fixture with power pack |
8337043, | Oct 03 2005 | Orion Energy Systems, Inc. | Modular light fixture with power pack |
8344665, | Mar 27 2008 | JPMORGAN CHASE BANK, N A | System and method for controlling lighting |
8376583, | May 17 2010 | Orion Energy Systems, Inc. | Lighting system with customized intensity and profile |
8376600, | Jun 29 2007 | JPMORGAN CHASE BANK, N A | Lighting device |
8406937, | Mar 27 2008 | JPMORGAN CHASE BANK, N A | System and method for reducing peak and off-peak electricity demand by monitoring, controlling and metering high intensity fluorescent lighting in a facility |
8445826, | Jun 29 2007 | Orion Energy Systems, Inc. | Outdoor lighting systems and methods for wireless network communications |
8450670, | Jun 29 2007 | JPMORGAN CHASE BANK, N A | Lighting fixture control systems and methods |
8476565, | Jun 29 2007 | Orion Energy Systems, Inc. | Outdoor lighting fixtures control systems and methods |
8586902, | Jun 29 2007 | Orion Energy Systems, Inc. | Outdoor lighting fixture and camera systems |
8604701, | Mar 22 2011 | Systems and method for lighting aisles | |
8657474, | Jan 05 2010 | IDEAL Industries, Inc. | Electrical socket, apparatus and system |
8666559, | Mar 27 2008 | Orion Energy Systems, Inc. | System and method for reducing peak and off-peak electricity demand by monitoring, controlling and metering high intensity fluorescent lighting in a facility |
8729446, | Jun 29 2007 | Orion Energy Systems, Inc. | Outdoor lighting fixtures for controlling traffic lights |
8729833, | Mar 19 2012 | OSRAM SYLVANIA Inc | Methods, systems, and apparatus for providing variable illumination |
8754589, | Apr 14 2008 | OSRAM SYLVANIA Inc | Power management unit with temperature protection |
8764237, | May 17 2010 | Orion Energy Systems, Inc. | Lighting system with customized intensity and profile |
8779340, | Jun 29 2007 | Orion Energy Systems, Inc. | Lighting fixture control systems and methods |
8805550, | Apr 14 2008 | OSRAM SYLVANIA Inc | Power management unit with power source arbitration |
8823277, | Apr 14 2008 | OSRAM SYLVANIA Inc | Methods, systems, and apparatus for mapping a network of lighting fixtures with light module identification |
8841859, | Apr 14 2008 | OSRAM SYLVANIA Inc | LED lighting methods, apparatus, and systems including rules-based sensor data logging |
8858018, | Oct 03 2005 | Orion Energy Systems, Inc. | Modular light fixture with power pack |
8866408, | Apr 14 2008 | OSRAM SYLVANIA Inc | Methods, apparatus, and systems for automatic power adjustment based on energy demand information |
8866582, | Sep 04 2009 | Orion Energy Systems, Inc. | Outdoor fluorescent lighting fixtures and related systems and methods |
8884203, | May 03 2007 | ORION ENERGY SYSTEMS, INC | Lighting systems and methods for displacing energy consumption using natural lighting fixtures |
8921751, | Jun 29 2007 | Orion Energy Systems, Inc. | Outdoor lighting fixtures control systems and methods |
8954170, | Apr 14 2008 | OSRAM SYLVANIA Inc | Power management unit with multi-input arbitration |
9014829, | Nov 04 2010 | OSRAM SYLVANIA Inc | Method, apparatus, and system for occupancy sensing |
9072133, | Apr 14 2008 | OSRAM SYLVANIA Inc | Lighting fixtures and methods of commissioning lighting fixtures |
9125254, | Mar 23 2008 | OSRAM SYLVANIA Inc | Lighting fixtures and methods of commissioning lighting fixtures |
9131545, | Mar 22 2011 | Systems and method for lighting aisles | |
9146012, | Jun 29 2007 | Orion Energy Systems, Inc. | Lighting device |
9215780, | Mar 27 2008 | Orion Energy Systems, Inc. | System and method for reducing peak and off-peak electricity demand by monitoring, controlling and metering lighting in a facility |
9241392, | Mar 19 2012 | OSRAM SYLVANIA Inc | Methods, systems, and apparatus for providing variable illumination |
9241401, | Jun 22 2010 | Express Imaging Systems, LLC | Solid state lighting device and method employing heat exchanger thermally coupled circuit board |
9351381, | Mar 27 2008 | Orion Energy Systems, Inc. | System and method for controlling lighting |
9445485, | Oct 24 2014 | Express Imaging Systems, LLC | Detection and correction of faulty photo controls in outdoor luminaires |
9504133, | Mar 27 2008 | Orion Energy Systems, Inc. | System and method for controlling lighting |
9510426, | Nov 03 2011 | OSRAM SYLVANIA Inc | Methods, systems, and apparatus for intelligent lighting |
9521726, | May 03 2007 | Orion Energy Systems, Inc. | Lighting systems and methods for displacing energy consumption using natural lighting fixtures |
9532410, | Oct 03 2005 | Orion Energy Systems, Inc. | Modular light fixture with power pack |
9565782, | Feb 15 2013 | KORRUS, INC | Field replaceable power supply cartridge |
9568665, | Mar 03 2015 | KORRUS, INC | Lighting systems including lens modules for selectable light distribution |
9572230, | Sep 30 2014 | Express Imaging Systems, LLC | Centralized control of area lighting hours of illumination |
9651216, | Mar 03 2015 | KORRUS, INC | Lighting systems including asymmetric lens modules for selectable light distribution |
9651227, | Mar 03 2015 | KORRUS, INC | Low-profile lighting system having pivotable lighting enclosure |
9651232, | Aug 03 2015 | KORRUS, INC | Lighting system having a mounting device |
9746159, | Mar 03 2015 | KORRUS, INC | Lighting system having a sealing system |
9803841, | May 17 2010 | Orion Energy Systems, Inc. | Lighting system with customized intensity and profile |
9832832, | Mar 19 2012 | OSRAM SYLVANIA Inc | Methods, systems, and apparatus for providing variable illumination |
9860961, | Apr 14 2008 | OSRAM SYLVANIA Inc | Lighting fixtures and methods via a wireless network having a mesh network topology |
9869450, | Feb 09 2015 | KORRUS, INC | Lighting systems having a truncated parabolic- or hyperbolic-conical light reflector, or a total internal reflection lens; and having another light reflector |
9915416, | Nov 04 2010 | OSRAM SYLVANIA Inc | Method, apparatus, and system for occupancy sensing |
9924576, | Apr 30 2013 | Digital Lumens, Inc. | Methods, apparatuses, and systems for operating light emitting diodes at low temperature |
9933139, | Mar 03 2014 | ZUMTOBEL LIGHTING GMBH | Light fixture comprising interchangeable lighting modules |
9951933, | Sep 04 2009 | Orion Energy Systems, Inc. | Outdoor lighting fixtures and related systems and methods |
D623340, | Mar 26 2010 | Orion Energy Systems, Inc. | Reflector for a lighting fixture |
D632006, | Mar 26 2010 | Orion Energy Systems, Inc. | Reflector for a lighting fixture |
D699179, | Jun 12 2013 | KORRUS, INC | Field replaceable power supply cartridge |
D782093, | Jul 20 2015 | KORRUS, INC | LED luminaire having a mounting system |
D782094, | Jul 20 2015 | KORRUS, INC | LED luminaire having a mounting system |
D785218, | Jul 06 2015 | KORRUS, INC | LED luminaire having a mounting system |
Patent | Priority | Assignee | Title |
1918126, | |||
2306206, | |||
2312617, | |||
2403240, | |||
2619583, | |||
2636977, | |||
2748359, | |||
3247368, | |||
