A vestigial sideband (vsb) modulation transmission system and, a method for encoding an input signal in the system are disclosed. According to the present invention, the vsb transmission system includes a convolutional encoder for encoding an input signal, a trellis-coded modulation (TCM) encoder for encoding the convolutionally encoded signal, and a signal mapper mapping the trellis-coded signal to generate a corresponding output signal. Different types of the convolutional encoders are explored, and the experimental results showing the performances of the vsb systems incorporating each type of encoders reveals that a reliable data transmission can be achieved even at a lower input signal to noise ratio when a convolutional encoder is used as an error-correcting encoder in a vsb system.

Patent
   7577208
Priority
Oct 02 2000
Filed
Jul 23 2004
Issued
Aug 18 2009
Expiry
Oct 01 2021

TERM.DISCL.
Assg.orig
Entity
Large
1
42
EXPIRED
2. A method for encoding an input signal in a digital broadcast transmitter having a convolutional encoder and a trellis-coded modulation (TCM) encoder, the method comprising the steps of:
generating first and second output signals by encoding the input signal using the convolutional encoder; and
generating third, fourth, and fifth output signals by encoding the first and second output signals using the TCM encoder,
wherein a current value of the second output signal is generated by the steps of:
multiplying the input signal by a constant ki to generate an i th multiplier value for i=1, 2, 3 . . . n, wherein the constant ki is greater than 1 for at least one value of i;
storing a previous value of the second output signal as a first memory value;
and
storing an i+1 th memory value obtained by adding an i th memory value and the i th multiplier value for i=1, 2, 3 . . . n,
wherein the current value of the second output signal is the n +1 th memory value obtained.
1. A digital broadcast transmitter, comprising:
a convolutional encoder encoding an input signal to generate first and second output signals; and
a trellis-coded modulation (TCM) encoder encoding the first and second output signals to generate third, fourth, and fifth output signals,
wherein the convolutional encoder comprises:
a plurality of multipliers, each i th multiplier multiplying the input signal by a constant ki to generate an i th multiplier value, wherein the constant ki is greater than 1 for at least one value of i;
a plurality of memories, a first memory storing a previous value of the second output signal as a first memory value and each i+1 th memory storing an i+1 th memory value obtained by adding an i th memory value stored in an i th memory and the i th multiplier value; and
a plurality of adders, each i th adder adding the i th memory value and the i th multiplier value,
wherein i=1, 2, 3, . . . , n, and the n+1 th memory value stored in the n+1 th memory is a current value of the second output signal.
6. A digital television (DTV) receiver comprising:
receiving means for receiving digital broadcast data, wherein the digital broadcast data result from encoding an input bit using a convolutional encoder to output first and second data bits, multiplexing the first and second data bits with main data bits using a multiplexer to output third and fourth data bits, encoding the third and fourth data bits using a trellis encoder to output fifth, sixth, and seventh data bits, and mapping the fifth, sixth, and seventh data bits using a vsb mapper to output a symbol; and
a trellis decoder for performing trellis decoding on the received broadcast data,
wherein encoding an input bit using a convolutional encoder comprises:
pre-storing a first memory value in a first memory, the first memory value being a previous second data bit output from the convolutional encoder;
adding the input bit to the first memory value pre-stored in the first memory to obtain a second memory value; and
storing the second memory value in a second memory, wherein the first data bit is based on the input bit and the second data bit is the second memory value stored in the second memory.
3. A method of processing a digital television (DTV) signal in a div receiver, the method comprising:
receiving digital broadcast data, wherein the digital broadcast data result from encoding an input bit using a convolutional encoder to output first and second data bits, multiplexing the first and second data bits with main data bits using a multiplexer to output third and fourth data bits, encoding the third and fourth data bits using a trellis encoder to output fifth, sixth, and seventh data bits, and mapping the fifth, sixth, and seventh data bits using a vsb mapper to output a symbol; and
performing trellis decoding on the received broadcast data,
wherein encoding the input bit using a convolutional encoder comprises;
pre-storing a first memory value in a first memory, the first memory value being a previous second data bit output from the convolutional encoder;
adding the input bit to the first memory value pre-stored in the first memory to obtain a second memory value; and
storing the second memory value in a second memory, wherein the first data bit is based on the input bit and the second data bit is the second memory value stored in the second memory.
4. The method of claim 3, wherein encoding the third and fourth data bits using a trellis encoder comprises:
pre-storing a third memory value in a third memory, the third memory value being a previous seventh data bit output from the trellis encoder;
adding the fourth data bit to the third memory value to obtain a fourth memory value; and
storing the fourth memory value in a fourth memory, wherein the fifth data bit is the third data bit output from the multiplexer, the sixth data bit is the fourth data bit output from the multiplexer, and the seventh data bit is the fourth memory value stored in the fourth memory.
5. The method of claim 3, further comprising additionally decoding the trellis-decoded broadcast data.
7. The div receiver of claim 6, wherein encoding the third and fourth data bits using a trellis encoder comprises:
pre-storing a third memory value in a third memory, the third memory value being a previous seventh data bit output from the trellis encoder;
adding the fourth data bit to the third memory value to obtain a fourth memory value; and
storing the fourth memory value in a fourth memory, wherein the fifth data bit is the third data bit output from the multiplexer, the sixth data bit is the fourth data bit output from the multiplexer, and the seventh data bit is the fourth memory value stored in the fourth memory.
8. The div receiver of claim 6, further comprising a decoder for additionally decoding the trellis-decoded broadcast data.

