An adjustable rear pistol sight has a sight base and a sight block. The sight block is secured in a recess in the sight base and has both windage and elevation adjustment capabilities. The sight base has a dovetail that will be receivable in a cooperatively shaped notch in a slide of a pistol with which the adjustable rear sight is intended for use. The sight has no sharp edges or surfaces and is essentially snag-free.
|
1. An adjustable rear sight adapted for use on a slide of a pistol, said adjustable rear sight comprising:
a sight base including a sight base dovetail and a sight base body, said sight base dovetail having a planar dovetail bottom and tapered dovetail front and rear walls, said sight base body being formed integrally with said sight base dovetail;
a sight base body recess in said sight base body, said sight base body recess being defined by first and second sight base body sidewalls, a sight base body recess bottom and a sight base body recess rear wall;
a sight block supported for translational and pivotable movement in said sight base body recess, said sight block including a sight block bottom, spaced sight block side walls, a sight block rear wall and a sight block upper surface;
a sight notch in said sight block and extending from a front edge of said sight block to said sight block rear wall;
a windage adjustment screw threadably secured in said sight block and rotatably supported in said first and second sight base body side walls; and
an elevation adjustment screw rotatably supported in said sight base body first and second walls and having an eccentric adjustment shank positioned between said sight block bottom and said sight base body recess bottom.
2. The adjustable rear sight of
3. The adjustable rear sight of
4. The adjustable rear sight of
5. The adjustable rear sight of
6. The adjustable rear sight of
7. The adjustable rear sight of
8. The adjustable rear sight of
9. The adjustable rear sight of
10. The adjustable rear sight of
11. The adjustable rear sight of
12. The adjustable rear sight of
13. The adjustable rear sight of
14. The adjustable rear sight of
15. The adjustable rear sight of
16. The adjustable rear sight of
17. The adjustable rear sight of
18. The adjustable rear sight of
19. The adjustable sight assembly of
|
This U.S. utility patent application claims priority, under 35 USC 119(e) and 120, to U.S. provisional patent application No. 60/750,051, filed Dec. 14, 2005. The disclosures of that application are expressly incorporated herein by reference.
The present invention is directed generally to an adjustable rear sight for a pistol. More specifically, the subject invention is directed to an adjustable rear pistol sight that is adjustable for both windage and elevation. Most specifically, the subject invention is directed to a windage and elevation adjustable rear pistol sight that is smooth, durable and compact in overall configuration and which is operable in a snag-free manner. The adjustable rear pistol sight includes a sight base and a sight block. The sight block is adjustable for windage and elevation through the provision of adjustment screws. There are no projecting portions of the screws, block or base. All edges are rounded and all corners are radiused to prevent any likelihood of the sight being apt to snag on holsters or clothing.
A wide variety of optical sights are currently available for use on firearms such as handguns or pistols. A typical pistol has optical alignment fixtures or sights that include a front sight and a rear sight. These two sights can be aligned with one another to form a sight picture for aligning the pistol's point of aim on a target. Prior art pistol sights are usually mounted along the top edge of the pistol. Traditional semi-automatic pistols, such as, for example, the well known Colt™ model 1911, caliber .45, include a grip or handle carrying a lower receiver, a trigger mechanism and a slide member which is slidably supported on the lower receiver.
The traditional front sight is a vertically projecting blade or ramp-like member that is mounted at the front of the slide. The rear sight is adapted for mounting to the rear of the slide using a dovetailed transverse protrusion that mates with a corresponding transverse dovetailed slot in the slide.
Police officers and members of the armed forces require especially rugged sights on their weapons and so a genre of firearms and accessories adapted for “combat carry” has evolved to serve their special needs. These firearms must be durable, dependable and easy to operate. One requirement of such “combat carry” types of firearms is that the sights which they utilize not present a snagging hazard. It is clearly imperative that the pistol user must be able to unholster or to otherwise remove his pistol from its carry position and to place it in its use position without the possibility of the sight mechanism becoming caught on, or snagging a portion of the holster, an article of the user's clothing or a strap or other component of an article of equipment that he may be carrying. Even a momentary delay in the smooth transition of the pistol from a carry position to a use position can have fatal consequences.
