A system for treating the heart including a cardiac harness configured to conform generally to at least a portion of a patient's heart. The system also includes an electrode associated with the cardiac harness and positioned on or proximate to the epicardial surface of the heart. In order to ensure that the electrode will operate with a pulse generator, the system has an impedance between approximately 10 ohms and approximately 120 ohms.
|
1. A system for treating the heart, comprising:
a cardiac harness configured to conform generally to and apply a compressive force to at least a portion of a patient's heart;
an electrode attached to the cardiac harness and positioned on or proximate to the epicardial surface of the heart;
a power source in communication with the electrode, the electrode and power source are at least a part of an electrical circuit; and #10#
the electrical circuit having an impedance between approximately 10 ohms and approximately 120 ohms.
9. A system for treating the heart, comprising:
a cardiac harness configured to conform generally to and apply a compressive force to at least a portion of a patient's heart;
an electrode associated with the cardiac harness and positioned on or proximate to the epicardial surface of the heart, the electrode having a pericardial side opposite an epicardial side;
a power source in communication with the electrode, the electrode and power source are at least a part of an electrical circuit; and #10#
an insulation disposed on the pericardial side of the electrode, wherein the impedance of the electrical circuit is greater than about 10 ohms.
2. The system of
3. The system of
5. The system of
6. The system of
8. The system of
10. The system of
11. The system of
|
1. Field of the Invention
The present invention relates to a device for treating heart failure. More specifically, the invention relates to a cardiac harness having electrodes for providing defibrillation and/or pacing/sensing therapies. The design of the cardiac harness provides electrodes integrated with the cardiac harness having an impedance that optimize the compatibility of the system with commercially available internal cardioverter defibrillators.
2. General Background and State of the Art
Cardiac harnesses, such as those disclosed in U.S. Ser. No. 10/704,376 (“the '376 application”), may be used to treat cardiac heart failure. The entire contents of the '376 application is incorporated herein by reference. To treat other heart failures, including cardiac arrhythmias, the cardiac harness of the '376 application may include electrodes that are connected to an implantable cardioverter defibrillator (“ICD”), which are well known in the art. Such electrodes are capable of delivering a defibrillating electrical shock from the ICD to the heart. These electrodes may also provide pacing/sensing functions to the heart to treat cardiac failures, including bradycardia and tachycardia.
It is desirable to have the cardiac harness with electrodes be compatible with commercially available ICDs and defibrillation capable cardiac resynchronization therapy (“CRT-D”) and pulse generators (“PG”), such as those from Guidant, Medtronic, and St. Jude Medical. In order to be compatible with these commercially available ICDs and CRT-D PGs the electrodes of the cardiac harness must have an appropriate electrical impedance. If the system (cardiac harness with electrodes connected to a power source) has an impedance that is too low, the system could become damaged. On the other hand, if the system has an impedance that is too high, the system may produce an insufficient amount of electric current to travel across the cardiac tissue to sufficiently depolarize a critical amount of cardiac tissue to result in termination of the fibrillating wavefronts. Therefore, what is needed is a cardiac harness having defibrillation and/or pacing/sensing capabilities, wherein the electrodes of the cardiac harness have an impedance that is within an appropriate range.
In accordance with the present invention, a system for treating the heart includes a cardiac harness configured to conform generally to at least a portion of a patient's heart. The system also includes at least one electrode associated with the cardiac harness and positioned proximate to an outer surface of the heart, and a power source in communication with the electrode. The electrode and power source are at least a part of an electrical circuit. The electrical circuit may also include a conductor in communication between the electrode and the power source or the electrode and power source may communicate wirelessly. In order to ensure that the electrical circuit will function properly, the electrical circuit has an impedance between approximately 10 ohms and approximately 120 ohms. It is even more preferred that the impedance range be between approximately 20 ohms and 80 ohms. The lower impedance range is dictated by the functionality of the power source or pulse generator. Having too low of an impedance (under 10 ohms) can damage the electrical circuit incorporated with the cardiac harness. The upper impedance limit is that which continues to provide an adequate defibrillation threshold (“DFT”).
Several alterations can be made to the system to increase its impedance and avoid falling under the lower impedance limit of 10 ohms. In one aspect, a dielectric material such as silicone rubber is disposed on a pericardial side of the electrode (side of electrode facing away from the heart), leaving an epicardial side of the electrode (side of electrode in contact with the heart) un-insulated. Insulating the pericardial side of the electrode increases the impedance of the system, and prevents the system from having an impedance that falls under the lower impedance limit.
In another aspect, the pitch of a normal electrode coil can be increased. Increasing the pitch of the electrode coil decreases its surface area, and consequently, increases the impedance of the system.
In yet another aspect of the present invention, the composition of the conductive wire or conductor, which may include an MP35N-Ag composite, can be altered by changing the silver content. The preferred balance of impedance and mechanical strength is achieved with a 25% silver content of the conductive wire composite. In order to keep the impedance of the present system above the lower impedance limit, the silver content within the conductor can be from 0% to about 50%.
Also, the cross-section of the wire forming the electrode can be reduced to increase the impedance. In this embodiment, changing the wire of the electrode in any way to reduce the area of its cross-section or its outer diameter will increase its impedance. The width and/or height of the cross-section of the wire forming the electrode can be reduced to decrease its cross sectional area. In another embodiment, the cross-sectional shape of the electrode coil wire may be changed to reduce its surface area. In one instance, the wire of the electrode can be changed from a rectangular cross-section to a circular cross-section.
Further, the overall outer diameter of the electrode can be reduced to increase the impedance of the system. If the electrode is in the form of a helical coil, the wire forming the coil can be wound tighter to decrease the overall outer diameter of the helical coil.
In a further aspect, a resistor can be plugged in-line with the lead system to increase the impedance of the system.
Another aspect includes an electrode with circumferentially insulating segments disposed along its length. The insulating segments can be formed of any dielectric material such as silicone rubber, and may be any size. Further, any number of insulating segments may be disposed along the electrode. The insulating segments disposed around the electrode reduce the exposed surface area of the electrode, thereby increasing the impedance. The insulating segments may also force a redistribution of current in the exposed regions of the electrode in order to optimize the DFT.
Another aspect includes an electrode with a resistive film (i.e., an oxide layer) disposed on the electrode surface. The resistive film could further be deposited non-uniformly so as to spatially modulate surface resistance (i.e., to reduce current density edge effects, or to alter the current distribution along the length of the electrode to optimize the DFT).
In yet another aspect, the length of the electrode can be shortened. By shortening the electrode, the overall surface area of the electrode is decreased, thereby increasing the impedance of the system.
The present invention is directed to a cardiac harness system for treating the heart. The term “cardiac harness” as used herein is a device fit onto a patient's heart to apply a compressive force on the heart during at least a portion of the cardiac cycle. The cardiac harness system of the present invention couples a cardiac harness for treating the heart with a cardiac rhythm management device. More particularly, the cardiac harness includes rows or undulating strands of spring elements that provide a compressive force on the heart during diastole and systole in order to relieve wall stress pressure on the heart. Associated with the cardiac harness is a cardiac rhythm management device for treating any number of irregularities in heart beat due to, among other reasons, congestive heart failure. Thus, the cardiac rhythm management device associated with the cardiac harness can include one or more of the following: an implantable cardioverter defibrillator (“ICD”) with associated leads and electrodes; a cardiac pacemaker (or cardiac resynchronization therapy (“CRT”) pulse generator) including leads and electrodes used for sensing cardiac function and providing pacing stimuli to treat synchrony of both vessels; and a combined ICD and pacemaker (referred to as a (“CRT-D”)), with associated leads and electrodes to provide a defibrillation shock and/or pacing/sensing functions.
The cardiac harness system may include various configurations of panels connected together to at least partially surround the heart and assist the heart during diastole and systole. The cardiac harness system also includes one or more leads having electrodes associated with the cardiac harness and a source of electrical energy supplied to the electrodes for delivering a defibrillating shock or pacing stimuli.
In one embodiment of the invention, as shown in
In the embodiment shown in
As best shown in
The cardiac harness 10 may be produced in a range of sizes, with distinct lengths depending on the size and the number or rows of undulating strands 14. In the embodiment shown in
In one embodiment, the cardiac harness 10 is intended to function with commercially available pace/sense leads and ICD pulse generators. To ensure the cardiac harness is compatible with commercially available ICD and CRT-D pulse generators, it must have an appropriate electrical impedance. Commercially available ICD and CRT-D pulse generators, such as those from Guidant, Medtronic, and St. Jude Medical, typically have a lower impedance limit below which the device will not deliver a shock during programmed device testing at implantation. This limit, typically 20Ω, is dictated by the current carrying limits of the internal pulse generator circuitry. Since the ICD delivers a set voltage from a charged capacitor, as the system impedance drops, the delivered current increases. Once implanted, the ICD should deliver a defibrillation shock even if the impedance drops below 20Ω, although there is a risk that the circuitry of the system will be damaged. Depending on the initial voltage, actual unit range of the lead system attached to the cardiac harness is no lower than about 20Ω, with a functional limit of about 10Ω.
Several parameters affect the system impedance. These include, but are not limited to, the inherent resistivity of the tissue volume through which the defibrillation current flows (may be affected by tissue density, tissue fluid levels, air volume, etc.); the distance between the electrodes attached to the cardiac harness; the surface area of the electrodes exposed to the body tissues; the electrode geometry (and impact on current edge effects); the inter-relationship between isopotential lines of current flow; the resistance in the lead electrodes, conductors, and contact junctions, and ICD or CRT-D circuitry; electrode material (polarization effects) and microscopic surface texture (i.e., fractal coatings, black Pt, etc.); and the morphology of the shock waveform (i.e., repolarization effects of a biphasic waveform).
As the length of the electrode 18 increases to extend along cardiac harnesses of varying lengths, the impedance of the system decreases. In other words, the larger cardiac harness have longer electrodes with more exposed surface area than the electrodes attached to smaller cardiac harnesses, and the electrical circuitry associated with the longer electrodes also have a lower impedance than the electrical circuitry associated with the smaller electrodes. Therefore, what is needed is a way to increase the impedance of the system to avoid falling under the lower impedance limit of 20Ω. In one embodiment as shown in the cross-sectional view of
In another embodiment, the pitch of electrode coil 18 can be increased. The coil shown in
In yet another embodiment, the composition of the conductive wire or conductor 20, which may include an MP35N-Ag composite, can be altered by changing the silver content. By specifying the silver content of the conductor to be around 25%, a preferred balance of impedance and mechanical strength of the lead system is achieved. In order to keep the impedance of the present system above the lower impedance limit, the silver content within the conductor can be from 0% to about 50%.
The cross-sectional dimensions of the wire forming the electrode coil 18 can be reduced to increase the impedance. In this embodiment, changing the wire of the electrode in any way to reduce the area of its cross-section or its outer diameter will increase impedance. The width and/or height of the wire forming the electrode coil can be reduced to decrease its cross sectional area as shown in
In other embodiments, the overall outer diameter of the electrode can be reduced to increase the impedance of the system. If the electrode is in the form of a helical coil, the wire forming the coil can be wound tighter to decrease the overall outer diameter of the helical coil, and thereby decreasing the overall surface area of the electrode.
In a further embodiment, a resistor 40 can be plugged in-line with the lead system to increase the impedance of the system.
Referring now to
In another embodiment, the electrode 18 may include a resistive film (i.e., an oxide layer) disposed on at least a portion of its surface. The resistive film could further be deposited non-uniformly so as to spatially modulate surface resistance (i.e., to reduce current density edge effects, or to alter the current distribution along the length of the electrode to optimize the DFT). By disposing the resistive film along the surface of the electrode, the impedance of the system will increase.
In yet another embodiment, the length of the electrode 18 can be shortened. For example, the length of the electrode shown in
The present system must also not exceed an upper impedance level. If the impedance of the system is too high, an insufficient amount of current will travel across the cardiac tissue to sufficiently depolarize a critical amount of cardiac tissue to result in termination of the fibrillating wavefronts. With biphasic waveforms, studies suggest that a voltage gradient of at least 3V/cm is required to achieve 80% defibrillation success. See Zhou X, Daubert J P, Wolf P D, Smith W M, Ideker R E; Epicardial Mapping Of Vetricular Defibrillation With Monophasic And Biphasic Shocks In Dogs; Circulation Research 72:145-160 (1993); which is hereby incorporated by reference. So, while there is no particular upper impedance limit, the impedance needs to be within a reasonable range to ensure defibrillation success. One way to define a reasonable upper limit is to first determine what impedance values are typical in commercially available devices that have acceptable DFT values.