This is a continuation of application Ser. No. 09/968,083 filed Oct. 1, 2001, which application is hereby incorporated by reference in its entirety. Under 35 U.S.C. § 119, this application claims priority to Korean Application Serial No. 2000-57823 filed on Oct. 2, 2000.

1. Field of the Invention

The present invention relates to a digital communication system, and more particularly, to a vestigial sideband (VSB) modulation transmission system including a TCM (Trellis-Coded Modulation) encoder and an additional ½ rate convolutional encoder having a superior state transition property when connected to the TCM encoder in the system.

2. Background of the Related Art

The TCM coded 8-VSB modulation transmission system has been selected as a standard in 1995 for the U.S. digital terrestrial television broadcasting, and the actual broadcasting incorporating the system has started since the second half of the year 1998.

In general, a digital communication system performs error correcting processes to correct the errors occurred at the communication channels. The total amount of the transmitting data is increased by such error correcting coding processes since it creates additional redundancy bits added to the information bits. Therefore, the required bandwidth is usually increased when using an identical modulation technique. Trellis-coded modulation (TCM) combines multilevel modulation and coding to achieve coding gain without bandwidth expansion. Also an improved signal to noise ratio can be achieved by using the trellis-coded modulation (TCM) technique.

FIG. 1A and FIG. 1B illustrate a typical TCM encoder used in a typical ATSC 8-VSB system and corresponding set partitions used by the TCM encoder. According to the FIG. 1A, an input bit d0 is output as c1 and c0 after trellis-coded modulation, and then a subset is selected among (−7,1), (−5,3) (−3,5), and (−1,7). Thereafter, an input bit d1 selects a signal within the selected subset. In other words, when d1 and d0 are inputted, one of eight signals (−7,−5,−3,−1,1,3,5,7) is selected by c2, c1, and c0 generated by the TCM encoder. d1 and d0 are called an uncoded bit and a coded bit, respectively.

FIG. 1B illustrates the set partitions used by the TCM encoder used in the ATSC 8-VSB system. Eight signal levels are divided into four subsets, each of which including two signal levels. Two signals are assigned to each subset such that the signal levels of each subset are as far as possible from each other as shown in FIG. 1B.

Accordingly, the present invention is directed to a VSB transmission system and a method for encoding an input signal in the VSB transmission system that substantially obviates one or more problems due to limitations and disadvantages of the related art.