The assignee of the present application previously developed a fixed sight which is intended to provide a smooth and snag-free draw, a clear sight picture and rugged service. That fixed sight is shown in Design Patent D447,205. Others, including gunsmith Wayne Novak, have also developed sights which are also intended to provide rugged service. Such sights are often fitted in a transverse dovetailed notch formed in the rear of a pistol's slide and having standardized dimensions known in the industry as the “Novak notch” dimensions. By transverse is meant in a direction at a right angle to the pistol bore and lying in a horizontal plane when the pistol is held in a standard grip with the bore centerline in a horizontal plane. Generally, the standardized dimensions for the notch are selected so that the notch will accept a dovetail-like projection that is 12.5 millimeters in fore-aft length on a planar bottom surface and having sidewalls that taper inwardly at 70 degrees from horizontal on front and back wall surfaces. The bottom planar surface of the projection is preferably 3 mm in vertical height from the upper surface of the notch opening, within customary gunsmithing tolerances.
While the combat sights of the prior art do provide a somewhat smooth and snag-free draw, a clear sight picture and rugged service, they do not provide the adjustability many have come to enjoy when using target pistols equipped with adjustable target sights. Pistol sights are often used in a variety of situations. A sight is customarily optically aligned along the axis of the bore and is used to align the bore of the firearm with the target. Target sights are usually adjustable in the left and right direction for windage and in the up and down direction for elevation. A shooter will typically mount a sight to a firearm and will then immediately zero or sight-in the sight by a procedure of adjusting windage and elevation settings so that the sight's point of aim corresponds with the point of impact for a selected target at a desired range.
If a sight is mounted to a large caliber firearm, which is generating large recoil forces, or if the sight is subjected to rough handling, the zero or sighted-in position of the sight may change and the sight must then be adjusted for proper zero again. Traditional combat carry sights, as described above, are usually not adjustable for elevation, and so shooters have turned to permanently altering the front sight post by filing it down, to thereby raise the point of impact, or by substituting taller front sight blades, to lower the point of impact. Adjustments for windage have previously often required the shooter to strike the side of the sight with a pin punch and hammer, to thereby force the sight laterally in the notch, a clumsy and inherently inaccurate procedure that is clearly not well suited to making fine adjustments.
It will be readily apparent that a need exists for a rugged, durable, snag-free pistol rear sight that is adjustable for windage and for elevation and which overcomes the limitation of the prior art. The adjustable rear pistol sight in accordance with the present invention provides such a sight and is a substantial advance over the prior art.
It is an object of the present invention to provide an adjustable rear sight for a pistol.
Another object of the present invention is to provide an adjustable rear pistol sight that is adjustable for both windage and elevation.
A further object of the present invention is to provide an adjustable rear pistol sight that is smooth and durable and snag-free.
Yet a further object of the present invention is to provide an adjustable rear pistol sight which has no protruding elements.
Still another object of the present invention is to provide an adjustable rear pistol sight that is made of high-grade steel.
The aforesaid objects are achieved individually and in combination. It is not intended that the present invention be construed as requiring two or more of the objects to be combined unless expressly required by the claims attached hereto.
The adjustable rear pistol sight in accordance with the present invention is adapted to be received within a dovetail Novak-style notch in the pistol slide, in accordance with standard industry practice. The pistol sight thus includes a sight base having a bottom portion including a solid dovetail. The sight also includes a hinged and laterally movable sight block defining a sight notch. Both components are each machined from a solid piece of steel. The sight base provides a channel or bowl-like support defined by three protective vertical walls. This sight base is constructed to support and to protect the hinged and laterally movable sight block.
The sight picture of the assembled sight changes as the adjustable hinged and laterally movable sight block is adjusted. The sight block can be adjusted so that the assembled sight is symmetrical about a longitudinal sight axis that, when the sight is mounted on a pistol slide, is transverse to the dovetail and is parallel to the pistol bore.
The sight has a laterally movable longitudinal sight notch, in accordance with standard adjustable sight practice. The sight is adjustable, by the use of an elevation adjustment screw, situated on one lateral side of the sight, and by the use of a horizontal or windage adjustment screw situated on the other lateral side of the sight. Both conspicuously identify the adjustment functions of the hinged and laterally movable sight notch defining sight block and permit adjustment in elevation without requiring the shooter to file the front sight blade. Windage adjustments are also accomplished without requiring the shooter to use a drift punch on the sight body.
The sight assembly's sight base and sight block upper surface are defined on the left and right by radiused corners terminating in substantially vertical left and right side walls of the sight base. The rear surface of the sight base is angled or contoured forwardly from vertical, toward the pistol muzzle, and when viewed from the rear as during aiming, the sight base has a square-shaped recess machined into the angled rear surface to leave a substantially vertical recessed wall disposed symmetrically around and framing the longitudinal sight notch. The rear recess in the sight base is machined by a tool moving in a vertical square-shaped pattern lying in a plane that is parallel to the center axis of the dovetail and transverse to the sight's longitudinal axis, leaving the thickness of the resulting rear recess larger nearer the bottom of the sight base, and tapering to virtually no recess thickness nearer the top of the sight base. The sight base's upper surface tapers downwardly from rear to front terminating at the front edge in a front angled wall having the same angle as the front wall of the dovetail that is carried on the bottom of the sight base. The upper surface of the sight base also includes the bowl-shaped recess or channel which is disposed symmetrically about the sight assembly's longitudinal axis, to leave an open interior to support and protect the hinged and laterally movable sight block between vertical side walls. A set screw is partially concealed beneath the hinged and laterally movable sight block and is disposed in a threaded through-hole in the sight base and extending generally transversely to the longitudinal axis, through the dovetail of the sight base. This set screw is intended to be tightened by a user and to bear against the dovetail notch planar lower surface in the pistol slide. The sight notch runs longitudinally from a vertical rear wall of the hinged and laterally movable sight block to a front facing vertical wall defined in the hinged and laterally movable sight block. The recessed vertical rear wall of the sight base provides a large expanse of shadow or reflection-free background to aid in rapid sight alignment.
When mounted on a pistol slide, the sight assembly, in accordance with the present invention, provides a substantially smooth structure affixed in the pistol dovetail with windage and elevation adjustment screws for changing the position of the hinged and laterally movable sight notch formed in the sight block. The sight also features the vertical planar rear recessed wall machined into the rear of the sight base to frame the sight notch. As discussed above, the side walls of the sight base are radiused and rounded to essentially eliminate any possibility of the sight assembly of the present invention providing a snagging hazard.
The adjustable rear pistol sight in accordance with the present invention provides a windage and elevation sight assembly that is durable, smooth, dependable in operation and that has no exposed parts or non-flush elements which would form a snagging hazard. It is a substantial advance in the art.
A full and complete understanding of the adjustable rear pistol sight, in accordance with the present invention, will be had by referring to the detailed description of the preferred invention, as set forth subsequently, and as seen in the accompanying drawings, in which:
Referring initially to
Referring now initially to
Referring again to
Slide base body 58 is, as may be seen in
A central threaded vertical passage 84 is formed on the recess floor 78 generally overlying the sight base dovetail 56 and extending from the recess floor 78 to the dovetail bottom 60, as may be seen more clearly in
A forward pair of aligned apertures 98 and 100 are placed in the sight base body side walls 68 and 70, respectively, as may be seen in
The distal end 104 of the shank 106 of windage adjustment screw 108 has a reduced diameter that terminates in a shoulder 116. The left or second forward aperture 100 has a diameter adapted to receive the reduced diameter distal end 104 of the windage adjustment screw shank 106. That reduced diameter is less than the diameter of the threaded central portion of the shank 106 of the windage adjustment screw 108. The overall length of the windage adjustment screw 108 is such that the distal end 104 and the head 110 are both received in their respective sight base body forward aperture 100 and 98, respectively and do not protrude out beyond planes defined by the side walls 70 and 68. A wave washer 118 is slid onto the distal, reduced diameter end 104 of the windage adjustment screw before that end is inserted into the aperture 100. The wave washer 118 is thus interposed between the interior surface 76 of the wall 70 and the shank shoulder 116 of the windage adjustment screw 108. A groove 120 is formed in the shank 106 of the screw 108 and is situated so that it will be just interior of the inner wall surface 74 of right or first sight base body wall 68. A snap ring 122 is inserted into the groove 120 once the windage adjustment screw 108 has been placed in its forward apertures 98 and 100. Snap ring 122, in its inserted position, is best seen in
Rotation of the windage adjustment screw 108 is used to shift the sight block, generally at 54 laterally from side to side in the sight base body recess 72, as will be discussed in detail shortly. It is important that the windage adjustment screw have an audible and tactile detent so that the user can quantify an amount of adjustment which he accomplishes. Such an adjustment is done by inserting a screwdriver blade into the blade slot 112, and by then rotating the windage adjustment screw 108. Referring now to
A pair of rear apertures 138 and 140 are placed in side walls 68 and 70 of sight base body 58, as may also be seen in
The elevation adjustment screw 142 is insertable into the rear apertures 138 and 140 of the walls 68 and 70 of the right and left or first and second side walls 68 and 70. The distal end 146 of the elevation adjustment screw 142 is provided with an annular groove 154. As may be seen most clearly in
Referring again to
Again referring to
The second major component of the adjustable rear pistol sight 50 in accordance with the present invention is the sight block, generally at 54. As may be seen most clearly in
A pair of blind bores 200 and 202, as seen in
The sight block 54 is held in the recess 72 in the sight base body 58 by the passage of the threaded shank portion 106 of the windage adjustment screw 106 through a cooperatively threaded rocker sleeve 212 that is formed in the sight block 54. The threaded rocker sleeve 212 has a transverse threaded bore 214 into which the threaded central shank 106 of the windage adjustment screw is threaded. A lower arcuate surface 216 of the rocker sleeve 212 is supported in a forward transverse arcuate channel 218 that underlies the rocker sleeve 212 when the sight block 54 is positioned in the recess 72 in the sight base body 58. The forward end of the generally wedge-shaped sight block 54 is forced upwardly by the biasing pins 208 acting on the sight block bottom 190 forward of the axis of rotation of the sight block 54, which is defined by the threaded central shank 106 of the windage adjustment screw.
In passing, it is to be noted that the sight block 54 has a forward vertical passage 220. As may be seen in
As may be seen in
The body of the sight block 54 includes a longitudinally extending sight notch, generally at 230. A forward portion of that sight notch 230 terminates at the forward vertical passage 220 in the sight block 54. The sight notch 230 terminates, at its rear, at the sight block rear wall 196. While the sight notch 230 is depicted as being generally rectangular or square in cross-section, it will be understood that other shapes are also suitable for the sight notch 230.
A pair of sources of luminescence, such as tritium vials 232 can be placed on either side of the sight notch 230 in the rear wall 196 of the sight block. These sources of luminescence are depicted as the typical tritium vials but could be arranged in configurations other than the two dots depicted in
Referring again to
In operation, the assembled sight 50, with the set screw 86 at least partially screwed into the central threaded passage 84, is slid laterally or transversely, with respect to the longitudinal axis of the slide 28, into the rear Novak-type notch 36, or other similar aperture in the slide 28. Once the sight 50 has been centrally situated in that rear notch, the set screw 86 is tightened down to secure the adjustable sight 50 firmly in place, as was discussed previously. The elevation and windage of the sight 50 can now be adjusted during a sighting-in or zeroing process that is generally known to those of skill in the art. The windage is adjustable by rotation of the windage adjustment screw 108. The threaded central shank 106 of that screw 108 is received in the transverse threaded bore 214 in the rocker sleeve 212 of the sight block 54. Rotation of the windage adjustment screw 108 will thus shift the sight block 54 laterally in the sight base body recess 72 in one direction or the other, depending on the direction of rotation of the windage adjustment screw.
Elevation adjustment of the sight block 54 is accomplished by rotation of the elevation adjustment screw or shaft 142. As described previously, the central eccentric shank 144 of screw or shaft 142 is movable in the chamber 226 defined by the cooperating sight block and sight base body. Both the adjustment screws 108 and 142 are each held in a desired adjusted position by their respective detent mechanisms, as was described previously.
As may be seen in a number of the accompanying drawings, the corners of the sight base body 58 are all rounded or radiused. This has been done to insure that the finished and assembled sight 50 has a smooth outer finish which will not snag or become caught. The sight block 54 is situated within the confines of the sight base body recess 72. The heads and distal ends of the windage adjustment screw 108 and of the elevation adjustment screw 142 are flush with the side walls 68 and 70 of the sight base body 58. The front portion of the base body 58 transitions into the front wall 62 of the sight base dovetail 56. The result, as has been discussed above, is an adjustable sight with windage and elevation capabilities that is durable, that has a smooth snag-resistant exterior and that has a clean, uncluttered overall appearance.
The two major components of the adjustable sight in accordance with the present invention are each machined from high quality materials such as tool-grade steel or the like. Sophisticated machining processes, such as EDM machining are employed to form each of the sight base and the sight body out of a single piece of metal. The result is an adjustable sight that is well-suited to the rigorous service demands placed on it by law enforcement and military forces while still providing the windage and elevation adjustment capabilities that have come to be associated with high-end equipment.
While a preferred embodiment of an adjustable rear pistol sight, in accordance with the present invention, has been set forth fully and completely hereinabove, it will be apparent to one of skill in the art that various changes could be made without departing from the true spirit and scope of the present invention which is accordingly to be limited only by the appended claims.
Patent | Priority | Assignee | Title |
10126098, | Mar 12 2013 | I.P. HOLDING GROUP I, L.L.C. | Rear sight for firearm |
10408568, | Mar 04 2016 | Skychase Holdings Corporation | Sight for a pistol or other firearm |
8151511, | Apr 08 2010 | Beretta USA Corp. | Gun sight mount for pistols |
8997391, | Dec 19 2012 | Penn United Technologies, Inc.; PENN UNITED TECHNOLOGIES, INC | Firearm sight |
9322614, | Apr 12 2013 | Front iron sight for a firearm providing a tubular aperture through a housing with top opening for light and methods of use | |
9714811, | Jan 30 2015 | NOVAK DESIGNS, INC | Adjustable rear sight for a firearm |
9733045, | Oct 22 2015 | MACY, PRESTON, MR ; MOORE, DAVID, MR | Folding sight assembly |
Patent | Priority | Assignee | Title |
2162090, | |||
3834035, | |||
4477979, | Jan 13 1983 | Gun sight | |
4551920, | May 20 1983 | Steyr-Daimler-Puch Aktiengesellschaft | Rear sight for firearms |
6779290, | Aug 26 2002 | The United States of America as represented by the Secretary of the Army; U S GOVERNMENT AS REPRESENTED BY THE SECRETARY OF THE ARMY | Semi permanent backup iron sight |
7526890, | Aug 22 2003 | Adjustable rear pistol sight and sight mounting and adjustment method | |
20060207157, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 14 2006 | Keng's Firearms Specialty, Inc. | (assignment on the face of the patent) | / | |||
Sep 21 2009 | ERTL, THOMAS, MR | KENG S FIREARMS SPECIALTY, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023264 | /0038 |
Date | Maintenance Fee Events |
Oct 26 2010 | ASPN: Payor Number Assigned. |
Feb 25 2013 | ASPN: Payor Number Assigned. |
Feb 25 2013 | RMPN: Payer Number De-assigned. |
Mar 15 2013 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Apr 28 2017 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Jun 21 2021 | REM: Maintenance Fee Reminder Mailed. |
Dec 06 2021 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Nov 03 2012 | 4 years fee payment window open |
May 03 2013 | 6 months grace period start (w surcharge) |
Nov 03 2013 | patent expiry (for year 4) |
Nov 03 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 03 2016 | 8 years fee payment window open |
May 03 2017 | 6 months grace period start (w surcharge) |
Nov 03 2017 | patent expiry (for year 8) |
Nov 03 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 03 2020 | 12 years fee payment window open |
May 03 2021 | 6 months grace period start (w surcharge) |
Nov 03 2021 | patent expiry (for year 12) |
Nov 03 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |