An embedded subsystem is coupled to a shared database is synchronized with the notebook and has access to the hard drive. The subsystem is in operation when the notebook is in low power mode.
|
23. A low-power subsystem comprising:
a miniature display screen;
a user input unit;
a low-power subsystem memory; and
a low-power processor coupled to the miniature display screen, to the user input unit, and to the memory, the low-power processor providing access for the miniature display screen and the user input unit to a connected computer system when the connected computer system is in a low-power mode.
1. A method comprising:
transitioning a central processing unit (CPU) of a computer system into a low power mode, the computer system having a memory,
activating a low power subsystem when the CPU enters the low power mode, the low-power subsystem including a low power processor, an external interface and a low power memory;
independent of the CPU, using the low power processor of the low power subsystem to access data contained within the computer system memory; and
providing the accessed data through the external interface of the low-power subsystem.
10. An apparatus comprising:
a computer system having a central processing unit, a system memory, a mass storage device, and a user interface, the computer system having a low-power mode; and
a low-power subsystem in operation when the computer system enters the low-power mode, the low power subsystem having a low power processor, a low power subsystem memory and an external interface independent of the computer system, the low power processor providing access to the computer system when the computer system is in the low power mode and the external interface providing data accessed from the computer system externally.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
9. The method of
11. The apparatus of
12. The apparatus of
13. The apparatus of
14. The apparatus of
15. The apparatus of
16. The apparatus of
17. The apparatus of
18. The apparatus of
19. The apparatus of
20. The apparatus of
21. The apparatus of
22. The apparatus of
24. The low-power subsystem of
25. The low-power subsystem of
26. The low-power subsystem of
27. The low-power subsystem of
28. The low-power subsystem of
|
The modern trend in electrical appliances is mobility. People want to be able to use an electrical device from where they are at that instant. They want to be able to call people from anyplace they happen to be, hence the cell phone. They want to be able to listen to their own music no matter where they are, hence the portable compact disc player. They also want to be able to use their computer from almost anywhere, hence the notebook computer. The current design of the notebook computer has made this difficult. Specifically, using a computer while the subject is moving is currently exceedingly awkward.
The difficulty is related to the current design of notebook computers. The limited life of notebook computer batteries only allows for the computer to be on for a limited time. Battery conservation techniques include running the notebook in a state in which the central processing unit (CPU) is not active to conserve energy. Full access and control of a notebook's functionality often requires it to be in the open position, where the display screen and keyboard are at a right angle from each other. This L-shaped position is more difficult to carry around than the closed position. These difficulties become even more apparent in efforts to use notebooks as a method to electronically purchase items in a store. A further difficulty is created when attempting to either listen to or view multimedia entertainment data while either moving about or in a confined area, such as an airplane.
A low-power subsystem for a portable computer, which operates while the computer is in a low-powered mode in which the CPU performs in a less active state, is disclosed. Normally, when the notebook computer is in low power mode (also called powered down mode) during which the CPU is in a less active state and the notebook display screen may be in the closed position, the data stored within the computer typically cannot be accessed. One embodiment described herein allows access to the data while the computer is low power mode by use of a low-power subsystem (LPS) in the computer with access to the same memory storage as the CPU. The subsystem acts independently of the CPU, which would not be able to perform the necessary functions during low power mode. The subsystem allows the notebook to perform several functions while in the low power mode, such as, for example, act like a travel assistant for the user, provide entertainment, and make electronic purchases.
A notebook will go into low power mode either when the user has left the notebook idle for a time period previously specified by the user, or when the user has closed the notebook. In one embodiment, the LPS is activated when the notebook enters low power mode, and remains active until the CPU is activated or until the computer system is turned off. In an alternate embodiment, the LPS would remain inactive until the user turns the LPS on and would remain on until the user deactivates the LPS, activates the CPU, or turns off the notebook.
A disk drive 105 such as a magnetic disk or optical disk may also be coupled to computer system 100 for storing information and instructions. Computer system 100 can also be coupled via bus 101 to a display device 106, such as a cathode ray tube (CRT) or a liquid crystal display (LCD), for displaying information to a computer user. For example, image, textual, or graphical depictions of product data and other types of image, graphical, or textual information may be presented to the user on display device 106. Typically, an alphanumeric input device 107, including alphanumeric and other keys, is coupled to bus 101 for communicating information and/or command selections to processor 102. Another type of user input device is cursor control device 108, such as a conventional mouse, trackball, or other type of cursor direction keys for communicating direction information and command selection to processor 102 and for controlling cursor movement on display 106. A communications device 109, such as a modem, may also be coupled with the computer system. The shared database 120, in one embodiment, is coupled to the computer system 100 via the disk drive 105, as the disk drive 105 is the database's most frequent point of access.
An embodiment of the subsystem is also illustrated in detail in
The low-power subsystem 110 allows the notebook 100 to act as a personal server. In one embodiment, the notebook could act as a travel assistant. The notebook, in the closed powered down position, would be kept in a traveling case. As the notebook would be in low power mode, there would be less drain on the battery. In one embodiment, the shared database 120 would have access to the travel information contained in the hard drive 105, the memory 103, or the ROM 104. In a further embodiment, the shared database may access a variety of data, including, for example, memos, maps, calendars, and/or other information helpful for traveling. The information could be presented over headphones or as visual display on a miniature display screen 115. In one embodiment, the data could be sent over the wireless interface 130 to the user's cellular phone. In a further embodiment, the low-power subsystem can use the cellular phone to access a network.
In an alternate embodiment, the notebook acts as a multimedia center for the user. The notebook could store multimedia data on the notebook's hard drive 105 or access the multimedia data from a network. The multimedia data is then accessed by the low-power subsystem 110 through the shared database 120. It can then be presented to the user over headphones or displayed over a miniature display screen 115.
In an alternate embodiment, the user can use the wireless interface with the notebook to make electronic purchases at a store set up for electronic purchases. The wireless interface of the notebook, operating off the low-power subsystem at low power, sends a signal from the user to a server at the store to indicate interest in purchasing an item. In one embodiment, the item purchased is electronic data, such as a video or an MP3 file. That data is then sent to the user's notebook over the wireless interface, and the user is charged accordingly. The user can then store the data on the hard drive or on the shared database and listen to or view the data later while the notebook is in low power mode.
An embodiment of this method of purchasing data at an electronic store is illustrated by the flowchart in
The method described above can be stored in the memory of a computer system (e.g., set top box, video recorders, etc.) as a set of instructions to be executed. In addition, the instructions to perform the method described above could alternatively be stored on other forms of machine-readable media, including magnetic and optical disks. For example, the method of the present invention could be stored on machine-readable media, such as magnetic disks or optical disks, which are accessible via a disk drive (or computer-readable medium drive). Further, the instructions can be downloaded into a computing device over a data network in a form of compiled and linked version.
Alternatively, the logic to perform the methods as discussed above, could be implemented in additional computer and/or machine readable media, such as discrete hardware components as large-scale integrated circuits (LSI's), application-specific integrated circuits (ASIC's), firmware such as electrically erasable programmable read-only memory (EEPROM's); and electrical, optical, acoustical and other forms of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.); etc.
Although the present invention has been described with reference to specific exemplary embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the invention. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4497021, | Jun 26 1981 | Sony Corporation | Microcomputer system operating in multiple modes |
5287485, | Dec 24 1988 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Digital processing system including plural memory devices and data transfer circuitry |
5590197, | Apr 04 1995 | SSL SERVICES LLC | Electronic payment system and method |
5768164, | Apr 15 1996 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Spontaneous use display for a computing system |
5983073, | Apr 04 1997 | NETAIRUS TECHNOLOGIES LLC | Modular notebook and PDA computer systems for personal computing and wireless communications |
5983186, | Aug 21 1995 | Seiko Epson Corporation | Voice-activated interactive speech recognition device and method |
6044473, | Mar 25 1997 | HANGER SOLUTIONS, LLC | Portable computer having a switch for changing a power-controlling mode |
6108663, | Jan 09 1993 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Autonomous relational database coprocessor |
6240521, | Sep 10 1998 | International Business Machines Corp. | Sleep mode transition between processors sharing an instruction set and an address space |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 29 2000 | Intel Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Sep 01 2012 | 4 years fee payment window open |
Mar 01 2013 | 6 months grace period start (w surcharge) |
Sep 01 2013 | patent expiry (for year 4) |
Sep 01 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 01 2016 | 8 years fee payment window open |
Mar 01 2017 | 6 months grace period start (w surcharge) |
Sep 01 2017 | patent expiry (for year 8) |
Sep 01 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 01 2020 | 12 years fee payment window open |
Mar 01 2021 | 6 months grace period start (w surcharge) |
Sep 01 2021 | patent expiry (for year 12) |
Sep 01 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |