A semiconductor device includes a first capacitor node, a second capacitor node, a first capacitor electrode, a second capacitor electrode, a first switch and a second switch. The first switch is coupled between the first capacitor electrode and the first and second capacitor nodes such that the first switch has a first position that couples the first capacitor electrode to the first capacitor node and a second position that couples the first capacitor electrode to the second capacitor node. The second switch is coupled between the second capacitor electrode and the first and second capacitor nodes such that the second switch has a first position that couples the second capacitor electrode to the first capacitor node and a second position that couples the second capacitor electrode to the second capacitor node.

Patent
   7626222
Priority
Oct 22 2003
Filed
Apr 21 2006
Issued
Dec 01 2009
Expiry
Dec 13 2025
Extension
424 days
Assg.orig
Entity
Large
0
13
all paid
1. A semiconductor device comprising:
a first capacitor node;
a second capacitor node;
a first capacitor electrode;
a second capacitor electrode;
a capacitor dielectric disposed between the first capacitor electrode and the second capacitor electrode;
a first switch coupled between the first capacitor electrode and the first and second capacitor nodes such that the first switch has a first position that couples the first capacitor electrode to the first capacitor node and a second position that couples the first capacitor electrode to the second capacitor node; and
a second switch coupled between the second capacitor electrode and the first and second capacitor nodes such that the second switch has a first position that couples the second capacitor electrode to the first capacitor node and a second position that couples the second capacitor electrode to the second capacitor node.
10. A semiconductor device comprising:
a first capacitor electrode;
a second capacitor electrode;
a dielectric between the first capacitor electrode and the second capacitor electrode;
a changeover arrangement having a first input and a second input and a first output and a second output, wherein, in order to connect the capacitor, the first input constitutes a terminal for the first capacitor electrode and the second input constitutes a terminal for the second capacitor electrode, and the first output is connected to the first capacitor electrode and the second output is connected to the second capacitor electrode, and in which case, in a first switch position in the changeover arrangement, the first input is connected to the first output and the second input is connected to the second output and, in a second switch position, the first input is connected to the second output and the second input is connected to the first output.
2. The device of claim 1, further comprising a single control line coupled to both the first switch and the second switch.
3. The device of claim 2, wherein the single control line carries a control periodic signal.
4. The device of claim 1, wherein the first capacitor node always carries a voltage that is greater than or equal to a voltage carried on the second capacitor node.
5. The device of claim 4, wherein the first capacitor node carries a fixed voltage.
6. The device of claim 2, wherein a control signal is triggered by an event.
7. the device of claim 1, wherein the semiconductor device is operated in a bipolar manner.
8. The device of claim 1, wherein applying a capacitor voltage comprises applying a constant DC voltage.
9. The device of claim 1, wherein applying a capacitor voltage comprises applying both a constant DC voltage and a pulsating voltage.
11. The device of claim 10, wherein the changeover arrangement has a control input that controls the switch position.
12. The device of claim 11, wherein the control input is coupled to a control signal generator.
13. The device of claim 12, wherein the control signal generator generates a periodic control signal.
14. The device of claim 10, wherein the first input always carries a voltage that is greater than or equal to a voltage carried on the second input.
15. The device of claim 14, wherein the first input carries a fixed voltage.
16. The device of claim 12, wherein the control signal generator generates a control signal triggered by an event.
17. The device of claim 10, wherein the semiconductor device is operated in a bipolar manner.

This application is a continuation of co-pending International Application No. PCT/DE2004/002301, filed Oct. 15, 2004, which designated the United States and was not published in English, and which is based on German Application No. 103 49 557.6 filed Oct. 22, 2003, both of which applications are incorporated herein by reference.

The invention relates to a capacitor arrangement in a semiconductor component having a first capacitor electrode, a second capacitor electrode and a dielectric that is surrounded by the capacitor electrodes, it being possible to apply a capacitor voltage to the capacitor electrodes.

The invention also relates to a method for driving a capacitor in a semiconductor component, a capacitor voltage being applied to the capacitor electrodes.

Capacitors constitute basic components of semiconductor technology and may undertake various functions within a semiconductor component. In this case, two different operating modes, unipolar operation and bipolar operation, are essentially considered. In this case, unipolar operation is understood as meaning that a voltage having the same polarity but not necessarily the same amplitude is applied to the capacitor. Applying a DC voltage that has the same polarity and the same amplitude is thus a special form of unipolar operation. Bipolar operation is understood as meaning that a voltage having alternating polarity is applied.

Depending on the operating mode, capacitors that are operated in a unipolar manner are used, for example, to protect against current spikes within the semiconductor component, and bipolar capacitors are used to filter signals.

It is known that integrated capacitors have a limited lifetime which, in addition to various operating parameters such as temperature and the applied voltage, is directly associated with the thickness of the dielectric used.

It has been proven using experiments that particular dielectrics used in the semiconductor region have a longer lifetime during bipolar operation than during unipolar operation. Either a higher thickness of the dielectric or else a shorter lifetime must, therefore, be accepted for capacitors that are operated in a unipolar manner.

Therefore, the invention is based on the object of providing a circuit arrangement and a method for driving a capacitor, which avoids the disadvantages of a capacitor that is operated in a unipolar manner.

The object on which the invention is based is achieved by means of a capacitor circuit arrangement by virtue of the fact that a changeover arrangement having a first input and a second input and a first output and a second output is provided. In this case, in order to externally connect the capacitor, the first input constitutes the terminal for the first capacitor electrode and the second input constitutes the terminal for the second capacitor electrode. The changeover arrangement has two outputs that are designed in such a manner that the first output is connected to the first capacitor electrode and the second output is connected to the second capacitor electrode. In a first switch position in the changeover arrangement, the first input is connected to the first output and the second input is connected to the second output and, in a second switch position, the first input is connected to the second output and the second input is connected to the first output. This capacitor circuit arrangement makes it possible to change the polarity at the capacitor electrodes.

In one expedient refinement of the invention, the changeover arrangement has a control input, which is connected to a control signal generator, which thus enables a changeover operation that can be electronically switched from the outside.

The object on which the invention is based is also achieved by means of a driving method that drives the capacitor circuit arrangement in such a manner that the capacitor voltage is applied, with alternating polarity, during an overall period of time in such a manner that it is applied with a first polarity during first periods of time and with a second polarity that is opposite to the first polarity during second periods of time.

The invention shall be explained in more detail below with reference to two exemplary embodiments. In the associated drawings:

FIG. 1 shows an inventive distribution of the polarity of the capacitor voltage;

FIG. 2 shows an inventive distribution of the polarity of the capacitor voltage as a pulsating DC voltage; and

FIG. 3 shows a capacitor circuit arrangement according to the invention.

The following list of reference symbols can be used in conjunction with the figures:

1 Capacitor
2 Changeover arrangement
3 First input
4 Second input
5 First switch
6 Second switch
7 Control line
8 First output
9 Second output
N Event

As illustrated in the drawings, the polarity at the capacitor 1 changes as a result of a regular event N, which can be selected depending on the application. The event N is formed by applying the operating voltage to the semiconductor component or by an internally generated clock.

In this exemplary embodiment, the capacitor comprises two TiN electrodes and an SiN dielectric, which is surrounded by the electrodes.

FIG. 3 illustrates a changeover arrangement 2 that is implemented using conventional components and is intended to reverse the polarity at the capacitor 1. The capacitor circuit arrangement includes a first input 3 and a second input 4 as well as a changeover arrangement 2 that contains a first switch 5 and a second switch 6. Both switches can be electronically controlled using a control line 7. The changeover arrangement 2 has a first output 8 and a second output 9 which equally constitute the inputs of the capacitor 1.

If a control signal that is triggered by an event N is applied to the control line 7, the switches 5 and 6 are operated and the connections between the first input 3 and the first output 8 and between the second input 4 and the second output 9 are mutually interchanged. Depending on the signal applied and on the basis of the event N, capacitor voltage profiles as illustrated in FIG. 1 or FIG. 2 thus result.

The effect achieved in this case is that it becomes possible to now operate a capacitor, which has previously been operated in a purely unipolar manner, in a bipolar manner using a change in polarity and thus to significantly extend the lifetime of the capacitor.

In order to make optimum use of the effect to extend the lifetime of the capacitor, the stress levels of both polarities should compensate for each other.

For applications in which the capacitor is operated using a DC voltage, it is, therefore, necessary for the cumulated time during which the capacitor is operated with the first polarity to be approximately equal to the cumulated time during which the capacitor is operated with the second polarity. This type of application is preferred for use of the invention.

For applications in which the capacitor is operated using a voltage that varies over time, the time integral from the product of time and a suitable function of the voltage must be approximately compensated for with both polarities.

In order to carry out the method according to the invention, the originally applied capacitor voltage may be both a constant DC voltage and/or a pulsating DC voltage. The method can thus be applied to all capacitors that are operated in a unipolar manner.

In order to achieve the desired effect, the first and second periods of time may be seconds to weeks.

In another variant of the method according to the invention, the changeover arrangement is driven using a control signal. This has the advantage of possible automation of the changes in polarity of the capacitor voltage. It is possible to use the application of the operating voltage to the semiconductor component as the control signal. It is also possible to use an internally generated clock as the control signal. The advantage of one of these two embodiments of the method is that the polarity of the capacitor voltage is changed over in a completely automatic manner.

The considerable extension of the lifetime of the capacitor, which is achieved by means of the invention, can be used to increase the reliability and lifetime of the capacitor and thus of the overall semiconductor component. On the other hand, it is possible to reduce the thickness of the dielectric, which is required for a desired lifetime, and thus to reduce the space required by the capacitor in the semiconductor component.

Schwab, Reiner, Allers, Karl-Heinz

Patent Priority Assignee Title
Patent Priority Assignee Title
4897774, May 12 1987 Maxim Integrated Products Integrated dual charge pump power supply and RS-232 transmitter/receiver
5270913, Apr 06 1992 VARENTEC, LLC Compact and efficient transformerless power conversion system
5274586, Oct 18 1990 Renesas Electronics Corporation Semiconductor device having a capacitor dielectric film of multilayer structure and a method of controlling the same
5461557, Sep 02 1992 NEC Corporation Voltage converting circuit and multiphase clock generating circuit used for driving the same
5668710, Jul 03 1996 Microchip Technology Incorporated Charge pump circuit having independent inverted and non-inverted terminals
5734291, Mar 11 1996 Microchip Technology Incorporated Power saving technique for battery powered devices
6232169, Apr 24 1995 Qimonda AG Method for producing a capacitor
6549437, Aug 16 1999 NGK Insulators, Ltd.; NGK Insulators, Ltd Voltage converter
7453711, Mar 26 2004 Rohm Co., Ltd. Step-up power supply unit and portable apparatus utilizing the same
20010015449,
20030057987,
DE10145021,
DE20013501,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 21 2006Infineon Technologies AG(assignment on the face of the patent)
May 02 2006ALLERS, KARL-HEINZInfineon Technologies AGASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0179440402 pdf
May 09 2006SCHWAB, REINERInfineon Technologies AGASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0179440402 pdf
Date Maintenance Fee Events
Jan 08 2010ASPN: Payor Number Assigned.
Mar 14 2013M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
May 22 2017M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
May 27 2021M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Dec 01 20124 years fee payment window open
Jun 01 20136 months grace period start (w surcharge)
Dec 01 2013patent expiry (for year 4)
Dec 01 20152 years to revive unintentionally abandoned end. (for year 4)
Dec 01 20168 years fee payment window open
Jun 01 20176 months grace period start (w surcharge)
Dec 01 2017patent expiry (for year 8)
Dec 01 20192 years to revive unintentionally abandoned end. (for year 8)
Dec 01 202012 years fee payment window open
Jun 01 20216 months grace period start (w surcharge)
Dec 01 2021patent expiry (for year 12)
Dec 01 20232 years to revive unintentionally abandoned end. (for year 12)