3337035, | |||
3390371, | |||
3571781, | |||
4001571, | Jul 26 1974 | National Service Industries, Inc. | Lighting system |
4144462, | Apr 28 1977 | Dual-Lite, Inc. | Emergency lighting fluorescent pack |
4146287, | Oct 07 1977 | NSI ENTERPRISES INC | Lighting and power system and connectors therefor |
4169648, | Jun 01 1978 | AMP Incorporated | Strain relief and back cover for electrical connector |
4387417, | Dec 30 1981 | General Electric Company | Lamp retaining means within luminaire |
4435744, | Aug 10 1981 | Pauluhn Electric Manufacturing Co., Inc. | Explosion-proof fluorescent light fixture |
4443048, | Oct 02 1981 | AMP Incorporated | Assembly with verification feature |
4544220, | Dec 28 1983 | AMP Incorporated | Connector having means for positively seating contacts |
4674015, | May 05 1986 | Fluorescent light fixture with removable ballast | |
4690476, | Oct 30 1986 | Electrical connector securing system | |
4701698, | Jun 06 1980 | Microprocessor based energy consumption meter | |
4708662, | Jun 20 1986 | AMP Incorporated | Connector assembly with pre-staged terminal retainer |
4726780, | Sep 19 1986 | Twist-lock female plug adapter | |
4749941, | May 20 1986 | LGZ Landis & Gyr Zug Ag | Circuit arrangement for a meter for measuring two electrical quantities |
4814954, | Dec 24 1987 | Rigid lightweight fluorescent fixture | |
4834673, | May 14 1987 | AMP Incorporated | Flat cable power distribution system |
4904195, | Jun 24 1988 | Twist-lock female-male plug adapter | |
4907985, | Jun 26 1989 | Safety twist lock connector for an extension power cord | |
4928209, | Aug 31 1988 | Mirrorlite, Inc.; MIRRORLITE INC , A CORP OF NY | Lighting apparatus |
4933633, | Nov 29 1982 | Adec, Inc. | Computer controlled energy monitoring system |
5013253, | Feb 20 1990 | AMP Incorporated | Fluorescent light connector assembly |
5037325, | Oct 05 1990 | Molex Incorporated | Panel mounted electrical connector |
5062030, | Dec 10 1990 | Customized light reflector | |
5069634, | Jan 24 1991 | Snap lock extension cord and power tool connector | |
5111370, | Feb 21 1991 | Device and method for converting a down-light into an up-light | |
5192129, | Dec 10 1990 | Customized light reflector | |
5274533, | Jan 25 1991 | Reflector assembly having improved light reflection and ballast access | |
5315236, | Mar 05 1991 | Power consumption meter for displaying electric power consumed by appliance and the time period of consumption | |
5320560, | Aug 06 1991 | COLEMAN CABLE, INC | Light-permeable extension cord connector |
5342221, | Jan 08 1993 | Molex Incorporated | Keying system for electrical connectors |
5349289, | Apr 27 1992 | Kaise Kabushiki Kaisha | Clamp-on multimeter having a display for indicating the results of a plurality of measurements |
5357170, | Feb 12 1993 | Lutron Technology Company LLC | Lighting control system with priority override |
5371661, | Jul 21 1992 | Retro-fit lighting fixture and method of retro-fitting | |
5377075, | May 04 1994 | Alcoa Inc | Ballast cradle and retrofit for fluorescent light conversion |
5395264, | Feb 05 1993 | Electrical connector/adapter | |
5462452, | Nov 22 1993 | Breakaway extension cord for preventing electrical plug damage | |
5473522, | Jul 25 1994 | Sportlite, Inc. | Modular luminaire |
5489827, | May 06 1994 | Philips Electronics North America Corporation | Light controller with occupancy sensor |
5616042, | Jun 28 1995 | Adapter for converting fluorescent light fixtures | |
5673022, | Mar 27 1996 | Jitendra Ambalal, Patel | Motion sensor/photoelectric light sensor plug-in receptacle |
5676563, | Sep 26 1994 | Sumitomo Wiring Systems, Ltd. | Snow-melting tile wiring unit |
5727871, | Jun 03 1996 | Fluorescent lighting fixture | |
5743627, | Feb 25 1997 | Lighting fixture | |
5855494, | May 05 1997 | Hewlett Packard Enterprise Development LP | Apparatus and method for electrically connecting a plurality of electronic modules |
5907197, | Jun 30 1997 | HTC Corporation | AC/DC portable power connecting architecture |
5961207, | Jun 16 1997 | Trouble light apparatus | |
6024594, | Jan 13 1998 | The Whitaker Corporation | Connector latch with tubular hinge |
6059424, | Jun 03 1996 | Fluorescent lighting fixture | |
6091200, | Dec 17 1998 | Fluorescent light and motion detector with quick plug release and troubleshooting capabilities | |
6102550, | Feb 16 1999 | Photronix, LLC | Bracket assembly for fluorescent lighting fixture having removable, high-frequency power output ballast |
6151529, | Feb 02 1995 | Hubbell Incorporated | Motion sensing system with adaptive timing for controlling lighting fixtures |
6210019, | Nov 04 1998 | Osram Sylvania Inc. | Method for retrofitting and retrofit kit for fluorescent lighting fixture |
6291770, | May 14 1999 | Leoni Wiring Systems, Inc. | Wiring system and method therefor |
6328597, | Apr 05 2000 | Electrical power and disabling jack | |
6420839, | Jan 19 2001 | HON HAI PRECISION INDUSTRY CO , LTD | Power supply system for multiple loads and driving system for multiple lamps |
6496756, | Nov 16 1998 | Hitachi, LTD | Master-slave manipulator apparatus and method therefor, further training apparatus for manipulator operation input and method therefor |
6540549, | Jun 14 2001 | Group Dekko, Inc | Keyed power cord |
6585396, | Jun 01 2001 | JPMORGAN CHASE BANK, N A | Fluorescent hanging light fixture |
6644836, | Apr 23 2002 | Adams Mfg. Corp. | Apparatus for hanging rope lights from a gutter |
6710588, | Jun 11 2002 | JPMORGAN CHASE BANK, N A | Apparatus and method for comparison of electric power efficiency of lighting sources to in effect be a virtual power plant |
6724180, | Jun 11 2002 | JPMORGAN CHASE BANK, N A | Apparatus for and method of metering separate lighting circuits for comparative electric power usage to provide a virtual power plant in electric power savings |
6746274, | May 06 2003 | JPMORGAN CHASE BANK, N A | Motion detector fluorescent light connector apparatus |
6758580, | Jun 01 2001 | JPMORGAN CHASE BANK, N A | Fluorescent hanging light fixture |
6774619, | Jun 11 2002 | JPMORGAN CHASE BANK, N A | Apparatus and method for comparison of electric power efficiency of lighting sources |
6979097, | Mar 18 2003 | Modular ambient lighting system | |
7282840, | Feb 14 2005 | Modular ballasts of aquarium | |
20020172049, | |||
20020189841, | |||
20030179577, | |||
20040076001, | |||
20060232959, | |||
119800, | |||
122887, | |||
142126, | |||
147812, | |||
150735, | |||
217615, | |||
D263699, | Aug 24 1979 | New Era Products, Inc. | Power cord plug |
D311900, | Jun 30 1988 | NEXT SOFTWARE, INC | Electrical connector for computer power cable |
D329919, | Jan 15 1991 | ZUMTOBEL LIGHTING, INC , | Suspended fluorescent lighting fixture |
D364478, | Oct 20 1992 | Zumtobel Licht GmbH | Fluorescent lighting fixture |
D365409, | Aug 04 1994 | Ceiling mounted light housing | |
D381629, | May 09 1995 | Sony Computer Entertainment Inc | Cable connector assembly |
D395727, | Apr 24 1997 | FOCAL POINT, L L C | Fluorescent lighting fixture |
D399019, | Apr 19 1996 | Zumtobel Licht GmbH | Fluorescent lighting fixture |
D402763, | Mar 10 1997 | Vimmerbyb Industrier AB | Light fitting for solaria |
D416542, | Dec 18 1998 | Hon Hai Precision Ind. Co., Ltd. | Cable connector assembly |
D425860, | Jan 21 1999 | Sony Corporation | Electric connector |
D434167, | Oct 16 1997 | Artemide S.p.A. | Modular lighting system |
D447266, | Feb 13 2001 | JPMORGAN CHASE BANK, N A | Overhead downlight fluorescent light fixture |
D447736, | Mar 24 2000 | J.S.T. Mfg. Co., LTD | Electric connector with a cable |
D460735, | Jan 09 2002 | JPMORGAN CHASE BANK, N A | Electrical connector pigtail cord |
D463059, | Jan 25 2002 | JPMORGAN CHASE BANK, N A | Overhead down-light fluorescent light fixture |
D466867, | Nov 21 2000 | Short extension cord | |
D479826, | Nov 12 2002 | JPMORGAN CHASE BANK, N A | Electric connector cord having male plug ends |
D483332, | Mar 05 2003 | JPMORGAN CHASE BANK, N A | Electric connector cord |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 03 2005 | Orion Energy Systems, Inc. | (assignment on the face of the patent) | / | |||
Aug 24 2006 | VERFUERTH, NEAL R | Orion Energy Systems, Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018286 | /0996 | |
Jul 30 2007 | Orion Energy Systems, Ltd | ORION ENERGY SYSTEMS, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 020321 | /0304 | |
Jun 30 2010 | ORION ENERGY SYSTEMS, INC | JPMORGAN CHASE BANK, N A | CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE TO SECURITY AGREEMENT PREVIOUSLY RECORDED ON REEL 024630 FRAME 0006 ASSIGNOR S HEREBY CONFIRMS THE SECURITY AGREEMENT | 028430 | /0158 | |
Jun 30 2010 | ORION ENERGY SYSTEMS, INC | JPMORGAN CHASE BANK, N A | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024630 | /0006 | |
Jan 30 2015 | JPMORGAN CHASE BANK, N A | ORION ENERGY SYSTEMS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 034850 | /0526 | |
Feb 06 2015 | ORION ENERGY SYSTEMS, INC | Wells Fargo Bank, National Association | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 034912 | /0772 | |
Oct 26 2018 | ORION ENERGY SYSTEMS, INC | Western Alliance Bank | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 048066 | /0508 | |
Oct 26 2018 | Wells Fargo Bank, National Association | ORION ENERGY SYSTEMS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 047493 | /0113 | |
Dec 29 2020 | ORION ENERGY SYSTEMS, INC | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 054869 | /0709 |
Date | Maintenance Fee Events |
Apr 19 2011 | ASPN: Payor Number Assigned. |
Feb 11 2013 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Mar 31 2017 | REM: Maintenance Fee Reminder Mailed. |
Aug 10 2017 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Aug 10 2017 | M2555: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity. |
Apr 05 2021 | REM: Maintenance Fee Reminder Mailed. |
Sep 20 2021 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 18 2012 | 4 years fee payment window open |
Feb 18 2013 | 6 months grace period start (w surcharge) |
Aug 18 2013 | patent expiry (for year 4) |
Aug 18 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 18 2016 | 8 years fee payment window open |
Feb 18 2017 | 6 months grace period start (w surcharge) |
Aug 18 2017 | patent expiry (for year 8) |
Aug 18 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 18 2020 | 12 years fee payment window open |
Feb 18 2021 | 6 months grace period start (w surcharge) |
Aug 18 2021 | patent expiry (for year 12) |
Aug 18 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |