A system for treating the heart including a cardiac harness configured to conform generally to at least a portion of a patient's heart. The system also includes an electrode associated with the cardiac harness and positioned on or proximate to the epicardial surface of the heart. In order to ensure that the electrode will operate with a pulse generator, the system has an impedance between approximately 10 ohms and approximately 120 ohms.

Patent
   7587247
Priority
Aug 01 2005
Filed
Aug 01 2005
Issued
Sep 08 2009
Expiry
Mar 15 2027
Extension
591 days
Assg.orig
Entity
Small
6
295
EXPIRED
1. A system for treating the heart, comprising:
a cardiac harness configured to conform generally to and apply a compressive force to at least a portion of a patient's heart;
an electrode attached to the cardiac harness and positioned on or proximate to the epicardial surface of the heart;
a power source in communication with the electrode, the electrode and power source are at least a part of an electrical circuit; and #10#
the electrical circuit having an impedance between approximately 10 ohms and approximately 120 ohms.
9. A system for treating the heart, comprising:
a cardiac harness configured to conform generally to and apply a compressive force to at least a portion of a patient's heart;
an electrode associated with the cardiac harness and positioned on or proximate to the epicardial surface of the heart, the electrode having a pericardial side opposite an epicardial side;
a power source in communication with the electrode, the electrode and power source are at least a part of an electrical circuit; and #10#
an insulation disposed on the pericardial side of the electrode, wherein the impedance of the electrical circuit is greater than about 10 ohms.
2. The system of claim 1, wherein the electrical circuit having an impedance between approximately 20 ohms and approximately 80 ohms.
3. The system of claim 1, further comprising a conductor in communication with the electrode and the power source.
4. The system of claim 3, further comprising a resistor disposed in-line with the conductor.
5. The system of claim 1, wherein the electrode includes an epicardial side opposite a pericardial side, at least a portion of the epicardial side of the electrode being insulated with a dielectric material.
6. The system of claim 1, wherein the electrode includes an epicardial side opposite a pericardial side, at least a portion of the pericardial side of the electrode being insulated with a dielectric material.
7. The system of claim 1, wherein the conductor includes less than about 50% silver.
8. The system of claim 1, wherein the electrode includes at least one segment of a dielectric material disposed circumferentially around the electrode, and the at least one segment of dielectric material has a length shorter than the length of the electrode.
10. The system of claim 9, wherein the impedance of the electrical circuit is greater than about 20 ohms.
11. The system of claim 9, further comprising a conductor in communication with the electrode and the power source, wherein the conductor includes less than about 50% silver.
12. The system of claim 9, wherein the insulation is a dielectric material.

1. Field of the Invention

The present invention relates to a device for treating heart failure. More specifically, the invention relates to a cardiac harness having electrodes for providing defibrillation and/or pacing/sensing therapies. The design of the cardiac harness provides electrodes integrated with the cardiac harness having an impedance that optimize the compatibility of the system with commercially available internal cardioverter defibrillators.

2. General Background and State of the Art

Cardiac harnesses, such as those disclosed in U.S. Ser. No. 10/704,376 (“the '376 application”), may be used to treat cardiac heart failure. The entire contents of the '376 application is incorporated herein by reference. To treat other heart failures, including cardiac arrhythmias, the cardiac harness of the '376 application may include electrodes that are connected to an implantable cardioverter defibrillator (“ICD”), which are well known in the art. Such electrodes are capable of delivering a defibrillating electrical shock from the ICD to the heart. These electrodes may also provide pacing/sensing functions to the heart to treat cardiac failures, including bradycardia and tachycardia.

It is desirable to have the cardiac harness with electrodes be compatible with commercially available ICDs and defibrillation capable cardiac resynchronization therapy (“CRT-D”) and pulse generators (“PG”), such as those from Guidant, Medtronic, and St. Jude Medical. In order to be compatible with these commercially available ICDs and CRT-D PGs the electrodes of the cardiac harness must have an appropriate electrical impedance. If the system (cardiac harness with electrodes connected to a power source) has an impedance that is too low, the system could become damaged. On the other hand, if the system has an impedance that is too high, the system may produce an insufficient amount of electric current to travel across the cardiac tissue to sufficiently depolarize a critical amount of cardiac tissue to result in termination of the fibrillating wavefronts. Therefore, what is needed is a cardiac harness having defibrillation and/or pacing/sensing capabilities, wherein the electrodes of the cardiac harness have an impedance that is within an appropriate range.

In accordance with the present invention, a system for treating the heart includes a cardiac harness configured to conform generally to at least a portion of a patient's heart. The system also includes at least one electrode associated with the cardiac harness and positioned proximate to an outer surface of the heart, and a power source in communication with the electrode. The electrode and power source are at least a part of an electrical circuit. The electrical circuit may also include a conductor in communication between the electrode and the power source or the electrode and power source may communicate wirelessly. In order to ensure that the electrical circuit will function properly, the electrical circuit has an impedance between approximately 10 ohms and approximately 120 ohms. It is even more preferred that the impedance range be between approximately 20 ohms and 80 ohms. The lower impedance range is dictated by the functionality of the power source or pulse generator. Having too low of an impedance (under 10 ohms) can damage the electrical circuit incorporated with the cardiac harness. The upper impedance limit is that which continues to provide an adequate defibrillation threshold (“DFT”).

Several alterations can be made to the system to increase its impedance and avoid falling under the lower impedance limit of 10 ohms. In one aspect, a dielectric material such as silicone rubber is disposed on a pericardial side of the electrode (side of electrode facing away from the heart), leaving an epicardial side of the electrode (side of electrode in contact with the heart) un-insulated. Insulating the pericardial side of the electrode increases the impedance of the system, and prevents the system from having an impedance that falls under the lower impedance limit.

In another aspect, the pitch of a normal electrode coil can be increased. Increasing the pitch of the electrode coil decreases its surface area, and consequently, increases the impedance of the system.

In yet another aspect of the present invention, the composition of the conductive wire or conductor, which may include an MP35N-Ag composite, can be altered by changing the silver content. The preferred balance of impedance and mechanical strength is achieved with a 25% silver content of the conductive wire composite. In order to keep the impedance of the present system above the lower impedance limit, the silver content within the conductor can be from 0% to about 50%.

Also, the cross-section of the wire forming the electrode can be reduced to increase the impedance. In this embodiment, changing the wire of the electrode in any way to reduce the area of its cross-section or its outer diameter will increase its impedance. The width and/or height of the cross-section of the wire forming the electrode can be reduced to decrease its cross sectional area. In another embodiment, the cross-sectional shape of the electrode coil wire may be changed to reduce its surface area. In one instance, the wire of the electrode can be changed from a rectangular cross-section to a circular cross-section.

Further, the overall outer diameter of the electrode can be reduced to increase the impedance of the system. If the electrode is in the form of a helical coil, the wire forming the coil can be wound tighter to decrease the overall outer diameter of the helical coil.

In a further aspect, a resistor can be plugged in-line with the lead system to increase the impedance of the system.

Another aspect includes an electrode with circumferentially insulating segments disposed along its length. The insulating segments can be formed of any dielectric material such as silicone rubber, and may be any size. Further, any number of insulating segments may be disposed along the electrode. The insulating segments disposed around the electrode reduce the exposed surface area of the electrode, thereby increasing the impedance. The insulating segments may also force a redistribution of current in the exposed regions of the electrode in order to optimize the DFT.

Another aspect includes an electrode with a resistive film (i.e., an oxide layer) disposed on the electrode surface. The resistive film could further be deposited non-uniformly so as to spatially modulate surface resistance (i.e., to reduce current density edge effects, or to alter the current distribution along the length of the electrode to optimize the DFT).

In yet another aspect, the length of the electrode can be shortened. By shortening the electrode, the overall surface area of the electrode is decreased, thereby increasing the impedance of the system.

FIG. 1 is a perspective view of a cardiac harness including a lead system that is connected to a power source.

FIG. 2 is a cross-sectional view taken along line 2-2 of FIG. 1.

FIG. 3 is a partial cross-sectional view of a distal end of an electrode attached to a cardiac harness.

FIG. 4 is a cross-sectional view taken along line 4-4 of FIG. 1 showing an electrode having its pericardial side insulated.

FIG. 5 is a partial view of a helical coil of an electrode with the pitch of the winding increased.

FIG. 6a is a cross-sectional view of a wire forming an electrode with reduced dimensions.

FIG. 6b is a cross-sectional view of a wire forming an electrode with less cross-sectional area due to the change in the cross-sectional shape of the wire.

FIG. 7 is a partial view of a resistor plugged in-line with a conductor wire.

FIG. 8 is a partial view of an electrode having circumferential segments of a dielectric material disposed along the length of the electrode.

The present invention is directed to a cardiac harness system for treating the heart. The term “cardiac harness” as used herein is a device fit onto a patient's heart to apply a compressive force on the heart during at least a portion of the cardiac cycle. The cardiac harness system of the present invention couples a cardiac harness for treating the heart with a cardiac rhythm management device. More particularly, the cardiac harness includes rows or undulating strands of spring elements that provide a compressive force on the heart during diastole and systole in order to relieve wall stress pressure on the heart. Associated with the cardiac harness is a cardiac rhythm management device for treating any number of irregularities in heart beat due to, among other reasons, congestive heart failure. Thus, the cardiac rhythm management device associated with the cardiac harness can include one or more of the following: an implantable cardioverter defibrillator (“ICD”) with associated leads and electrodes; a cardiac pacemaker (or cardiac resynchronization therapy (“CRT”) pulse generator) including leads and electrodes used for sensing cardiac function and providing pacing stimuli to treat synchrony of both vessels; and a combined ICD and pacemaker (referred to as a (“CRT-D”)), with associated leads and electrodes to provide a defibrillation shock and/or pacing/sensing functions.

The cardiac harness system may include various configurations of panels connected together to at least partially surround the heart and assist the heart during diastole and systole. The cardiac harness system also includes one or more leads having electrodes associated with the cardiac harness and a source of electrical energy supplied to the electrodes for delivering a defibrillating shock or pacing stimuli.

In one embodiment of the invention, as shown in FIG. 1, a cardiac harness 10 includes four panels 12 of generally continuous undulating strands 14. A panel includes rows or undulating strands of hinges or spring elements that are connected together and that are positioned between a pair of electrodes, the rows or undulations being highly elastic in the circumferential direction and, to a lesser extent, in the longitudinal direction. The cardiac harness also includes separate leads 16 having conductive electrode portions 18 that are spaced apart and which separate the panels 12. As shown in FIG. 1, the electrodes are formed of a conductive coil wire, preferably in a helical manner. A conductive wire or conductor 20 is attached to the coil wire and to a power source 22, forming a part of the electrical circuitry of the system. As used herein, the power source can include any of the following, depending upon the particular application of the electrode: a pulse generator (“PG”); an ICD; a pacemaker or CRT; and an implantable cardioverter defibrillator coupled with a pacemaker or CRT-D. In the embodiment shown in FIG. 1, the electrodes are configured to deliver an electrical shock, via the conductive wire and the power source, to the epicardial surface of the heart so that the electrical shock passes through the myocardium. The electrodes can be spaced so that they are about 0° apart, 45° apart, 60° apart, 90° apart, 120° apart, or any arbitrary arc length spacing, or, for that matter, essentially any arc length apart around the circumference of the heart in order to deliver an appropriate electrical shock. As previously described, it may become necessary to defibrillate the heart and the electrodes 18 are configured to deliver an appropriate electrical shock to defibrillate the heart.

In the embodiment shown in FIG. 1, a Y-junction member 21 is used to join two adjacent conductor wires 20. As best shown in FIG. 2, the Y-junction is a low-profile molding of silicone rubber or other dielectric material having two lumens 23, one for each conductor wire. Any number of lumens may be formed within the Y-junction to join more than 2 conductor wires. In this embodiment, the proximal ends of the joined conductors are crimped together into a pin (not shown) that is attached to the power source 22. The molding that forms the Y-junction member may extend from the Y-junction to the power source, or may only extend a certain distance that ends before the power source. The Y-junctions helps to organize and manage the conductors within a patient's body. In other embodiments, the conductors may not be joined together with the Y-junction member.

As best shown in FIG. 3, the electrodes 18 are attached to the cardiac harness 10, and more particularly to the undulating strands 14, by a dielectric material 24. The dielectric material insulates the electrodes from the cardiac harness so that electrical current does not pass from the electrode to the harness thereby undesirably shunting current away from the heart for defibrillation. Preferably, the dielectric material covers the undulating strands and covers at least a portion of the electrodes 18. FIG. 3 also shows in more detail how the conductive wire or conductor 20 is in communication with the electrode 18. In the embodiment shown, the electrode portion is a ribbon of conductive material that is coiled around and welded to a dome 26 at a distal end of the cardiac harness. The dome is also formed of a conductive material (such as MP35N) and has a distal end with a blind hole 28, and a proximal end forming a seat 30. During manufacturing, silicone rubber or another dielectric material flows into the blind hole 28 to help attach the dielectric material at the end of the electrode. Also during assembly, a distal end of the conductor wire 20 is placed and crimped within the seat 30, thereby placing the conductor in electrical communication with the electrode 18 via the dome 26. In this embodiment, the contact junction between the conductor and the electrode is at the distal end of the cardiac harness where there is less bending moments, and therefore, it is less likely that this contact junction will fracture or fatigue. FIG. 3 shows the dielectric material 24 molded around the ends of the undulating strands 14, and a cap 32 disposed at the end of the undulating strand. Grip pads (not shown) may also be attached to the dielectric material to help hold the cardiac harness in place once positioned around a potion of a beating heart.

The cardiac harness 10 may be produced in a range of sizes, with distinct lengths depending on the size and the number or rows of undulating strands 14. In the embodiment shown in FIG. 1, the cardiac harness includes six rows of undulating strands, however, other embodiments may include fewer or more rows of undulating strands. The electrode 18 length and surface area is preferably proportional with the harness length. For example, the length and surface area of the electrode can be approximately 49 mm and 307 mm2, 65 mm and 407 mm2, and 81 mm and 505 mm2 for a cardiac harnesses having four, five, and six undulating strand rows, respectively. However, the size of the electrode may remain constant regardless of the size of the cardiac harness.

In one embodiment, the cardiac harness 10 is intended to function with commercially available pace/sense leads and ICD pulse generators. To ensure the cardiac harness is compatible with commercially available ICD and CRT-D pulse generators, it must have an appropriate electrical impedance. Commercially available ICD and CRT-D pulse generators, such as those from Guidant, Medtronic, and St. Jude Medical, typically have a lower impedance limit below which the device will not deliver a shock during programmed device testing at implantation. This limit, typically 20Ω, is dictated by the current carrying limits of the internal pulse generator circuitry. Since the ICD delivers a set voltage from a charged capacitor, as the system impedance drops, the delivered current increases. Once implanted, the ICD should deliver a defibrillation shock even if the impedance drops below 20Ω, although there is a risk that the circuitry of the system will be damaged. Depending on the initial voltage, actual unit range of the lead system attached to the cardiac harness is no lower than about 20Ω, with a functional limit of about 10Ω.

Several parameters affect the system impedance. These include, but are not limited to, the inherent resistivity of the tissue volume through which the defibrillation current flows (may be affected by tissue density, tissue fluid levels, air volume, etc.); the distance between the electrodes attached to the cardiac harness; the surface area of the electrodes exposed to the body tissues; the electrode geometry (and impact on current edge effects); the inter-relationship between isopotential lines of current flow; the resistance in the lead electrodes, conductors, and contact junctions, and ICD or CRT-D circuitry; electrode material (polarization effects) and microscopic surface texture (i.e., fractal coatings, black Pt, etc.); and the morphology of the shock waveform (i.e., repolarization effects of a biphasic waveform).

As the length of the electrode 18 increases to extend along cardiac harnesses of varying lengths, the impedance of the system decreases. In other words, the larger cardiac harness have longer electrodes with more exposed surface area than the electrodes attached to smaller cardiac harnesses, and the electrical circuitry associated with the longer electrodes also have a lower impedance than the electrical circuitry associated with the smaller electrodes. Therefore, what is needed is a way to increase the impedance of the system to avoid falling under the lower impedance limit of 20Ω. In one embodiment as shown in the cross-sectional view of FIG. 4, dielectric material such as silicone rubber 34 is disposed on a pericardial side 36 (side of electrode facing away from the heart) of the electrode, leaving an epicardial side 38 (side of electrode in contact with the heart) of the electrode un-insulated. Any length of the pericardial side of the electrode may be insulated up to the entire length of the electrode. Insulating the pericardial side of the electrode increases the system impedance, and thereby prevents the system from having an impedance that falls under the lower impedance limit. Although not preferred, it has also been contemplated that a certain portion of the epicardial side of the electrode could be insulated in addition to or instead of the pericardial side to reduce the electrodes surface area and increase its impedance.

In another embodiment, the pitch of electrode coil 18 can be increased. The coil shown in FIG. 5 has a greater pitch compared to the pitch of the electrode shown in FIG. 1. Increasing the pitch of the electrode coil decreases its total surface area per unit length, and consequently, increases the system impedance.

In yet another embodiment, the composition of the conductive wire or conductor 20, which may include an MP35N-Ag composite, can be altered by changing the silver content. By specifying the silver content of the conductor to be around 25%, a preferred balance of impedance and mechanical strength of the lead system is achieved. In order to keep the impedance of the present system above the lower impedance limit, the silver content within the conductor can be from 0% to about 50%.

The cross-sectional dimensions of the wire forming the electrode coil 18 can be reduced to increase the impedance. In this embodiment, changing the wire of the electrode in any way to reduce the area of its cross-section or its outer diameter will increase impedance. The width and/or height of the wire forming the electrode coil can be reduced to decrease its cross sectional area as shown in FIG. 6a, where the dotted line represents the electrode before the reduction. Also, in another embodiment as shown in FIG. 6b, the cross-sectional shape of the electrode coil wire may be changed to reduce its area. In this instance, the wire of the electrode was changed from a rectangular cross-section to a circular cross-section. In other embodiments, the cross-sectional shape may be changed to an any shape giving the electrode wire a lesser cross-sectional area, such as oval or any polygonal shape.

In other embodiments, the overall outer diameter of the electrode can be reduced to increase the impedance of the system. If the electrode is in the form of a helical coil, the wire forming the coil can be wound tighter to decrease the overall outer diameter of the helical coil, and thereby decreasing the overall surface area of the electrode.

In a further embodiment, a resistor 40 can be plugged in-line with the lead system to increase the impedance of the system. FIG. 7 is a partial view of one conductor 20, showing the resistor 40 plugged in-line with the conductor. A separate resister can be plugged in-line with each conductor of the system. The conductor 20 is usually insulated with a dielectric material 24, and as shown in FIG. 7, it is preferred that resistor also be insulated with a dielectric material.

Referring now to FIG. 8, another embodiment is shown where the electrode 18 includes circumferentially insulating segments 24 disposed along its length. Only the electrode is shown in this figure for clarity reasons, with three separate insulating segments 42 disposed completely around the electrode. The insulating segments can be formed of any dielectric material such as silicone rubber, and may be any size, up to the length of the electrode. Further, any number of insulating segments may be disposed around the electrode, including 1, 2, 3, 4, 5, etc., insulating segments. The insulating segments can also be equally spaced apart from another, or in other embodiments, can be randomly spaced apart. The insulating segments disposed around the electrode reduce the exposed surface area of the electrode, thereby increasing the impedance.

In another embodiment, the electrode 18 may include a resistive film (i.e., an oxide layer) disposed on at least a portion of its surface. The resistive film could further be deposited non-uniformly so as to spatially modulate surface resistance (i.e., to reduce current density edge effects, or to alter the current distribution along the length of the electrode to optimize the DFT). By disposing the resistive film along the surface of the electrode, the impedance of the system will increase.

In yet another embodiment, the length of the electrode 18 can be shortened. For example, the length of the electrode shown in FIG. 1 could be shortened to decrease the surface area of the electrode. By shortening the electrode, the overall surface area of the electrode is decreased, thereby increasing the impedance of the system.

The present system must also not exceed an upper impedance level. If the impedance of the system is too high, an insufficient amount of current will travel across the cardiac tissue to sufficiently depolarize a critical amount of cardiac tissue to result in termination of the fibrillating wavefronts. With biphasic waveforms, studies suggest that a voltage gradient of at least 3V/cm is required to achieve 80% defibrillation success. See Zhou X, Daubert J P, Wolf P D, Smith W M, Ideker R E; Epicardial Mapping Of Vetricular Defibrillation With Monophasic And Biphasic Shocks In Dogs; Circulation Research 72:145-160 (1993); which is hereby incorporated by reference. So, while there is no particular upper impedance limit, the impedance needs to be within a reasonable range to ensure defibrillation success. One way to define a reasonable upper limit is to first determine what impedance values are typical in commercially available devices that have acceptable DFT values.

The typical system shock impedance values seen in humans have been reported in various studies (see table shown in Appendix 1). The data from the table of Appendix 1 was gathered from the following references, also listed in Appendix 1; 1) Rinaldi A. C., Simon R. D., Geelen P., Reek S., Baszko A., Kuehl M., Gill J. S., A Randomized Prospective Study Of Single Coil Versus Dual Coil Defibrillation In Patients With Ventricular Arrhythmias Undergoing Implantable Cardioverter Defibrillator Therapy, Journal of Pacing and Clinical Electrophysiology 26:1684-1690 (2003); 2) Gold M R, Olsovsky M R, Pelini M A, Peters R W, Shorofsky S R, Comparison Of Single And Dual Coil Active Pectoral Defibrillation Lead Systems, Journal of the American College of Cardiology 1391-4 (1998); 3) Schulte B, Sperzel J, Carlsson J, Schwarz T, Ehrlich W, Pitschner H F, Neuzner J, Dual-Coil Vs. Single-Coil Active Pectoral Implantable Defibrillator Lead Systems: Defibrillation Energy Requirements And Probability Of Defibrillation Success At Multiples Of The Defibrillation Energy Requirements, Europace 3:177-180 (2001); 4) Sandstedt B, Kennergren C, Edvardsson N, Bidirectional Defibrillation Using Implantable Defibrillators: A Prospective Randomized Comparison Between Pectoral And Abdominal Active Generators, Journal of the American College of Cardiology 1343-1353 (2001); and 5) Shorofsky S R, Peters R W, Rashba E J, Gold M R, Comparison Of Step-Down And Binary Search Algorithms For Determination Of Defibrillation Threshold In Humans, Journal of Pacing and Clinical Electrophysiology 27:218-220 (2004). All of these references are herein incorporated by reference.

Based on the data from the above references, the mean impedance at implant for a dual coil active pectoral PG system is about 40Ω (standard deviation ranges 4-10Ω), and about 60Ω±10Ω for a single coil active PG system. The single (distal) coil used in these studies was about 50 mm long and had a surface area of about 450-480 mm2. The second (proximal) coil in the dual-coil systems was about 72 mm long and had a surface area of about 660-671 mm2.

To compare, a study in pigs was conducted to determine the DFT at the time of implantation of one embodiment of a cardiac harness having four rows of undulating strands and with 60° intra-electrode spacing. The electrodes incorporated with the cardiac harness used in this experiment had an exposed inner and outer coil surface with a surface area of about 660 mm2. The results from this study are presented in U.S. Ser. No. 11/051,823 (“the '823 application”), which is hereby incorporated by reference in its entirety. In one experiment, the a defibrillation vector for the defibrillating cardiac harness system was created from the right ventricular electrodes of the cardiac harness to the left ventricular electrodes of the cardiac harness and the active can coupled together. For this experiment, as listed in the '823 application, the mean DFT was 9.6 J and the impedance was measured at 27Ω. Also listed in the '823 application were comparable values for the mean DFT and impedance from a standard single lead defibrillation coil in the right ventricular endocardium, with a defibrillation vector from the defibrillation coil to the active can. The mean DFT was determined to be 19.3 J and the impedance was measured at 46Ω. Compared with the human data from a similar system reported in Appendix 1, the mean DFT values of the pig experiment with the defibrillation vector from the defibrillation coil disposed in the right ventricular endocardium to the active can are about 8 J higher and the impedance slightly lower. Also of note in the pig study was the advantage of increasing the intra-pair electrode spacing in lowering the mean DFT.

As with other commercially available epicardial patches and, to some extent, endocardial leads, it is anticipated that the impedance of the implant will change with time after implantation. See Schwartzman D, Hull M L, Callans D J, Gottlieb C D, Marchlinski F E; Serial Defibrillation Lead Impedance In Patients With Epicardial And Nonthoracotomy Lead Systems; Journal of Cardiovascular Electrophysiology 7:697-703 (1996), which is hereby incorporated by reference. Thus, when designing the cardiac harness implant to function with an ICD or CRT-D system, consideration of the time course of impedance change is important to ensure the system remains functional throughout the healing phase.

In order to test a cardiac harness having six-rows of undulating strands, additional bench-top tests were conducted in a saline tank with the cardiac harness including defibrillation electrodes placed over a saturated heart-shaped piece of foam (to mimic a human heart). Shock tests on a cardiac harness including defibrillation electrodes, which were exposed or un-insulated on both sides of the electrode, and having four-rows of undulating strands were performed. The defibrillation vector of this test simulated the vector from the right ventricular pair of electrodes to the left ventricular pair of electrodes coupled to the active can in the left pectoral region. During this test, the impedance was measured at about 26Ω (similar to the pig data referenced above). Repeating the test with the six-row cardiac harness including defibrillation electrodes with 600 intra-electrode spacing, and inner and outer coil surface exposed giving an electrode surface area of about 1060 mm2 per pair, resulted in an impedance of about 20Ω, which is less than the impedance of the smaller cardiac harness.

Because of the concern that the six-row cardiac harness including defibrillation electrodes would have an impedance too close to the lower limit of the ICD, the design of the cardiac harness was altered by adding silicone rubber insulation to the outside (pericardial side) of the electrodes, leaving only the inside surface (or epicardial side) exposed. This resulted in an exposed electrode surface area of the four-row and six-row pairs of 330 mm2 and 530 mm2, respectively. The expectation was that by reducing the electrode surface area, the impedance would increase. A repeat of the above in-vitro tests resulted in the four-row cardiac harness having its impedance increase from about 26Ω to about 39Ω, and the six-row cardiac harness having its impedance increase from about 20Ω to about 30Ω. A comparison of 60° and 45° intra electrode separation showed no significant difference in the impedance level.

While insulating the outside of the electrode was one way to increase impedance, other methods, such as those discussed above can also be used to increase or otherwise modify the system shock impedance.

Again, the lower impedance range is dictated by the functionality of the power source or pulse generator. This is preferably no lower than about 20Ω, with a functional limit of about 10Ω. The upper impedance limit is that which continues to provide an adequate DFT. Given the data in humans discussed above, the preferred upper impedance range is about 80Ω. However, as noted in the pig study, the cardiac harness with defibrillating electrode geometry may provide a more uniform distribution of current compared to commercial leads, and therefore may be able to provide adequate voltage gradients with higher impedance values than are reported with conventional electrodes. Thus, the functional impedance range is estimated to run about 50% higher, up to 120Ω. In summary, the preferred impedance range for the cardiac harness with lead system is about 20Ω to about 80Ω, with a functional range of about 10Ω to 120Ω.

Although the present invention has been described in terms of certain preferred embodiments, other embodiments that are apparent to those of ordinary skill in the art are also within the scope of the invention. Accordingly, the scope of the invention is intended to be defined only by reference to the appended claims. While the impedance values, electrode dimensions, types of materials and coatings described herein are intended to define the parameters of the invention, they are by no means limiting and are exemplary embodiments.

APPENDIX 1
DFT and Impedance Literature References for Commercially Available Electrodes
PG
Location,
[A]ctive or Impedance (Ω) DFT (J) # Pts Patient
Ref Study Type Mfr Lead System [P]assive Vector 1 Vector 2 Vector 1 Vector 2 Studied Characteristics
1 Dual vs. Single GDT Endotak Reliance Pectoral [A] RV→SVC + Can RV→Can RV→SVC + Can RV→Can 38 dual 60% Ischemic
Coil ICD (dual) and 41 ± 5  63 ± 10 10.2 ± 5.2  10.3 ± 4.1  38 single Mean LVEF = 40.6%
Reliance S (single) VT in 52.6%; VF in 38.4%
with Ventak Prizm 34-39% on amio; 5-8% on
and Ventak Mini sotalol
Procedure Time (min):
93 ± 44 dual
86 ± 33 single
2 Dual vs. Single GDT Endotak DSP with Pectoral [A] RV→SVC + Can RV→Can RV→SVC + Can RV→Can 25 dual 70% Ischemic
Coil ICD emulator and 39 ± 7  57 ± 11 8.7 ± 4   10.1 ± 5   25 single Mean LVEF = 31 ± 13%
external 8% pts on amio
defibrillator;
Prox coil
disconnected for
single config.
3 Dual vs. Single GDT GDT Endotak Pectoral [A] RV→SVC + Can RV→Can RV→SVC + Can RV→Can 40 dual 48-55% Ischemic
Coil ICD MDT (dual) and MDT 39.8 ± 4.2   50 ± 5.8 8.0 ± 3.6 8.4 ± 3.7 40 single LVEF = 29.3-31.3 ± 12%
Sprint (single) with 23-25% pts on amio
Ventak PG (MDT
PG used in 7/80)
4 Abdominal vs. SJM SPL dual coil with Pectoral [A] RV→SVC + Can- RV→SVC + Can- RV→SVC + Can- RV→SVC + 25 pect 60% Ischemic
Pectoral Active Ventritex Contour Abdominal [A] pect abd pect Can-abd 25 abd LVEF = 44 ± 12%
Can ICD with emulator 43.8 ± 3.4  40.8 ± 3.3  9.7 ± 5.2 10.9 ± 5.1  (same) 8% amio; 24% sotalol
Dual Coil Leads Procedure Times (min):
Skin—Skin 114 ± 23 (range
79-180)
Anesthesia time 167 ± 31
min (range 130-240)
5 Step-down vs. MDT MDT dual coil with Pectoral [A] RV→SVC + Can- RV→SVC + Can- RV→SVC + Can- RV→SVC + 44 Step 62% CAD
Binary Search active PG pect pect pect Can-pect 44 Binary LVEF = 33 ± 13%
DFT protocol Step down Binary Step down Binary (same) 14% amio; 5% sotalol
42 ± 10 42 ± 11 8.1 ± 0.7 8.2 ± 5.0
Appendix 1
1) Rinaldi A C, Simon R D, Geelen P, Reek S, Baszko A, Kuehl M, Gill J S, A Randomized Prospective Study Of Single Coil Versus Dual Coil Defibrillation In Patients With Ventricular Arrhythmias Undergoing Implantable Cardioverter Defibrillator Therapy, Journal of Pacing and Clinical Electrophysiology 26: 1684-1690 (2003);
2) Gold M R, Olsovsky M R, Pelini M A, Peters R W, Shorofsky S R, Comparison Of Single And Dual Coil Active Pectoral Defibrillation Lead Systems, Journal Of The American College Of Cardiology: 1391-4 (1998);
3) Schulte B, Sperzel J, Carlsson J, Schwarz T, Ehrlich W, Pitschner H F, Neuzner J, Dual-Coil Vs. Single-Coil Active Pectoral Implantable Defibrillator Lead Systems: Defibrillation Energy Requirements And Probability Of Defibrillation Success At Multiples Of The Defibrillation Energy Requirements, Europace 3: 177-180 (2001);
4) Sandstedt B, Kennergren C, Edvardsson N, Bidirectional Defibrillation Using Implantable Defibrillators: A Prospective Randomized Comparison Between Pectoral And Abdominal Active Generators, Journal Of The American College Of Cardiology: 24: 1343-1353 (2001); and
5) Shorofsky S R, Peters R W, Rashba E J, Gold M R, Comparison Of Step-Down And Binary Search Algorithms For Determination Of Defibrillation Threshold In Humans, Journal of Pacing and Clinical Electrophysiology 27: 218--220 (2004).

Schaer, Alan, Fishler, Matthew G.

Patent Priority Assignee Title
10321850, Oct 11 2007 KIRK PROMOTION LTD Device for treatment of aneurysm
11229802, Feb 26 2019 UT-HEART INC Heart support net and implantable cardioverter defibrillator
11730390, Oct 11 2007 Device for treatment of aneurysm
9242098, Oct 30 2013 THE CHARLOTTE-MECKLENBURG HOSPITAL AUTHORITY D B A CAROLINAS HEALTHCARE SYSTEM Devices, systems, and methods for treating cardiac arrhythmias
9795320, Oct 11 2007 KIRK PROMOTION LTD Device for treatment of aneurysm
9883908, May 02 2012 THE CHARLOTTE-MECKLENBURG HOSPITAL AUTHORITY D B A CAROLINAS HEALTHCARE SYSTEM Devices, systems, and methods for treating cardiac arrhythmias
Patent Priority Assignee Title
2278926,
2826193,
3464322,
3513836,
3587567,
3613672,
3966401, Jul 01 1974 MEDTRONIC, INC , 7000 CENTRAL AVENUE, N E , MINNEAPOLIS, MINNESOTA 55432, A MN CORP Preparing natural tissue for implantation so as to provide improved flexibility
3983863, Jun 02 1975 Baxter International Inc Heart support for coronary artery surgery
3988782, Jul 06 1973 DARDIK, SHEIL R , PLAINTIFF Non-antigenic, non-thrombogenic infection-resistant grafts from umbilical cord vessels and process for preparing and using same
4011947, May 22 1975 Packaged prosthetic device
4048990, Sep 17 1976 Heart massage apparatus
4065816, May 22 1975 Surgical method of using a sterile packaged prosthesis
4108161, Oct 28 1975 Graft forming device
4192293, Sep 05 1978 Cardiac assist device
4211325, Jun 07 1979 MEDTRONIC, INC , 7000 CENTRAL AVENUE, N E , MINNEAPOLIS, MINNESOTA 55432, A MN CORP Heart valve holder
4261342, Oct 26 1978 Process for installing mitral valves in their anatomical space by attaching cords to an artificial stent
4306318, Oct 12 1978 Sumitomo Electric Industries, Ltd. Tubular organic prosthesis
4372293, Dec 24 1980 Apparatus and method for surgical correction of ptotic breasts
4403604, May 13 1982 Gastric pouch
4428375, Feb 16 1982 Surgical bag for splenorrhaphy
4512471, Apr 06 1984 AORTECH, INC , A CORP OF MN Storage unit
4536893, Mar 03 1982 Implant device for substaining the activity of the myocardium
4545783, Jul 11 1983 ALARIS MEDICAL SYSTEMS, INC Rigid medical solution container
4628937, Aug 02 1984 Cordis Corporation Mapping electrode assembly
4630597, Apr 30 1984 L VAD TECHNOLOGY, INC Dynamic aortic patch for thoracic or abdominal implantation
4665906, Oct 14 1983 Medtronic, Inc Medical devices incorporating sim alloy elements
4690134, Jul 01 1985 Ventricular assist device
4697703, Jul 02 1986 Joint prosthesis package
4750619, Aug 10 1987 OSTEONICS CORP , A CORP OF NEW JERSEY Package with tray for securing and presenting a sterile prosthetic implant element
4821723, Feb 27 1987 INTERMEDICS, INC , A TX CORP Biphasic waveforms for defibrillation
4827932, Feb 27 1987 INTERMEDICS, INC , A TX CORP Implantable defibrillation electrodes
4834707, Sep 16 1987 Venting apparatus and method for cardiovascular pumping application
4838288, Mar 14 1988 Pioneering Technologies, Inc. Heart valve and xenograft washing system
4840626, Sep 29 1986 JOHNSON & JOHNSON MEDICAL INC Heparin-containing adhesion prevention barrier and process
4863016, Jul 25 1988 ABBOTT LABORATORIES, A ILLINOIS CORP Packaging for a sterilizable calibratable medical device
4878890, Oct 15 1986 ETHICON, INC , A CORP OF NEW JERSEY Perihepatic prosthesis
4936857, Feb 23 1987 KLINICHESKY TSENTR NOVYKH MEDITSINSKIKH TEKHNOLOGY, USSR, LENINGRAD, SEVERNY PROSPEKT, 1 Prosthetic pericardium
4957477, May 22 1986 Humanteknik AB Heart assist jacket and method of using it
4960424, Jun 30 1988 Method of replacing a defective atrio-ventricular valve with a total atrio-ventricular valve bioprosthesis
4973300, Sep 22 1989 GENESEE BIOMEDICAL, INC Cardiac sling for circumflex coronary artery surgery
4976730, Oct 11 1988 Artificial pericardium
5031762, Oct 07 1987 HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT Three envelope package for sterile specimens
5057117, Apr 27 1989 The Research Foundation of State University of New York; Research Foundation of State University of New York, The Method and apparatus for hemostasis and compartmentalization of a bleeding internal bodily organ
5067957, Oct 14 1983 Medtronic, Inc Method of inserting medical devices incorporating SIM alloy elements
5087243, Jun 18 1990 Myocardial iontophoresis
5098369, Feb 27 1987 VASCOR, INC A CORP OF PENNSYLVANIA Biocompatible ventricular assist and arrhythmia control device including cardiac compression pad and compression assembly
5106386, Aug 30 1989 LIGHTWAVE ABLATIOIN SYSTEMS Catheter
5119804, Nov 19 1990 CARDIO TECHNOLOGIES, INC Heart massage apparatus
5131905, Jul 16 1990 External cardiac assist device
5150706, Aug 15 1991 CARDIAC CONCEPTS, INC Cooling net for cardiac or transplant surgery
5169381, Mar 29 1991 Ventricular assist device
5186711, Mar 07 1989 Albert Einstein College of Medicine of Yeshiva University Hemostasis apparatus and method
5190546, Oct 14 1983 Medtronic, Inc Medical devices incorporating SIM alloy elements
5192314, Dec 12 1991 Synthetic intraventricular implants and method of inserting
5197978, Apr 26 1991 United States Surgical Corporation Removable heat-recoverable tissue supporting device
5256132, Aug 17 1992 Cardiac assist envelope for endoscopic application
5279539, Aug 17 1992 Ethicon, Inc. Drawstring surgical pouch and method of use for preventing ovarian adhesions
5290217, Oct 10 1991 Earl K., Sipes Method and apparatus for hernia repair
5336254, Sep 23 1992 Medtronic, Inc.; Medtronic, Inc Defibrillation lead employing electrodes fabricated from woven carbon fibers
5344442, May 16 1991 3F THERAPEUTICS, INC Cardiac valve
5352184, Mar 12 1992 Uresil Corporation Reservoir for enclosing and retrieving body specimens
5356432, Feb 05 1993 C. R. Bard, Inc. Implantable mesh prosthesis and method for repairing muscle or tissue wall defects
5366460, Oct 11 1990 Cook Medical Technologies LLC Apparatus and method for laparoscope hernia repair
5383840, Jul 28 1992 Vascor, Inc. Biocompatible ventricular assist and arrhythmia control device including cardiac compression band-stay-pad assembly
5385156, Aug 27 1993 Rose Health Care Systems Diagnostic and treatment method for cardiac rupture and apparatus for performing the same
5385229, Dec 04 1992 CENTERPULSE SPINE-TECH INC Container for the packaging of a hollow endoprosthesis
5385528, Jun 17 1993 WILK PATENT DELOPMENT CORPORATION Intrapericardial assist device and associated method
5405360, Feb 24 1992 United States Surgical Corporation Resilient arm mesh deployer
5429584, Nov 09 1990 McGill University Cardiac assist method and apparatus
5433727, Aug 16 1994 Centering buttoned device for the occlusion of large defects for occluding
5456711, May 15 1992 Intervascular Inc. Warp knitted carotid patch having finished selvedged edges
5460962, Jan 04 1994 Organogenesis, Inc Peracetic acid sterilization of collagen or collagenous tissue
5500015, May 16 1991 MEDTRONIC 3F THERAPEUTICS, INC Cardiac valve
5507779, Apr 12 1994 Ventritex, Inc.; VENTRITEX, INC Cardiac insulation for defibrillation
5509428, May 31 1994 Method and apparatus for the creation of tricuspid regurgitation
5524633, Nov 25 1991 Conmed Corporation Self-deploying isolation bag
5533958, Jun 17 1993 WILK PATENT DELOPMENT CORPORATION Intrapericardial assist device and associated method
5534024, Nov 04 1994 Aeroquip Corporation Intraluminal stenting graft
5545210, Sep 22 1994 United States Surgical Corporation Method of implanting a permanent shape memory alloy stent
5558617, Jul 28 1992 Vascor, Inc. Cardiac compression band-stay-pad assembly and method of replacing the same
5571215, Feb 22 1993 Edwards Lifesciences, LLC Devices and methods for intracardiac procedures
5582616, Aug 05 1994 Tyco Healthcare Group LP Surgical helical fastener with applicator
5584803, Jul 16 1991 Edwards Lifesciences, LLC System for cardiac procedures
5593424, Aug 10 1994 PETERS SURGICAL Apparatus and method for reducing and stabilizing the circumference of a vascular structure
5593441, Mar 04 1992 C R BARD, INC Method for limiting the incidence of postoperative adhesions
5597378, Oct 14 1983 Medtronic, Inc Medical devices incorporating SIM alloy elements
5603337, Dec 05 1994 Two-stage cardiomyoplasty
5607477, Jul 12 1993 The Regents of the University of California Soft tissue augmentation apparatus
5647372, Jun 30 1992 United States Surgical Corporation Specimen retrieval pouch and method for use
5647380, Jun 07 1995 W L GORE & ASSOCIATES, INC Method of making a left ventricular assist device
5695525, Jan 07 1994 C.R. Bard, Incorporated Implantable prosthesis and method and apparatus for loading and delivering an implantable prosthesis
5702343, Oct 02 1996 MARDIL, INC Cardiac reinforcement device
5713954, Jun 13 1995 ABIOMED, INC Extra cardiac ventricular assist device
5727569, Feb 20 1996 Maquet Cardiovascular, LLC Surgical devices for imposing a negative pressure to fix the position of cardiac tissue during surgery
5749839, Aug 18 1994 Duke University Direct mechanical bi-ventricular cardiac assist device
5782746, Feb 15 1996 GENESEE BIOMEDICAL, INC Local cardiac immobilization surgical device
5800334, Jun 17 1993 WILK PATENT DELOPMENT CORPORATION Intrapericardial assist device and associated method
5800528, Jun 13 1995 ABIOMED, INC Passive girdle for heart ventricle for therapeutic aid to patients having ventricular dilatation
5814097, Dec 03 1992 Edwards Lifesciences, LLC Devices and methods for intracardiac procedures
5824028, Sep 20 1996 KNISLEY, STEPHEN B Line electrode oriented relative to fiber direction
5836311, Sep 20 1995 Medtronic, Inc Method and apparatus for temporarily immobilizing a local area of tissue
5848962, May 27 1993 Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V. Device for assisting cardiac function
5849005, Jun 07 1995 Edwards Lifesciences, LLC Method and apparatus for minimizing the risk of air embolism when performing a procedure in a patient's thoracic cavity
5853422, Mar 22 1996 Boston Scientific Scimed, Inc Apparatus and method for closing a septal defect
5865791, Jun 07 1995 E.P. Technologies Inc. Atrial appendage stasis reduction procedure and devices
5904690, Aug 16 1989 Medtronic, Inc Device or apparatus for manipulating matter
5910124, Jan 08 1998 Cardiassist Incorporated Ventricular assist device and method
5927284, Sep 20 1995 Medtronic, Inc Method and apparatus for temporarily immobilizing a local area of tissue
5948019, Oct 25 1995 Medtronic, Inc. Heart valve suturing ring with surface coating to inhibit tissue ingrowth
5957977, Jan 02 1996 University of Cincinnati; CINCINNATI, UNIVERSITY OF, THE Activation device for the natural heart including internal and external support structures
5961440, Jan 02 1997 Edwards Lifesciences LLC Heart wall tension reduction apparatus and method
5976069, Jul 24 1997 MAQUET CARDIOVASCULAR LLC Epicardial immobilization device
5979456, Apr 22 1996 Koninklijke Philips Electronics N V Apparatus and method for reversibly reshaping a body part
5984857, Sep 30 1991 Thoratec Corporation Step-down skeletal muscle energy conversion system
5990378, May 25 1995 Bridport Gundry (UK) Limited Textile surgical implants
6007486, Oct 07 1997 Ethicon Endo-Surgery, Inc. Tissue stabilization device for use during surgery having a segmented shaft
6015378, Sep 20 1995 Medtronic, Inc Method and apparatus for temporarily immobilizing a local area tissue
6024096, May 01 1998 CORRESTORE, INC Anterior segment ventricular restoration apparatus and method
6045497, Sep 18 1997 Edwards Lifesciences LLC Heart wall tension reduction apparatus and method
6050936, Jan 02 1997 Edwards Lifesciences LLC Heart wall tension reduction apparatus
6059715, Jan 02 1997 Edwards Lifesciences LLC Heart wall tension reduction apparatus
6071303, Dec 08 1996 BROWN, TONY R ; LAUFER, MICHAEL D Device for the treatment of infarcted tissue and method of treating infarcted tissue
6076013, Jan 14 1999 Apparatus and methods for treating congestive heart failure
6077214, Jul 29 1998 Edwards Lifesciences LLC Stress reduction apparatus and method
6077218, Oct 02 1996 MARDIL, INC Cardiac reinforcement device
6079414, Feb 22 1993 Heartport, Inc. Method for thoracoscopic intracardiac procedures including septal defect
6085754, Jul 13 1998 MARDIL, INC Cardiac disease treatment method
6095968, Apr 10 1998 SNYDERS, ROBERT V Reinforcement device
6110100, Apr 22 1998 Boston Scientific Scimed, Inc System for stress relieving the heart muscle and for controlling heart function
6117159, Mar 22 1996 Boston Scientific Scimed, Inc Apparatus and method for closing a septal defect
6117979, Aug 18 1997 JARO, MICHAEL J Process for making a bioprosthetic device and implants produced therefrom
6123662, Jul 13 1998 MARDIL, INC Cardiac disease treatment and device
6125852, Feb 23 1993 Heartport, Inc. Minimally-invasive devices and methods for treatment of congestive heart failure
6126590, Oct 02 1996 MARDIL, INC Cardiac reinforcement device
6155968, Jul 23 1998 BIOVENTRIX, INC Method and device for improving cardiac function
6155972, Feb 02 1999 MARDIL, INC Cardiac constraint jacket construction
6162168, Jan 02 1997 Edwards Lifesciences LLC Heart wall tension reduction apparatus
6165119, Sep 18 1997 Edwards Lifesciences LLC Heart wall tension reduction apparatus and method
6165120, Jan 02 1997 Edwards Lifesciences LLC Heart wall tension reduction apparatus and method
6165121, Sep 23 1997 MARDIL, INC Cardiac reinforcement device
6165122, Oct 02 1996 MARDIL, INC Cardiac reinforcement device
6166184, Aug 18 1997 Medtronic, Inc Process for making a bioprosthetic device
6169922, Nov 18 1998 MARDIL, INC Defibrillating cardiac jacket with interwoven electrode grids
6174279, Sep 21 1999 MARDIL, INC Cardiac constraint with tension indicator
6179791, Sep 21 1999 MARDIL, INC Device for heart measurement
6183411, Sep 21 1998 Edwards Lifesciences LLC External stress reduction device and method
6190408, Mar 05 1998 CINCINNATI, THE UNIVERSITY OF Device and method for restructuring the heart chamber geometry
6193648, Sep 21 1999 MARDIL, INC Cardiac constraint with draw string tensioning
6206820, Oct 18 1995 Fraunhofer Gesellschaft zur Foerderung der angewandten Forschung Device for supporting cardiac function having elastic filling chambers
6214047, Mar 10 1998 CINCINNATI, UNIVERSITY OF Article and method for coupling muscle to a prosthetic device
6221103, Jan 02 1996 The University of Cincinnati; CINCINNATI, UNIVERSITY OF, THE Device and method for restructuring heart chamber geometry
6224540, Jun 13 1995 ABIOMED, INC Passive girdle for heart ventricle for therapeutic aid to patients having ventricular dilatation
6230714, Nov 18 1998 MARDIL, INC Cardiac constraint with prior venus occlusion methods
6260552, Jul 29 1998 BIOVENTRIX, INC Transventricular implant tools and devices
6261222, Jan 02 1997 Edwards Lifesciences LLC Heart wall tension reduction apparatus and method
6264602, Jul 29 1998 Edwards Lifesciences LLC Stress reduction apparatus and method
6282445, Oct 15 1998 CARDIO TECHNOLOGIES, INC Passive defibrillation electrodes for use with cardiac assist device
6287250, Sep 21 1999 Maquet Cardiovascular, LLC Method and apparatus for cardiac lifting during beating heart surgery using pericardial clips
6293906, Jan 14 2000 MARDIL, INC Delivery of cardiac constraint jacket
6306141, Oct 14 1983 Medtronic, Inc Medical devices incorporating SIM alloy elements
6360749, Oct 09 1998 CARDIOPOLYMERS, INC Modification of properties and geometry of heart tissue to influence heart function
6375608, Oct 02 1996 MARDIL, INC Cardiac reinforcement device
6390976, Sep 17 1997 Maquet Cardiovascular, LLC System to permit offpump beating heart coronary bypass surgery
6402679, Sep 21 1998 Edwards Lifesciences LLC External stress reduction device and method
6402680, Jul 29 1998 Edwards Lifesciences LLC Stress reduction apparatus and method
6406420, Jan 02 1997 Edwards Lifesciences LLC Methods and devices for improving cardiac function in hearts
6409760, Mar 05 1998 University of Cincinnati Device and method for restructuring heart chamber geometry
6416459, Jun 21 1997 MARDIL, INC Bag for at least partially enveloping a heart
6425856, May 10 2000 MARDIL, INC Cardiac disease treatment and device
6432039, Dec 21 1998 Corset, Inc. Methods and apparatus for reinforcement of the heart ventricles
6451025, Apr 01 1996 General Surgical Innovations, Inc. Prosthesis and method for deployment within a body lumen
6482146, Jun 13 2000 MARDIL, INC Cardiac disease treatment and device
6517570, Aug 31 1994 W L GORE & ASSOCIATES, INC Exterior supported self-expanding stent-graft
6537203, Jul 13 1998 MARDIL, INC Cardiac disease treatment and device
6544168, Oct 02 1996 MARDIL, INC Cardiac reinforcement device
6547821, Jul 16 1998 Maquet Cardiovascular, LLC Surgical procedures and devices for increasing cardiac output of the heart
6564094, Dec 22 2000 MARDIL, INC Cardiac disease treatment and device
6567699, Nov 18 1998 MARDIL, INC Defibrillating cardiac constraint
6569082, Aug 10 1999 MAQUET CARDIOVASCULAR LLC Apparatus and methods for cardiac restraint
6572533, Aug 17 2000 DiaxaMed, LLC Cardiac disease treatment and device
6575921, Feb 09 2001 MARDIL, INC Device for heart measurement
6582355, Jul 13 1998 MARDIL, INC Cardiac disease treatment method
6587734, Nov 04 1998 MARDIL, INC Cardio therapeutic heart sack
6595912, Mar 10 2000 Paracor Medical, Inc Expandable cardiac harness for treating congestive heart failure
6602184, Mar 10 2000 Paracor Medical, Inc Expandable cardiac harness for treating congestive heart failure
6612978, Dec 22 1999 Paracor Medical, Inc Expandable cardiac harness for treating congestive heart failure
6612979, Mar 10 2000 Paracor Medical, Inc Expandable cardiac harness for treating congestive heart failure
6645139, Jun 21 1997 MARDIL, INC Bag for at least partially enveloping a heart
6663558, Dec 22 1999 Paracor Medical, Inc Expandable cardiac harness for treating congestive heart failure
6673009, Nov 08 2000 MARDIL, INC Adjustment clamp
6682474, Mar 10 2000 Paracor Medical, Inc Expandable cardiac harness for treating congestive heart failure
6682475, Jun 11 2002 MARDIL, INC Tension indicator for cardiac support device and method therefore
6682476, Jun 13 2000 MARDIL, INC Cardiac disease treatment and device
6685620, Sep 25 2001 The Foundry, LLC Ventricular infarct assist device and methods for using it
6685627, Oct 09 1998 Modification of properties and geometry of heart tissue to influence heart function
6689048, Jan 14 2000 MARDIL, INC Delivery of cardiac constraint jacket
6695769, Sep 25 2001 The Foundry, LLC Passive ventricular support devices and methods of using them
6701929, Mar 03 1999 Device and method for treatment of congestive heart failure
6702732, Dec 22 1999 Paracor Medical, Inc Expandable cardiac harness for treating congestive heart failure
6723041, Sep 10 2001 Paracor Medical, Inc Device for treating heart failure
6730016, Jun 12 2000 MARDIL, INC Cardiac disease treatment and device
6755779, Dec 01 2000 MARDIL, INC Apparatus and method for delivery of cardiac constraint jacket
6876887, Nov 04 1998 MARDIL, INC Cardio therapeutic heart sack
6881185, Jan 14 2000 MARDIL, INC Delivery of cardiac constraint jacket
6887192, Sep 08 2000 Converge Medical, Inc. Heart support to prevent ventricular remodeling
6893392, Oct 02 1996 MARDIL, INC Cardiac reinforcement device
6896652, Jul 13 1998 MARDIL, INC Cardiac disease treatment and device
6902522, Jun 12 2000 MARDIL, INC Cardiac disease treatment and device
6902524, Jun 13 2000 MARDIL, INC Cardiac disease treatment and device
6908426, May 10 2000 ACORN CARDIOVASCULAR, INC Cardiac disease treatment and device
7155295, Nov 07 2003 Paracor Medical, Inc Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
20010029314,
20010047122,
20020007216,
20020022880,
20020068849,
20020077524,
20020082647,
20020091296,
20020103511,
20030004547,
20030060674,
20030060677,
20030060895,
20030199733,
20030199955,
20030229265,
20040133069,
20040171907,
20040171908,
20050059854,
20050085688,
20050137673,
DE29517393,
DE3831540,
EP280564,
EP370931,
EP583012,
EP791330,
EP919193,
FR2527435,
FR2645739,
GB2115287,
GB2209678,
JP1145066,
JP1271829,
JP60203250,
SU1009457,
SU1734767,
WO2500,
WO6026,
WO6027,
WO6028,
WO13722,
WO16700,
WO18320,
WO28912,
WO28918,
WO36995,
WO42919,
WO45735,
WO48795,
WO62727,
WO74769,
WO117437,
WO121098,
WO150981,
WO167985,
WO185061,
WO191667,
WO195830,
WO195831,
WO195832,
WO213726,
WO219917,
WO3026483,
WO3026484,
WO3026485,
WO9119465,
WO9506447,
WO9604852,
WO9640356,
WO9720505,
WO9724101,
WO9803213,
WO9814136,
WO9826738,
WO9829041,
WO9858598,
WO9911201,
WO9930647,
WO9944534,
WO9944680,
WO9953977,
WO9956655,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Aug 01 2005Paracor Medical, Inc.(assignment on the face of the patent)
Sep 13 2005SCHAER, ALANParacor Medical, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0171240664 pdf
Sep 13 2005FISHLER, MATTHEW G Paracor Medical, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0171240664 pdf
Date Maintenance Fee Events
Apr 19 2013REM: Maintenance Fee Reminder Mailed.
Sep 08 2013EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Sep 08 20124 years fee payment window open
Mar 08 20136 months grace period start (w surcharge)
Sep 08 2013patent expiry (for year 4)
Sep 08 20152 years to revive unintentionally abandoned end. (for year 4)
Sep 08 20168 years fee payment window open
Mar 08 20176 months grace period start (w surcharge)
Sep 08 2017patent expiry (for year 8)
Sep 08 20192 years to revive unintentionally abandoned end. (for year 8)
Sep 08 202012 years fee payment window open
Mar 08 20216 months grace period start (w surcharge)
Sep 08 2021patent expiry (for year 12)
Sep 08 20232 years to revive unintentionally abandoned end. (for year 12)