An object of the present invention is to provide a VSB transmission system that can transmit data reliably even at a lower signal to noise ratio and can have an optimal state transition property when connected to the TCM encoder by using a ½ rate convolutional encoder as an additional error correcting encoder in the system.

Another object of the present invention is to provide a method for encoding an input signal in a VSB modulation transmission system enabling a data sender to achieve more reliable data transmission at a lower signal to noise ratio and to have an optimal state transition property of a ½ convolutional encoder, which is concatenated to the TCM encoder for error correcting in the system.

Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.

To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a vestigial sideband (VSB) modulation transmission system includes a convolutional encoder encoding an input signal; a trellis-coded modulation (TCM) encoder encoding the convolutionally encoded input signal; and a signal mapper mapping the trellis-coded input signal to generate a corresponding output signal.

In another aspect of the present invention, a vestigial sideband (VSB) modulation transmission system includes a ½ rate convolutional encoder encoding an input signal to generate first and second output signals; a ⅔ rate trellis-coded modulation (TCM) encoder encoding the first and second output signals to generate third, forth and fifth output signals; and a signal mapper mapping the third, forth, and fifth output signals.

There are three different types of ½ rate convolutional encoders that can be used in this aspect of the present invention. The first type includes a plurality of multipliers, each i th multiplier multiplying the input signal by a constant ki to generate an i th multiplier value; a plurality of memories, a first memory storing the previous second output value as a first memory value and each i+1 th memory storing an i+1 th memory value obtained by adding an i th memory value stored in a i th memory and the i th multiplier value; and a plurality of adders, each i th adder adding the i th memory value and the i th multiplier value, where i=1, 2, 3, . . . , n, and a n+1 th memory value stored in a n+1 th memory is the second output signal.

The second type of the ½ rate convolutional encoder includes a first memory storing the input signal as a first memory value; a second memory storing the first memory value as a second memory value; a first adder adding the input signal and the second memory value to generate the first output signal; and a second adder adding the input signal and the first and second memory values to generate the second output signal.

Finally, the third type of the ½ rate convolutional encoder includes a first memory storing the previous second output value as a first memory value; an adder adding the input signal and the first memory value; and a second memory storing a result from the adder as a second memory value, the second memory value being the second output signal.

In another aspect of the present invention, a method for encoding an input signal in a vestigial sideband (VSB) modulation transmission system includes the steps of encoding the input signal by the convolutional encoder; encoding the convolutionally encoded input signal by the TCM encoder; and generating a final output signal my mapping the trellis-coded input signal.

In a further aspect of the present invention, a method for encoding an input signal in a vestigial sideband (VSB) modulation transmission system includes the steps of generating first and second output signals by encoding the input signal using the ½ convolutional encoder; generating a third, forth, and fifth output signals by encoding the first and second output signals using the ⅔ rate TCM encoder; and generating a final output signal by mapping the third, forth, and fifth output signals.

The second output signal can be generated using three different methods in the last aspect of the present invention described above. The first method for generating the second output signal includes the steps of multiplying the input signal by a constant ki to generate an i th multiplier value for i=1, 2, 3 . . . n ; storing the previous second output value as a first memory value; and storing an i+1 th memory value obtained by adding an i th memory value and the i th multiplier value for i=1, 2, 3 . . . n, where the second output signal is an n+1 th memory value.

The second method for generating the second output signal includes the steps of storing the input signal as a first memory value; storing the first memory value as a second memory value; generating the first output signal by adding the input signal and the second memory value; and generating the second output signal by adding the input signal and the first and second memory values.

Finally, the third method for generating the second output signal includes the steps of storing the previous second output value as a first memory value; adding the input signal and the first memory value; storing the value resulted from the adding step as a second memory value; and outputting the second memory value as the second output signal.

It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.

The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention. In the drawings;

FIG. 1A illustrates a typical trellis-coded modulation (TCM) encoder used in a ATSC 8VSB transmission system according to the related art;

FIG. 1B illustrates set partitions used by a typical TCM encoder of a ATSC 8VSB transmission system according to the related art;

FIG. 2 illustrates an error correcting encoder concatenated to a ⅔ rate TCM encoder in a ATSC 8-VSB transmission system according to the present invention;

FIG. 3A illustrates a ½ rate convolutional encoder concatenated to a ⅔ TCM encoder to be used as an error correcting encoder in a ATSC 8-VSB transmission system according to the present invention;

FIG. 3B illustrates ⅔ and ⅓ rate convolutional encoders used as an error correcting encoder in a ATSC 8-VSB transmission system according to the present invention;

FIG. 4 illustrates a first type of a ½ rate convolutional encoder concatenated to a ⅔ TCM encoder in a ATSC 8-VSB transmission system according to the present invention;

FIG. 5A illustrates a second type of a ½ rate convolutional encoder used in a ATSC 8-VSB transmission system according to the present invention and its corresponding state transition diagram;

FIG. 5B illustrates a third type of ½ rate convolutional encoder used in a ATSC 8-VSB system according to the present invention and its corresponding state transition diagram;

FIG. 6 illustrates a VSB receiving system corresponding to a ATSC 8-VSB transmission system according to the present invention;

FIG. 7A illustrates Euclidean distances of a set of output signals generated from the ½ rate convolutional encoder shown in FIG. 5A;

FIG. 7B illustrates Euclidean distances of a set of output signals generated from the ½ rate convolutional encoder shown in FIG. 5B; and

FIG. 8 illustrates performances of ATSC 8-VSB transmission systems when each of the ½ rate convolutional encoders shown in FIG. 5A and FIG. 5B is used.

Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.

FIG. 2 illustrates a VSB transmission system in which an error correcting encoder is concatenated to a ⅔ rate TCM encoder according to the present invention. By adding an additional error correcting encoder to the ⅔ rate TCM encoder in the VSB system, it is possible to achieve a reliable data transmission even at a lower signal to noise ratio than that of the conventional ATSC TCM coded 8VSB system. In the present invention, a ½ rate convolutional encoder is used for the additional error correcting encoder. In addition, a multiplexer located between the error correcting encoder and the ⅔ rate TCM encoder classifies the data received from each of the error correcting encoder and a ATSC encoder and inputs each data to the TCM encoder. The additional error-corrected data will be regarded as an error by the ATSC receiver and will be discarded.

FIG. 3A and 3B illustrate a ½ rate encoder used as an additional error correcting encoder shown in FIG. 2. According to FIG. 3A, an input bit u is processed in the ½ rate encoder to generate two output bits d1 and d0, and these are inputted to a ⅔ rate TCN encoder. In FIG. 3B, each of ⅔ and ⅓ rate encoders is connected to a ⅔ rate TCM encoder. Since the bit error rate of uncoded bits u1 is lower than that of a coded bit u0, the encoder having a higher code rate is used for u1, and the other encoder is used for u0. This will compensate the difference between two input bits u0 and u1. In addition, the ⅔ and ⅓ rate encoders can be considered as being a ½ rate encoder since it has three input bits and six output bits. Thus, combining encoders having different code rates can reduce the bit error rate of the whole system. As a result, the additional encoder can be any one of the ½ rate encoder and the combination of the ⅔ rate encoder and the ⅓ rate encoder shown in FIG. 3A and FIG. 3B, respectively. By adding the additional encoder, the performance of the system can be enhanced, and this will be shown later in this section. Considering the signal mapping of the TCM encoder, the error correcting encoder must be designed so that it has the optimal state transition property when connected to the TCM encoder.

FIG. 4 illustrates a first type of a ½ rate convolutional encoder concatenated to a ⅔ TCM encoder in a VSB transmission system according to the present invention. The ½ rate convolutional encoder receives an input bit u and generates a first output bit d1 by bypassing u. A second output bit d0 is the value of the N+1 th memory mi+1. The ½ rate convolutional encoder includes N mutipliers, N adders, and N+1 memories. The first memory m1 stores a previous second output value, the first multiplier g1 multiplies the input bit u by a first constant k1, and the first adder adds the outputs from g1 and m1. Similarly, each i+1 th memory mi+1 stores the output from the ith adder, the i th multiplier gi multiplies the input bit u by an i th constant ki, and the i th adder adds the outputs from gi and mi, where i=2, 3, 4, . . . , N. Finally, the N+1 th memory m1+1 stores the output from the N th adder. Then the value stored in mi+1 is output as a second output bit (current). In addition, the second output bit (current) is feedback to the first memory m1 for calculating a next second output value. N can be greater than or equal to two and can be determined as one wishes to design the system. As shown in the FIG. 4, the ½ rate convolutional encoder receives u and outputs d0 and d1. d0 and d1 then become the output bits c1 and c2 of the TCM encoder. Therefore, when d1d0=00, c2c1=00, and the corresponding 8VSB symbol becomes 7 (c2c1c0=000) or −5( c2c1c0=001) depending on the value of c0. c0 is equal to the value stored in a second memory s1 and is obtained by adding s0 and d0, where s0 is the value stored in a first memory. The 8VSB symbols for d1d0=01, 10, 11 are (−3, −1), (1,3), and (5,7), respectively.

FIG. 5A illustrates a non-systematic ½-rate convolutional encoder used in a VSB system according to the present invention and its corresponding state transition diagram. This type of encoder is often used because of its long free-distance property. In the state transition diagram shown in FIG. 5A, a transition from the state Sk at t=k to the state Sk+1 at t=k+1 is denoted as a branch, and the value indicated above each branch corresponds to the output of the branch. The probability of receiving a signal r when a signal z having zero mean and variance σ2 is sent through a AWGN channel can be obtained by using the equation:

p ( r | z ) = 1 2 π σ 2 exp ( - | r - z | 2 2 σ 2 ) [ Equation 1 ]
where z represents a branch output. A branch metric is a probability measure of receiving r when the branch output z is sent from the encoder. It is an Euclidean distance between r and z, and can be obtained by the following equation:
Branch Metric ∝Log(p(r/z))=|r−z|2.   [Equation 2]

A metric corresponding to a path including S0, S1, S2, . . . , Sk can be calculated by the equation:

Path Metric = t = 0 t = k Branch Metric . [ Equation 3 ]
The path metric is an accumulated value of the branch metrics of the branches included in a path and represents a probability of the path.

As shown in the state transition diagram of FIG. 5A, two branches are divided from each Sk, and two branches are merged into each Sk+1. A viterbi decoder that decodes a convolutional code first calculates the path metrics of the two paths that are merging into each state and selects the path having a lower path metric. The path metric selected using this technique represents the lowest path metric of the paths starting from an initial state (t=0) to each Sk.

When selecting a path between two paths merging into one state, the probability of the path selection becomes higher as the difference between the metrics of the two paths is larger. Since a path metric represents the sum of metrics of the branches included in a path, it is desired to have the largest difference between the branch metrics in order to maximize the performance of the encoder.

The ½ rate convolutional encoder shown in FIG. 5A includes a first memory for storing an input bit u as a first memory value s0; a second memory for storing s0 as a second memory value s1; a first adder for adding u and s1; and a second adder for adding u, s0, and s1. The output from the first and second adders becomes a first output bit d1 and a second output bit d0.

FIG. 5B illustrates a systematic convolutional encoder used in a VSB transmission system and its corresponding state transition diagram. A first output bit d1 is generated by bypassing an input bit u, and a second output bit d0 is generated by adding and delaying u. The systematic ½ rate convolutional encoder includes a first memory for storing a previous second output bit value as a first memory value s0, an adder for adding the input bit u and s0, and a second memory for storing the output from the adder as a second memory value s1 and outputting s1 as the second output bit d0.

According to FIG. 5A, the combination of the branch outputs dividing from a state at t=k or merging into a state at t=k+1 is (00,11) or (01,10). According to the trellis-coded modulation fundamental, the encoder has a better performance as the difference between branch metrics of the combination is larger. A larger difference between the branch metrics means that the corresponding Euclidean distance is larger. The Euclidean distance of (00,11) is larger than that of (01,10). When the output is either 01 or 10, the error often occurs during the path selection. Therefore, it is desired to have the combination of the branch outputs of (00,10) and (01,11) so that the difference between the branch metrics is large. This is shown in FIG. 5B. Therefore, the convolutional encoder of FIG. 5B has a better encoding performance than that of FIG. 5A.

FIG. 6 illustrates a VSB receiving system corresponding to the VSB transmission system of the present invention.

FIG. 7A and FIG. 7B illustrate Euclidean distances corresponding to the output combinations generated from the encoders shown in FIG. 5A and FIG. 5B, respectively. As it can be shown from both figures, the Euclidean distances of (00,10) and (01,11) are much larger than the that of (01,10). Therefore, the convolutional encoder of FIG. 5B has a better performance when connected to the ⅔ rate TCM encoder in the VSB transmission system.

FIG. 8 illustrates performances of ATSC 8-VSB transmission systems when each of the convolutional encoders shown in FIG. 5A and FIG. 5B is used in the system. For a bit error rate of 1e−3, the signal to noise ratio is reduced by 2 dB and 4 dB when the convolutional encoders shown in FIG. 5A and FIG. 5B are used as an additional error-correcting encoder in the VSB system. Therefore, a bit error rate can be reduced by using a ½ rate convolutional encoder as an outer encoder of the TCM encoder, and the encoder shown in FIG. 5B has a better bit error rate reduction property.

In conclusion, data can be transmitted at a lower signal to noise ratio by concatenating a ½ rate convolutional encoder to the TCM encoder in a VSB transmission system according the present invention.

The forgoing embodiments are merely exemplary and are not to be construed as limiting the present invention. The present teachings can be readily applied to other types of apparatuses. The description of the present invention is intended to be illustrative, and not to limit the scope of the claims. Many alternatives, modifications, and variations will be apparent to those skilled in the art.

Choi, In Hwan, Gu, Young Mo, Kang, Kyung Won, Kwak, Kook Yeon

Patent Priority Assignee Title
7779327, Apr 01 2004 Electronics and Telecommunications Research Institute Dual stream structure digital television transmission and receiving method using hybrid of E-8VSB, E-4VSB and P2VSB
Patent Priority Assignee Title
5087975, Nov 09 1990 CITICORP NORTH AMERICA, INC , AS AGENT VSB HDTV transmission system with reduced NTSC co-channel interference
5233630, May 03 1991 QUALCOMM INCORPORATED A CORPORATION OF DELAWARE Method and apparatus for resolving phase ambiguities in trellis coded modulated data
5488691, Nov 17 1993 International Business Machines Corporation Memory card, computer system and method of operation for differentiating the use of read-modify-write cycles in operating and initializaiton modes
5555024, Dec 23 1994 Samsung Electronics Co., Ltd. Transmitters for burying digital signals within the trace and retrace intervals of NTSC television signals
5563884, Mar 27 1995 CITICORP NORTH AMERICA, INC , AS AGENT Reducing multiplex jitter in an ATM/MPEG system
5583889, Jul 08 1994 CITICORP NORTH AMERICA, INC , AS AGENT Trellis coded modulation system for HDTV
5600677, Jul 08 1994 CITICORP NORTH AMERICA, INC , AS AGENT Trellis coded modulation system for digital television signal
5602595, Apr 06 1995 CITICORP NORTH AMERICA, INC , AS AGENT ATV/MPEG sync system
5629958, Jul 08 1994 CITICORP NORTH AMERICA, INC , AS AGENT Data frame structure and synchronization system for digital television signal
5636251, Jul 08 1994 CITICORP NORTH AMERICA, INC , AS AGENT Receiver for a trellis coded digital television signal
5636252, May 04 1994 SAMSUNG ELECTRONICS CO , LTD Automatic gain control of radio receiver for receiving digital high-definition television signals
5706312, Oct 11 1994 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Trellis coded modulation employing lower dimensionality convolutional encoder
5831690, Dec 06 1996 RCA Thomson Licensing Corporation Apparatus for formatting a packetized digital datastream suitable for conveying television information
5909454, Jan 20 1998 ARRIS ENTERPRISES LLC Intermediate rate applications of punctured convolutional codes for 8PSK trellis modulation over satellite channels
5910967, Oct 20 1997 Intersil Americas, Inc Pragmatic encoder and method therefor
5923711, Apr 02 1996 LG Electronics Inc Slice predictor for a signal receiver
5946047, Mar 12 1997 Hybrid Patents Incorporated Network system for handling digital data over a TV channel
5953376, Sep 26 1996 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Probabilistic trellis coded modulation with PCM-derived constellations
6075569, Jul 09 1996 SAMSUNG ELECTRONICS CO , LTD Method and apparatus for switching an operation mode of an HDTV system
6141384, Feb 14 1997 FUNAI ELECTRIC CO , LTD Decoder for trellis encoded interleaved data stream and HDTV receiver including such a decoder
6208643, Oct 11 1996 Sarnoff Corporation Apparatus and method for analyzing bitstreams
6490002, Feb 03 1999 Sony Corporation; Sony Electronics Supplemental data path for supporting on-screen displays from external sources in a monitor/TV receiver using a secondary analog signal path
6519298, Dec 16 1998 SAMSUNG ELECTRONICS CO , LTD Circuit for discriminating between received signals and method therefor
6690738, Oct 20 2000 Lockheed Martin Corp. Trellis coded modulation system employing a flexible trellis coded modulation decoder
6697098, Aug 26 1998 THOMSON LICENSING S A Co-channel interference detection network for an HDTV receiver
6708149, Oct 30 1998 Nuance Communications, Inc Vector fixed-lag algorithm for decoding input symbols
6724832, Jan 29 1999 ADC BROADBAND WIRELESS GROUP, INC Vestigial sideband generator particularly for digital television
6738949, May 13 1998 InterDigital Patent Holdings, Inc Error correction circuit and error correction method
6760077, Jan 19 2001 LG Electronics, Inc. VSB reception system with enhanced signal detection for processing supplemental data
6763025, Mar 12 2001 Inceptia LLC Time division multiplexing over broadband modulation method and apparatus
6788710, Mar 19 1998 Thomson Licensing S.A. Auxiliary data insertion in a transport datastream
20010036232,
20020041634,
20020085632,
20020095640,
20020152441,
20040028076,
20040066738,
20040240590,
20070248187,
KR20000018531,
KR20000028757,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 14 2001CHOI, IN HWANLG Electronics IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0250260233 pdf
Sep 14 2001GU, YOUNG MOLG Electronics IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0250260233 pdf
Sep 14 2001KANG, KYUNG WONLG Electronics IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0250260233 pdf
Sep 14 2001KWAK, KOOK YEONLG Electronics IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0250260233 pdf
Jul 23 2004LG Electronics Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Dec 11 2009ASPN: Payor Number Assigned.
Dec 11 2009RMPN: Payer Number De-assigned.
Jul 14 2010RMPN: Payer Number De-assigned.
Jul 15 2010ASPN: Payor Number Assigned.
Feb 01 2013M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Jan 05 2017M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Apr 05 2021REM: Maintenance Fee Reminder Mailed.
Sep 20 2021EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Aug 18 20124 years fee payment window open
Feb 18 20136 months grace period start (w surcharge)
Aug 18 2013patent expiry (for year 4)
Aug 18 20152 years to revive unintentionally abandoned end. (for year 4)
Aug 18 20168 years fee payment window open
Feb 18 20176 months grace period start (w surcharge)
Aug 18 2017patent expiry (for year 8)
Aug 18 20192 years to revive unintentionally abandoned end. (for year 8)
Aug 18 202012 years fee payment window open
Feb 18 20216 months grace period start (w surcharge)
Aug 18 2021patent expiry (for year 12)
Aug 18 20232 years to revive unintentionally abandoned end. (for year 12)