The typical system shock impedance values seen in humans have been reported in various studies (see table shown in Appendix 1). The data from the table of Appendix 1 was gathered from the following references, also listed in Appendix 1; 1) Rinaldi A. C., Simon R. D., Geelen P., Reek S., Baszko A., Kuehl M., Gill J. S., A Randomized Prospective Study Of Single Coil Versus Dual Coil Defibrillation In Patients With Ventricular Arrhythmias Undergoing Implantable Cardioverter Defibrillator Therapy, Journal of Pacing and Clinical Electrophysiology 26:1684-1690 (2003); 2) Gold M R, Olsovsky M R, Pelini M A, Peters R W, Shorofsky S R, Comparison Of Single And Dual Coil Active Pectoral Defibrillation Lead Systems, Journal of the American College of Cardiology 1391-4 (1998); 3) Schulte B, Sperzel J, Carlsson J, Schwarz T, Ehrlich W, Pitschner H F, Neuzner J, Dual-Coil Vs. Single-Coil Active Pectoral Implantable Defibrillator Lead Systems: Defibrillation Energy Requirements And Probability Of Defibrillation Success At Multiples Of The Defibrillation Energy Requirements, Europace 3:177-180 (2001); 4) Sandstedt B, Kennergren C, Edvardsson N, Bidirectional Defibrillation Using Implantable Defibrillators: A Prospective Randomized Comparison Between Pectoral And Abdominal Active Generators, Journal of the American College of Cardiology 1343-1353 (2001); and 5) Shorofsky S R, Peters R W, Rashba E J, Gold M R, Comparison Of Step-Down And Binary Search Algorithms For Determination Of Defibrillation Threshold In Humans, Journal of Pacing and Clinical Electrophysiology 27:218-220 (2004). All of these references are herein incorporated by reference.
Based on the data from the above references, the mean impedance at implant for a dual coil active pectoral PG system is about 40Ω (standard deviation ranges 4-10Ω), and about 60Ω±10Ω for a single coil active PG system. The single (distal) coil used in these studies was about 50 mm long and had a surface area of about 450-480 mm2. The second (proximal) coil in the dual-coil systems was about 72 mm long and had a surface area of about 660-671 mm2.
To compare, a study in pigs was conducted to determine the DFT at the time of implantation of one embodiment of a cardiac harness having four rows of undulating strands and with 60° intra-electrode spacing. The electrodes incorporated with the cardiac harness used in this experiment had an exposed inner and outer coil surface with a surface area of about 660 mm2. The results from this study are presented in U.S. Ser. No. 11/051,823 (“the '823 application”), which is hereby incorporated by reference in its entirety. In one experiment, the a defibrillation vector for the defibrillating cardiac harness system was created from the right ventricular electrodes of the cardiac harness to the left ventricular electrodes of the cardiac harness and the active can coupled together. For this experiment, as listed in the '823 application, the mean DFT was 9.6 J and the impedance was measured at 27Ω. Also listed in the '823 application were comparable values for the mean DFT and impedance from a standard single lead defibrillation coil in the right ventricular endocardium, with a defibrillation vector from the defibrillation coil to the active can. The mean DFT was determined to be 19.3 J and the impedance was measured at 46Ω. Compared with the human data from a similar system reported in Appendix 1, the mean DFT values of the pig experiment with the defibrillation vector from the defibrillation coil disposed in the right ventricular endocardium to the active can are about 8 J higher and the impedance slightly lower. Also of note in the pig study was the advantage of increasing the intra-pair electrode spacing in lowering the mean DFT.
As with other commercially available epicardial patches and, to some extent, endocardial leads, it is anticipated that the impedance of the implant will change with time after implantation. See Schwartzman D, Hull M L, Callans D J, Gottlieb C D, Marchlinski F E; Serial Defibrillation Lead Impedance In Patients With Epicardial And Nonthoracotomy Lead Systems; Journal of Cardiovascular Electrophysiology 7:697-703 (1996), which is hereby incorporated by reference. Thus, when designing the cardiac harness implant to function with an ICD or CRT-D system, consideration of the time course of impedance change is important to ensure the system remains functional throughout the healing phase.
In order to test a cardiac harness having six-rows of undulating strands, additional bench-top tests were conducted in a saline tank with the cardiac harness including defibrillation electrodes placed over a saturated heart-shaped piece of foam (to mimic a human heart). Shock tests on a cardiac harness including defibrillation electrodes, which were exposed or un-insulated on both sides of the electrode, and having four-rows of undulating strands were performed. The defibrillation vector of this test simulated the vector from the right ventricular pair of electrodes to the left ventricular pair of electrodes coupled to the active can in the left pectoral region. During this test, the impedance was measured at about 26Ω (similar to the pig data referenced above). Repeating the test with the six-row cardiac harness including defibrillation electrodes with 600 intra-electrode spacing, and inner and outer coil surface exposed giving an electrode surface area of about 1060 mm2 per pair, resulted in an impedance of about 20Ω, which is less than the impedance of the smaller cardiac harness.
Because of the concern that the six-row cardiac harness including defibrillation electrodes would have an impedance too close to the lower limit of the ICD, the design of the cardiac harness was altered by adding silicone rubber insulation to the outside (pericardial side) of the electrodes, leaving only the inside surface (or epicardial side) exposed. This resulted in an exposed electrode surface area of the four-row and six-row pairs of 330 mm2 and 530 mm2, respectively. The expectation was that by reducing the electrode surface area, the impedance would increase. A repeat of the above in-vitro tests resulted in the four-row cardiac harness having its impedance increase from about 26Ω to about 39Ω, and the six-row cardiac harness having its impedance increase from about 20Ω to about 30Ω. A comparison of 60° and 45° intra electrode separation showed no significant difference in the impedance level.
While insulating the outside of the electrode was one way to increase impedance, other methods, such as those discussed above can also be used to increase or otherwise modify the system shock impedance.
Again, the lower impedance range is dictated by the functionality of the power source or pulse generator. This is preferably no lower than about 20Ω, with a functional limit of about 10Ω. The upper impedance limit is that which continues to provide an adequate DFT. Given the data in humans discussed above, the preferred upper impedance range is about 80Ω. However, as noted in the pig study, the cardiac harness with defibrillating electrode geometry may provide a more uniform distribution of current compared to commercial leads, and therefore may be able to provide adequate voltage gradients with higher impedance values than are reported with conventional electrodes. Thus, the functional impedance range is estimated to run about 50% higher, up to 120Ω. In summary, the preferred impedance range for the cardiac harness with lead system is about 20Ω to about 80Ω, with a functional range of about 10Ω to 120Ω.
Although the present invention has been described in terms of certain preferred embodiments, other embodiments that are apparent to those of ordinary skill in the art are also within the scope of the invention. Accordingly, the scope of the invention is intended to be defined only by reference to the appended claims. While the impedance values, electrode dimensions, types of materials and coatings described herein are intended to define the parameters of the invention, they are by no means limiting and are exemplary embodiments.
APPENDIX 1
DFT and Impedance Literature References for Commercially Available Electrodes
PG
Location,
[A]ctive or
Impedance (Ω)
DFT (J)
# Pts
Patient
Ref
Study Type
Mfr
Lead System
[P]assive
Vector 1
Vector 2
Vector 1
Vector 2
Studied
Characteristics
1
Dual vs. Single
GDT
Endotak Reliance
Pectoral [A]
RV→SVC + Can
RV→Can
RV→SVC + Can
RV→Can
38 dual
60% Ischemic
Coil ICD
(dual) and
41 ± 5
63 ± 10
10.2 ± 5.2
10.3 ± 4.1
38 single
Mean LVEF = 40.6%
Reliance S (single)
VT in 52.6%; VF in 38.4%
with Ventak Prizm
34-39% on amio; 5-8% on
and Ventak Mini
sotalol
Procedure Time (min):
93 ± 44 dual
86 ± 33 single
2
Dual vs. Single
GDT
Endotak DSP with
Pectoral [A]
RV→SVC + Can
RV→Can
RV→SVC + Can
RV→Can
25 dual
70% Ischemic
Coil ICD
emulator and
39 ± 7
57 ± 11
8.7 ± 4
10.1 ± 5
25 single
Mean LVEF = 31 ± 13%
external
8% pts on amio
defibrillator;
Prox coil
disconnected for
single config.
3
Dual vs. Single
GDT
GDT Endotak
Pectoral [A]
RV→SVC + Can
RV→Can
RV→SVC + Can
RV→Can
40 dual
48-55% Ischemic
Coil ICD
MDT
(dual) and MDT
39.8 ± 4.2
50 ± 5.8
8.0 ± 3.6
8.4 ± 3.7
40 single
LVEF = 29.3-31.3 ± 12%
Sprint (single) with
23-25% pts on amio
Ventak PG (MDT
PG used in 7/80)
4
Abdominal vs.
SJM
SPL dual coil with
Pectoral [A]
RV→SVC + Can-
RV→SVC + Can-
RV→SVC + Can-
RV→SVC +
25 pect
60% Ischemic
Pectoral Active
Ventritex Contour
Abdominal [A]
pect
abd
pect
Can-abd
25 abd
LVEF = 44 ± 12%
Can ICD with
emulator
43.8 ± 3.4
40.8 ± 3.3
9.7 ± 5.2
10.9 ± 5.1
(same)
8% amio; 24% sotalol
Dual Coil Leads
Procedure Times (min):
Skin—Skin 114 ± 23 (range
79-180)
Anesthesia time 167 ± 31
min (range 130-240)
5
Step-down vs.
MDT
MDT dual coil with
Pectoral [A]
RV→SVC + Can-
RV→SVC + Can-
RV→SVC + Can-
RV→SVC +
44 Step
62% CAD
Binary Search
active PG
pect
pect
pect
Can-pect
44 Binary
LVEF = 33 ± 13%
DFT protocol
Step down
Binary
Step down
Binary
(same)
14% amio; 5% sotalol
42 ± 10
42 ± 11
8.1 ± 0.7
8.2 ± 5.0
Appendix 1
1) Rinaldi A C, Simon R D, Geelen P, Reek S, Baszko A, Kuehl M, Gill J S, A Randomized Prospective Study Of Single Coil Versus Dual Coil Defibrillation In Patients With Ventricular Arrhythmias Undergoing Implantable Cardioverter Defibrillator Therapy, Journal of Pacing and Clinical Electrophysiology 26: 1684-1690 (2003);
2) Gold M R, Olsovsky M R, Pelini M A, Peters R W, Shorofsky S R, Comparison Of Single And Dual Coil Active Pectoral Defibrillation Lead Systems, Journal Of The American College Of Cardiology: 1391-4 (1998);
3) Schulte B, Sperzel J, Carlsson J, Schwarz T, Ehrlich W, Pitschner H F, Neuzner J, Dual-Coil Vs. Single-Coil Active Pectoral Implantable Defibrillator Lead Systems: Defibrillation Energy Requirements And Probability Of Defibrillation Success At Multiples Of The Defibrillation Energy Requirements, Europace 3: 177-180 (2001);
4) Sandstedt B, Kennergren C, Edvardsson N, Bidirectional Defibrillation Using Implantable Defibrillators: A Prospective Randomized Comparison Between Pectoral And Abdominal Active Generators, Journal Of The American College Of Cardiology: 24: 1343-1353 (2001); and
5) Shorofsky S R, Peters R W, Rashba E J, Gold M R, Comparison Of Step-Down And Binary Search Algorithms For Determination Of Defibrillation Threshold In Humans, Journal of Pacing and Clinical Electrophysiology 27: 218--220 (2004).
Schaer, Alan, Fishler, Matthew G.
Patent | Priority | Assignee | Title |
10321850, | Oct 11 2007 | KIRK PROMOTION LTD | Device for treatment of aneurysm |
11229802, | Feb 26 2019 | UT-HEART INC | Heart support net and implantable cardioverter defibrillator |
11730390, | Oct 11 2007 | Device for treatment of aneurysm | |
9242098, | Oct 30 2013 | THE CHARLOTTE-MECKLENBURG HOSPITAL AUTHORITY D B A CAROLINAS HEALTHCARE SYSTEM | Devices, systems, and methods for treating cardiac arrhythmias |
9795320, | Oct 11 2007 | KIRK PROMOTION LTD | Device for treatment of aneurysm |
9883908, | May 02 2012 | THE CHARLOTTE-MECKLENBURG HOSPITAL AUTHORITY D B A CAROLINAS HEALTHCARE SYSTEM | Devices, systems, and methods for treating cardiac arrhythmias |
Patent | Priority | Assignee | Title |
2278926, | |||
2826193, | |||
3464322, | |||
3513836, | |||
3587567, | |||
3613672, | |||
3966401, | Jul 01 1974 | MEDTRONIC, INC , 7000 CENTRAL AVENUE, N E , MINNEAPOLIS, MINNESOTA 55432, A MN CORP | Preparing natural tissue for implantation so as to provide improved flexibility |
3983863, | Jun 02 1975 | Baxter International Inc | Heart support for coronary artery surgery |
3988782, | Jul 06 1973 | DARDIK, SHEIL R , PLAINTIFF | Non-antigenic, non-thrombogenic infection-resistant grafts from umbilical cord vessels and process for preparing and using same |
4011947, | May 22 1975 | Packaged prosthetic device | |
4048990, | Sep 17 1976 | Heart massage apparatus | |
4065816, | May 22 1975 | Surgical method of using a sterile packaged prosthesis | |
4108161, | Oct 28 1975 | Graft forming device | |
4192293, | Sep 05 1978 | Cardiac assist device | |
4211325, | Jun 07 1979 | MEDTRONIC, INC , 7000 CENTRAL AVENUE, N E , MINNEAPOLIS, MINNESOTA 55432, A MN CORP | Heart valve holder |
4261342, | Oct 26 1978 | Process for installing mitral valves in their anatomical space by attaching cords to an artificial stent | |
4306318, | Oct 12 1978 | Sumitomo Electric Industries, Ltd. | Tubular organic prosthesis |
4372293, | Dec 24 1980 | Apparatus and method for surgical correction of ptotic breasts | |
4403604, | May 13 1982 | Gastric pouch | |
4428375, | Feb 16 1982 | Surgical bag for splenorrhaphy | |
4512471, | Apr 06 1984 | AORTECH, INC , A CORP OF MN | Storage unit |
4536893, | Mar 03 1982 | Implant device for substaining the activity of the myocardium | |
4545783, | Jul 11 1983 | ALARIS MEDICAL SYSTEMS, INC | Rigid medical solution container |
4628937, | Aug 02 1984 | Cordis Corporation | Mapping electrode assembly |
4630597, | Apr 30 1984 | L VAD TECHNOLOGY, INC | Dynamic aortic patch for thoracic or abdominal implantation |
4665906, | Oct 14 1983 | Medtronic, Inc | Medical devices incorporating sim alloy elements |
4690134, | Jul 01 1985 | Ventricular assist device | |
4697703, | Jul 02 1986 | Joint prosthesis package | |
4750619, | Aug 10 1987 | OSTEONICS CORP , A CORP OF NEW JERSEY | Package with tray for securing and presenting a sterile prosthetic implant element |
4821723, | Feb 27 1987 | INTERMEDICS, INC , A TX CORP | Biphasic waveforms for defibrillation |
4827932, | Feb 27 1987 | INTERMEDICS, INC , A TX CORP | Implantable defibrillation electrodes |
4834707, | Sep 16 1987 | Venting apparatus and method for cardiovascular pumping application | |
4838288, | Mar 14 1988 | Pioneering Technologies, Inc. | Heart valve and xenograft washing system |
4840626, | Sep 29 1986 | JOHNSON & JOHNSON MEDICAL INC | Heparin-containing adhesion prevention barrier and process |
4863016, | Jul 25 1988 | ABBOTT LABORATORIES, A ILLINOIS CORP | Packaging for a sterilizable calibratable medical device |
4878890, | Oct 15 1986 | ETHICON, INC , A CORP OF NEW JERSEY | Perihepatic prosthesis |
4936857, | Feb 23 1987 | KLINICHESKY TSENTR NOVYKH MEDITSINSKIKH TEKHNOLOGY, USSR, LENINGRAD, SEVERNY PROSPEKT, 1 | Prosthetic pericardium |
4957477, | May 22 1986 | Humanteknik AB | Heart assist jacket and method of using it |
4960424, | Jun 30 1988 | Method of replacing a defective atrio-ventricular valve with a total atrio-ventricular valve bioprosthesis | |
4973300, | Sep 22 1989 | GENESEE BIOMEDICAL, INC | Cardiac sling for circumflex coronary artery surgery |
4976730, | Oct 11 1988 | Artificial pericardium | |
5031762, | Oct 07 1987 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Three envelope package for sterile specimens |
5057117, | Apr 27 1989 | The Research Foundation of State University of New York; Research Foundation of State University of New York, The | Method and apparatus for hemostasis and compartmentalization of a bleeding internal bodily organ |
5067957, | Oct 14 1983 | Medtronic, Inc | Method of inserting medical devices incorporating SIM alloy elements |
5087243, | Jun 18 1990 | Myocardial iontophoresis | |
5098369, | Feb 27 1987 | VASCOR, INC A CORP OF PENNSYLVANIA | Biocompatible ventricular assist and arrhythmia control device including cardiac compression pad and compression assembly |
5106386, | Aug 30 1989 | LIGHTWAVE ABLATIOIN SYSTEMS | Catheter |
5119804, | Nov 19 1990 | CARDIO TECHNOLOGIES, INC | Heart massage apparatus |
5131905, | Jul 16 1990 | External cardiac assist device | |
5150706, | Aug 15 1991 | CARDIAC CONCEPTS, INC | Cooling net for cardiac or transplant surgery |
5169381, | Mar 29 1991 | Ventricular assist device | |
5186711, | Mar 07 1989 | Albert Einstein College of Medicine of Yeshiva University | Hemostasis apparatus and method |
5190546, | Oct 14 1983 | Medtronic, Inc | Medical devices incorporating SIM alloy elements |
5192314, | Dec 12 1991 | Synthetic intraventricular implants and method of inserting | |
5197978, | Apr 26 1991 | United States Surgical Corporation | Removable heat-recoverable tissue supporting device |
5256132, | Aug 17 1992 | Cardiac assist envelope for endoscopic application | |
5279539, | Aug 17 1992 | Ethicon, Inc. | Drawstring surgical pouch and method of use for preventing ovarian adhesions |
5290217, | Oct 10 1991 | Earl K., Sipes | Method and apparatus for hernia repair |
5336254, | Sep 23 1992 | Medtronic, Inc.; Medtronic, Inc | Defibrillation lead employing electrodes fabricated from woven carbon fibers |
5344442, | May 16 1991 | 3F THERAPEUTICS, INC | Cardiac valve |
5352184, | Mar 12 1992 | Uresil Corporation | Reservoir for enclosing and retrieving body specimens |
5356432, | Feb 05 1993 | C. R. Bard, Inc. | Implantable mesh prosthesis and method for repairing muscle or tissue wall defects |
5366460, | Oct 11 1990 | Cook Medical Technologies LLC | Apparatus and method for laparoscope hernia repair |
5383840, | Jul 28 1992 | Vascor, Inc. | Biocompatible ventricular assist and arrhythmia control device including cardiac compression band-stay-pad assembly |
5385156, | Aug 27 1993 | Rose Health Care Systems | Diagnostic and treatment method for cardiac rupture and apparatus for performing the same |
5385229, | Dec 04 1992 | CENTERPULSE SPINE-TECH INC | Container for the packaging of a hollow endoprosthesis |
5385528, | Jun 17 1993 | WILK PATENT DELOPMENT CORPORATION | Intrapericardial assist device and associated method |
5405360, | Feb 24 1992 | United States Surgical Corporation | Resilient arm mesh deployer |
5429584, | Nov 09 1990 | McGill University | Cardiac assist method and apparatus |
5433727, | Aug 16 1994 | Centering buttoned device for the occlusion of large defects for occluding | |
5456711, | May 15 1992 | Intervascular Inc. | Warp knitted carotid patch having finished selvedged edges |
5460962, | Jan 04 1994 | Organogenesis, Inc | Peracetic acid sterilization of collagen or collagenous tissue |
5500015, | May 16 1991 | MEDTRONIC 3F THERAPEUTICS, INC | Cardiac valve |
5507779, | Apr 12 1994 | Ventritex, Inc.; VENTRITEX, INC | Cardiac insulation for defibrillation |
5509428, | May 31 1994 | Method and apparatus for the creation of tricuspid regurgitation | |
5524633, | Nov 25 1991 | Conmed Corporation | Self-deploying isolation bag |
5533958, | Jun 17 1993 | WILK PATENT DELOPMENT CORPORATION | Intrapericardial assist device and associated method |
5534024, | Nov 04 1994 | Aeroquip Corporation | Intraluminal stenting graft |
5545210, | Sep 22 1994 | United States Surgical Corporation | Method of implanting a permanent shape memory alloy stent |
5558617, | Jul 28 1992 | Vascor, Inc. | Cardiac compression band-stay-pad assembly and method of replacing the same |
5571215, | Feb 22 1993 | Edwards Lifesciences, LLC | Devices and methods for intracardiac procedures |
5582616, | Aug 05 1994 | Tyco Healthcare Group LP | Surgical helical fastener with applicator |
5584803, | Jul 16 1991 | Edwards Lifesciences, LLC | System for cardiac procedures |
5593424, | Aug 10 1994 | PETERS SURGICAL | Apparatus and method for reducing and stabilizing the circumference of a vascular structure |
5593441, | Mar 04 1992 | C R BARD, INC | Method for limiting the incidence of postoperative adhesions |
5597378, | Oct 14 1983 | Medtronic, Inc | Medical devices incorporating SIM alloy elements |
5603337, | Dec 05 1994 | Two-stage cardiomyoplasty | |
5607477, | Jul 12 1993 | The Regents of the University of California | Soft tissue augmentation apparatus |
5647372, | Jun 30 1992 | United States Surgical Corporation | Specimen retrieval pouch and method for use |
5647380, | Jun 07 1995 | W L GORE & ASSOCIATES, INC | Method of making a left ventricular assist device |
5695525, | Jan 07 1994 | C.R. Bard, Incorporated | Implantable prosthesis and method and apparatus for loading and delivering an implantable prosthesis |
5702343, | Oct 02 1996 | MARDIL, INC | Cardiac reinforcement device |
5713954, | Jun 13 1995 | ABIOMED, INC | Extra cardiac ventricular assist device |
5727569, | Feb 20 1996 | Maquet Cardiovascular, LLC | Surgical devices for imposing a negative pressure to fix the position of cardiac tissue during surgery |
5749839, | Aug 18 1994 | Duke University | Direct mechanical bi-ventricular cardiac assist device |
5782746, | Feb 15 1996 | GENESEE BIOMEDICAL, INC | Local cardiac immobilization surgical device |
5800334, | Jun 17 1993 | WILK PATENT DELOPMENT CORPORATION | Intrapericardial assist device and associated method |
5800528, | Jun 13 1995 | ABIOMED, INC | Passive girdle for heart ventricle for therapeutic aid to patients having ventricular dilatation |
5814097, | Dec 03 1992 | Edwards Lifesciences, LLC | Devices and methods for intracardiac procedures |
5824028, | Sep 20 1996 | KNISLEY, STEPHEN B | Line electrode oriented relative to fiber direction |
5836311, | Sep 20 1995 | Medtronic, Inc | Method and apparatus for temporarily immobilizing a local area of tissue |
5848962, | May 27 1993 | Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V. | Device for assisting cardiac function |
5849005, | Jun 07 1995 | Edwards Lifesciences, LLC | Method and apparatus for minimizing the risk of air embolism when performing a procedure in a patient's thoracic cavity |
5853422, | Mar 22 1996 | Boston Scientific Scimed, Inc | Apparatus and method for closing a septal defect |
5865791, | Jun 07 1995 | E.P. Technologies Inc. | Atrial appendage stasis reduction procedure and devices |
5904690, | Aug 16 1989 | Medtronic, Inc | Device or apparatus for manipulating matter |
5910124, | Jan 08 1998 | Cardiassist Incorporated | Ventricular assist device and method |
5927284, | Sep 20 1995 | Medtronic, Inc | Method and apparatus for temporarily immobilizing a local area of tissue |
5948019, | Oct 25 1995 | Medtronic, Inc. | Heart valve suturing ring with surface coating to inhibit tissue ingrowth |
5957977, | Jan 02 1996 | University of Cincinnati; CINCINNATI, UNIVERSITY OF, THE | Activation device for the natural heart including internal and external support structures |
5961440, | Jan 02 1997 | Edwards Lifesciences LLC | Heart wall tension reduction apparatus and method |
5976069, | Jul 24 1997 | MAQUET CARDIOVASCULAR LLC | Epicardial immobilization device |
5979456, | Apr 22 1996 | Koninklijke Philips Electronics N V | Apparatus and method for reversibly reshaping a body part |
5984857, | Sep 30 1991 | Thoratec Corporation | Step-down skeletal muscle energy conversion system |
5990378, | May 25 1995 | Bridport Gundry (UK) Limited | Textile surgical implants |
6007486, | Oct 07 1997 | Ethicon Endo-Surgery, Inc. | Tissue stabilization device for use during surgery having a segmented shaft |
6015378, | Sep 20 1995 | Medtronic, Inc | Method and apparatus for temporarily immobilizing a local area tissue |
6024096, | May 01 1998 | CORRESTORE, INC | Anterior segment ventricular restoration apparatus and method |
6045497, | Sep 18 1997 | Edwards Lifesciences LLC | Heart wall tension reduction apparatus and method |
6050936, | Jan 02 1997 | Edwards Lifesciences LLC | Heart wall tension reduction apparatus |
6059715, | Jan 02 1997 | Edwards Lifesciences LLC | Heart wall tension reduction apparatus |
6071303, | Dec 08 1996 | BROWN, TONY R ; LAUFER, MICHAEL D | Device for the treatment of infarcted tissue and method of treating infarcted tissue |
6076013, | Jan 14 1999 | Apparatus and methods for treating congestive heart failure | |
6077214, | Jul 29 1998 | Edwards Lifesciences LLC | Stress reduction apparatus and method |
6077218, | Oct 02 1996 | MARDIL, INC | Cardiac reinforcement device |
6079414, | Feb 22 1993 | Heartport, Inc. | Method for thoracoscopic intracardiac procedures including septal defect |
6085754, | Jul 13 1998 | MARDIL, INC | Cardiac disease treatment method |
6095968, | Apr 10 1998 | SNYDERS, ROBERT V | Reinforcement device |
6110100, | Apr 22 1998 | Boston Scientific Scimed, Inc | System for stress relieving the heart muscle and for controlling heart function |
6117159, | Mar 22 1996 | Boston Scientific Scimed, Inc | Apparatus and method for closing a septal defect |
6117979, | Aug 18 1997 | JARO, MICHAEL J | Process for making a bioprosthetic device and implants produced therefrom |
6123662, | Jul 13 1998 | MARDIL, INC | Cardiac disease treatment and device |
6125852, | Feb 23 1993 | Heartport, Inc. | Minimally-invasive devices and methods for treatment of congestive heart failure |
6126590, | Oct 02 1996 | MARDIL, INC | Cardiac reinforcement device |
6155968, | Jul 23 1998 | BIOVENTRIX, INC | Method and device for improving cardiac function |
6155972, | Feb 02 1999 | MARDIL, INC | Cardiac constraint jacket construction |
6162168, | Jan 02 1997 | Edwards Lifesciences LLC | Heart wall tension reduction apparatus |
6165119, | Sep 18 1997 | Edwards Lifesciences LLC | Heart wall tension reduction apparatus and method |
6165120, | Jan 02 1997 | Edwards Lifesciences LLC | Heart wall tension reduction apparatus and method |
6165121, | Sep 23 1997 | MARDIL, INC | Cardiac reinforcement device |
6165122, | Oct 02 1996 | MARDIL, INC | Cardiac reinforcement device |
6166184, | Aug 18 1997 | Medtronic, Inc | Process for making a bioprosthetic device |
6169922, | Nov 18 1998 | MARDIL, INC | Defibrillating cardiac jacket with interwoven electrode grids |
6174279, | Sep 21 1999 | MARDIL, INC | Cardiac constraint with tension indicator |
6179791, | Sep 21 1999 | MARDIL, INC | Device for heart measurement |
6183411, | Sep 21 1998 | Edwards Lifesciences LLC | External stress reduction device and method |
6190408, | Mar 05 1998 | CINCINNATI, THE UNIVERSITY OF | Device and method for restructuring the heart chamber geometry |
6193648, | Sep 21 1999 | MARDIL, INC | Cardiac constraint with draw string tensioning |
6206820, | Oct 18 1995 | Fraunhofer Gesellschaft zur Foerderung der angewandten Forschung | Device for supporting cardiac function having elastic filling chambers |
6214047, | Mar 10 1998 | CINCINNATI, UNIVERSITY OF | Article and method for coupling muscle to a prosthetic device |
6221103, | Jan 02 1996 | The University of Cincinnati; CINCINNATI, UNIVERSITY OF, THE | Device and method for restructuring heart chamber geometry |
6224540, | Jun 13 1995 | ABIOMED, INC | Passive girdle for heart ventricle for therapeutic aid to patients having ventricular dilatation |
6230714, | Nov 18 1998 | MARDIL, INC | Cardiac constraint with prior venus occlusion methods |
6260552, | Jul 29 1998 | BIOVENTRIX, INC | Transventricular implant tools and devices |
6261222, | Jan 02 1997 | Edwards Lifesciences LLC | Heart wall tension reduction apparatus and method |
6264602, | Jul 29 1998 | Edwards Lifesciences LLC | Stress reduction apparatus and method |
6282445, | Oct 15 1998 | CARDIO TECHNOLOGIES, INC | Passive defibrillation electrodes for use with cardiac assist device |
6287250, | Sep 21 1999 | Maquet Cardiovascular, LLC | Method and apparatus for cardiac lifting during beating heart surgery using pericardial clips |
6293906, | Jan 14 2000 | MARDIL, INC | Delivery of cardiac constraint jacket |
6306141, | Oct 14 1983 | Medtronic, Inc | Medical devices incorporating SIM alloy elements |
6360749, | Oct 09 1998 | CARDIOPOLYMERS, INC | Modification of properties and geometry of heart tissue to influence heart function |
6375608, | Oct 02 1996 | MARDIL, INC | Cardiac reinforcement device |
6390976, | Sep 17 1997 | Maquet Cardiovascular, LLC | System to permit offpump beating heart coronary bypass surgery |
6402679, | Sep 21 1998 | Edwards Lifesciences LLC | External stress reduction device and method |
6402680, | Jul 29 1998 | Edwards Lifesciences LLC | Stress reduction apparatus and method |
6406420, | Jan 02 1997 | Edwards Lifesciences LLC | Methods and devices for improving cardiac function in hearts |
6409760, | Mar 05 1998 | University of Cincinnati | Device and method for restructuring heart chamber geometry |
6416459, | Jun 21 1997 | MARDIL, INC | Bag for at least partially enveloping a heart |
6425856, | May 10 2000 | MARDIL, INC | Cardiac disease treatment and device |
6432039, | Dec 21 1998 | Corset, Inc. | Methods and apparatus for reinforcement of the heart ventricles |
6451025, | Apr 01 1996 | General Surgical Innovations, Inc. | Prosthesis and method for deployment within a body lumen |
6482146, | Jun 13 2000 | MARDIL, INC | Cardiac disease treatment and device |
6517570, | Aug 31 1994 | W L GORE & ASSOCIATES, INC | Exterior supported self-expanding stent-graft |
6537203, | Jul 13 1998 | MARDIL, INC | Cardiac disease treatment and device |
6544168, | Oct 02 1996 | MARDIL, INC | Cardiac reinforcement device |
6547821, | Jul 16 1998 | Maquet Cardiovascular, LLC | Surgical procedures and devices for increasing cardiac output of the heart |
6564094, | Dec 22 2000 | MARDIL, INC | Cardiac disease treatment and device |
6567699, | Nov 18 1998 | MARDIL, INC | Defibrillating cardiac constraint |
6569082, | Aug 10 1999 | MAQUET CARDIOVASCULAR LLC | Apparatus and methods for cardiac restraint |
6572533, | Aug 17 2000 | DiaxaMed, LLC | Cardiac disease treatment and device |
6575921, | Feb 09 2001 | MARDIL, INC | Device for heart measurement |
6582355, | Jul 13 1998 | MARDIL, INC | Cardiac disease treatment method |
6587734, | Nov 04 1998 | MARDIL, INC | Cardio therapeutic heart sack |
6595912, | Mar 10 2000 | Paracor Medical, Inc | Expandable cardiac harness for treating congestive heart failure |
6602184, | Mar 10 2000 | Paracor Medical, Inc | Expandable cardiac harness for treating congestive heart failure |
6612978, | Dec 22 1999 | Paracor Medical, Inc | Expandable cardiac harness for treating congestive heart failure |
6612979, | Mar 10 2000 | Paracor Medical, Inc | Expandable cardiac harness for treating congestive heart failure |
6645139, | Jun 21 1997 | MARDIL, INC | Bag for at least partially enveloping a heart |
6663558, | Dec 22 1999 | Paracor Medical, Inc | Expandable cardiac harness for treating congestive heart failure |
6673009, | Nov 08 2000 | MARDIL, INC | Adjustment clamp |
6682474, | Mar 10 2000 | Paracor Medical, Inc | Expandable cardiac harness for treating congestive heart failure |
6682475, | Jun 11 2002 | MARDIL, INC | Tension indicator for cardiac support device and method therefore |
6682476, | Jun 13 2000 | MARDIL, INC | Cardiac disease treatment and device |
6685620, | Sep 25 2001 | The Foundry, LLC | Ventricular infarct assist device and methods for using it |
6685627, | Oct 09 1998 | Modification of properties and geometry of heart tissue to influence heart function | |
6689048, | Jan 14 2000 | MARDIL, INC | Delivery of cardiac constraint jacket |
6695769, | Sep 25 2001 | The Foundry, LLC | Passive ventricular support devices and methods of using them |
6701929, | Mar 03 1999 | Device and method for treatment of congestive heart failure | |
6702732, | Dec 22 1999 | Paracor Medical, Inc | Expandable cardiac harness for treating congestive heart failure |
6723041, | Sep 10 2001 | Paracor Medical, Inc | Device for treating heart failure |
6730016, | Jun 12 2000 | MARDIL, INC | Cardiac disease treatment and device |
6755779, | Dec 01 2000 | MARDIL, INC | Apparatus and method for delivery of cardiac constraint jacket |
6876887, | Nov 04 1998 | MARDIL, INC | Cardio therapeutic heart sack |
6881185, | Jan 14 2000 | MARDIL, INC | Delivery of cardiac constraint jacket |
6887192, | Sep 08 2000 | Converge Medical, Inc. | Heart support to prevent ventricular remodeling |
6893392, | Oct 02 1996 | MARDIL, INC | Cardiac reinforcement device |
6896652, | Jul 13 1998 | MARDIL, INC | Cardiac disease treatment and device |
6902522, | Jun 12 2000 | MARDIL, INC | Cardiac disease treatment and device |
6902524, | Jun 13 2000 | MARDIL, INC | Cardiac disease treatment and device |
6908426, | May 10 2000 | ACORN CARDIOVASCULAR, INC | Cardiac disease treatment and device |
7155295, | Nov 07 2003 | Paracor Medical, Inc | Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing |
20010029314, | |||
20010047122, | |||
20020007216, | |||
20020022880, | |||
20020068849, | |||
20020077524, | |||
20020082647, | |||
20020091296, | |||
20020103511, | |||
20030004547, | |||
20030060674, | |||
20030060677, | |||
20030060895, | |||
20030199733, | |||
20030199955, | |||
20030229265, | |||
20040133069, | |||
20040171907, | |||
20040171908, | |||
20050059854, | |||
20050085688, | |||
20050137673, | |||
DE29517393, | |||
DE3831540, | |||
EP280564, | |||
EP370931, | |||
EP583012, | |||
EP791330, | |||
EP919193, | |||
FR2527435, | |||
FR2645739, | |||
GB2115287, | |||
GB2209678, | |||
JP1145066, | |||
JP1271829, | |||
JP60203250, | |||
SU1009457, | |||
SU1734767, | |||
WO2500, | |||
WO6026, | |||
WO6027, | |||
WO6028, | |||
WO13722, | |||
WO16700, | |||
WO18320, | |||
WO28912, | |||
WO28918, | |||
WO36995, | |||
WO42919, | |||
WO45735, | |||
WO48795, | |||
WO62727, | |||
WO74769, | |||
WO117437, | |||
WO121098, | |||
WO150981, | |||
WO167985, | |||
WO185061, | |||
WO191667, | |||
WO195830, | |||
WO195831, | |||
WO195832, | |||
WO213726, | |||
WO219917, | |||
WO3026483, | |||
WO3026484, | |||
WO3026485, | |||
WO9119465, | |||
WO9506447, | |||
WO9604852, | |||
WO9640356, | |||
WO9720505, | |||
WO9724101, | |||
WO9803213, | |||
WO9814136, | |||
WO9826738, | |||
WO9829041, | |||
WO9858598, | |||
WO9911201, | |||
WO9930647, | |||
WO9944534, | |||
WO9944680, | |||
WO9953977, | |||
WO9956655, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 01 2005 | Paracor Medical, Inc. | (assignment on the face of the patent) | / | |||
Sep 13 2005 | SCHAER, ALAN | Paracor Medical, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017124 | /0664 | |
Sep 13 2005 | FISHLER, MATTHEW G | Paracor Medical, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017124 | /0664 |
Date | Maintenance Fee Events |
Apr 19 2013 | REM: Maintenance Fee Reminder Mailed. |
Sep 08 2013 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Sep 08 2012 | 4 years fee payment window open |
Mar 08 2013 | 6 months grace period start (w surcharge) |
Sep 08 2013 | patent expiry (for year 4) |
Sep 08 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 08 2016 | 8 years fee payment window open |
Mar 08 2017 | 6 months grace period start (w surcharge) |
Sep 08 2017 | patent expiry (for year 8) |
Sep 08 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 08 2020 | 12 years fee payment window open |
Mar 08 2021 | 6 months grace period start (w surcharge) |
Sep 08 2021 | patent expiry (for year 12) |
Sep 08 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |