An apparatus useful in the removal of toxic materials from toxic weapon projectiles has a base, a projectile retaining container and a ram. The projectile retaining container has a projectile retainer opening, a ram opening and a drain opening. The projectile retaining container is adapted to retain a toxic weapon projectile in the projectile retainer opening. The ram is adapted to extend into a toxic weapon projectile disposed within the projectile retaining container to crush the projectile's burster well and to thereby release toxic materials to the drain opening in the projectile retaining container. The ram alternatively includes high pressure water nozzles for breaking up any coagulant particles and for thoroughly rinsing the interior side walls of the toxic weapon projectile.
|
1. An apparatus useful in the removal of toxic material from a toxic weapon projectile having a casing, a burster well, a base and an ogive, the apparatus comprising:
a) a base;
b) a projectile retaining container disposed on the base for accepting and retaining the ogive of a toxic weapon projectile, the projectile retaining container having a projectile retainer opening, a ram opening and a drain opening;
c) a ram disposed on the base and extending upwards through the ram opening into the projectile retaining container, the ram including a ram head having one or more spray nozzles, the ram being extendible and retractable between (1) a retracted ram position wherein the ram is disposed proximate to the ram opening, and (2) an extended ram position wherein the ram is disposed distal to the ram opening, the ram being capable of delivering sufficient force across the ram head to crush the burster well of a toxic weapon projectile retained within the projectile retaining container;
d) a projectile retainer opening seal for sealing the ogive of a toxic weapon projectile within the projectile retaining opening; and
e) a ram opening seal for sealing the ram within the ram opening.
11. An apparatus useful in the removal of toxic material from a toxic weapon projectile having a casing, a burster well, a base and an ogive, the apparatus comprising:
a) a base;
b) a projectile retaining container having an upper portion and a lower portion, the projectile retaining container being disposed on the base for accepting and retaining the ogive of a toxic weapon projectile, the projectile retaining container defining a projectile retainer opening in the upper portion of the projectile retaining container, a ram opening in the lower portion of the projectile retaining container and a drain opening in the lower portion of the projectile retaining container;
c) a ram disposed on the base and extending upwards through the ram opening into the projectile retaining container, the ram including a ram head having one or more spray nozzles, the ram being extendible and retractable between (1) a retracted ram position wherein the ram is disposed proximate to the ram opening, and (2) an extended ram position wherein the ram is disposed distal to the ram opening;
d) a projectile retainer opening seal for sealing the ogive of a toxic weapon projectile within the projectile retaining opening;
e) a ram opening seal for sealing the ram within the ram opening;
f) a rotator for rotating a toxic weapon projectile retained within the projectile retaining container; and
g) a projectile base end retaining member, the projectile base end retaining member being moveable between (1) a first retainer member position wherein the retainer member is directly above the projectile retaining container and (2) a second retainer member position wherein the retainer member is not disposed directly above the projectile retaining container.
2. The apparatus of
4. The apparatus of
5. The apparatus of
6. The apparatus of
7. The apparatus of
8. The apparatus of
9. The apparatus of
10. The apparatus of
12. The apparatus of
13. The apparatus of
14. The apparatus of
|
This application is a continuation of application Ser. No. 10/763,434, filed on Jan. 21, 2004 now abandoned.
The removal of toxic materials from toxic weapon projectiles, such as chemical weapon projectiles, is a major problem for all nations having aging toxic weapons. Typically, the toxic materials within such projectiles are extremely lethal and cannot be dealt with except under extremely secured conditions.
Many of the toxic materials used in toxic chemical weapon projectiles are liquid in form. For such projectiles, prior methods for removing the toxic material from the projectiles generally entail disposing a suction tube into the toxic agent cavity of the projectiles and vacuuming out the toxic material from the cavity. The problems with such methods are several-fold. First of all, the methods are of no use where some or all of the toxic materials are non-liquid in form. This is a considerable problem because many of the liquid toxic materials tend to coagulate with age and form large solid masses within the toxic agent cavity. Secondly, such prior art methods do nothing towards removing the considerable amount of toxic materials which continue to adhere to the interior walls of the projectile.
Accordingly, there is a need for an apparatus for removing toxic materials from toxic weapon projectiles which avoids these problems in the prior art in a simple, inexpensive and efficient manner.
The invention satisfies this need. The invention is an apparatus useful in the removal of toxic material from a toxic weapon projectile having a casing, a burster well, a base and an ogive. The apparatus comprises a) a base, b) a projectile retaining container disposed on the base for accepting and retaining the ogive of a toxic weapon projectile, the projectile retaining container having a projectile retainer opening, a ram opening and a drain opening, c) a ram disposed on the base and extending upwards through the ram opening into the projectile retaining container, the ram including a ram head having one or more spray nozzles, the ram being extendible and retractable between (1) a retracted ram position wherein the ram is disposed proximate to the ram opening, and (2) an extended ram position wherein the ram is disposed distal to the ram opening; d) a projectile retainer opening seal for sealing the ogive of a toxic weapon projectile within the projectile retaining opening; and e) a ram opening seal for sealing the ram within the ram opening.
These features, aspects and advantages of the present invention will become better understood with regard to the following description, appended claims and accompanying figures where:
The following discussion describes in detail one embodiment of the invention and several variations of that embodiment. This discussion should not be construed, however, as limiting the invention to those particular embodiments. Practitioners skilled in the art will recognize numerous other embodiments as well.
The invention is directed to the removal of toxic materials 1 from a toxic weapon projectile 2 such as illustrated in
The invention is a unique apparatus 10 and a method for using the apparatus 10. The apparatus 10 comprises a base 12, a projectile retaining container 14 and a ram 16.
The base 12 can be of any suitable size and shape capable of retaining a toxic weapon projectile 2, the projectile retaining container 14 and the ram 16 during operation. Typically, the base 12 is made with steel structural components.
The projectile retaining container 14 is disposed on the base 12 and is adapted for accepting and retaining the ogive 6 of a toxic weapon projectile 2. The projectile retaining container 14 defines a projectile retainer opening 18, a ram opening 20 and a drain opening 22. The projectile retaining container 14 is best understood by reference to
The projectile retaining container 14 also includes a projectile retainer opening seal 24 for sealing the ogive 6 of a toxic weapon projectile 2 within the projectile retaining opening 18. In the embodiment illustrated in the drawings, the projectile retainer opening seal 24 is provided by a liner 26 disposed within the interior of the projectile retaining container 14. The liner 26 is typically made from a fluorocarbon polymer, such as polytetrafluoroethylene, marketed by the DuPont Company of Wilmington, Del. under the Teflon® trademark. The liner 26 is retained within the projectile retaining container 14 by a liner retention ring 28. Preferably, the liner 26 is biased towards the top of the projectile retaining container 14 by springs 30 or other biasing means disposed between the liner retention ring 28 and the liner 26.
A resilient gasket 32, such as a rubber gasket, is attached to the bottom of the liner 26 to provide a primary means for preventing toxic material from upwardly escaping through the projectile retainer opening 18 along the sides of the ogive 6. Preferably, the interface between the ogive 6 and the liner 26 also forms a tortuous path to further impede the escape of toxic material from the projectile retainer opening 18.
The ram 16 is disposed on the base 12 and extends into the ram opening 20 in the projectile retaining container 14. The ram 16 is extendable and retractable between (1) a retracted ram position wherein the ram 16 is disposed proximal to the ram opening 20, and (2) an extended ram position wherein the ram 16 is disposed distal to the ram opening 20. In a typical embodiment, the travel distance between the retracted ram position and the extended ram position is between about 4⅛ inches and 6⅝ inches.
The ram 16 includes a ram head 34 which comprises a ram head cap 36 retained on the ram 16 by a ram head cap bolt 38.
The diameter of the ram 16 is chosen to closely match the diameter of the central opening 7 in the ogive 6 of the projectile 2 into which the ram 16 will be extended. For example, where the projectile 2 is a 105 mm projectile or a 155 mm projectile, the diameter of the central opening 7 in the ogive 6 is 1.845 inches. For these projectiles 2, the diameter of the ram 16 is chosen in one embodiment to be about 1.75 inches, leaving an annulus between the ram 16 and the central opening 7 in the ogive 6 of less than about 0.05 inches, for example about 0.047 inches. Choosing the diameter of the ram 16 to match the central opening 7 in the ogive 6 in this manner, effectively prevents the escape of any large coagulant particles within the toxic materials 1 from the projectile 2 along the ram 16 and into the projectile retaining container 14. This aspect of the invention is significant because it precludes the necessity for specialized downstream equipment to collect and process large coagulant particles.
The ram 16 is adapted with appropriate hydraulic equipment 40 to extend upwardly and retract downwardly. In a typical embodiment, the ram 16 is designed to deliver at least about 100 tons of force across the ram head 34. In operation, the ram 16 typically delivers between about 50 tons of force and 60 tons of force during the time the ram 16 is used to crush the burster well 4 of the projectile 2 (as described below).
Preferably, the ram 16 includes one or more spray nozzles 42 capable of accepting washing fluid at pressures in excess of 5,000 psig and dispensing such washing fluid at high velocities.
As can be most easily seen in
Preferably, the apparatus 10 further comprises a rotator 46 for rotating a toxic weapon projectile 2 retained within the projectile retaining container 14. In the embodiment illustrated in the drawings, the rotator 46 comprises a drive wheel capable of contacting the exterior of a toxic weapon projectile 2 disposed within the apparatus 10 and rotating such projectile 2 about its longitudinal axis. The apparatus further comprises a plurality of idler wheels 47 to help retain the projectile 2 in place during its rotation.
The apparatus 10 also preferably comprises a projectile base end retainer member 48 for rigidly retaining a toxic weapon projectile 2 within the apparatus 10. The projectile base end retainer member 48 is best seen in
In operation, the projectile base end retainer member 48 is moved to the second retainer member position and a toxic weapon projectile 2, without fuse and explosive materials, is disposed downwardly into the projectile retaining container 14. The projectile base end member 48 is then moved to the first retainer member position, whereby the projectile base end retainer member 48 firmly retains the projectile 2 within the apparatus 10.
The ram 16 is then extended from the retracted ram position towards the extended ram position. As the ram 16 extends towards the extended ram position, it pushes upwardly into the toxic weapon projectile 2. As the ram 16 pushes upwardly into the toxic weapon projectile 2, it crushes the burster well 4, as illustrated in
After the ram 16 has crushed the burster well 4 as illustrated in
After the projectile 2 has been flushed in the manner described above, the projectile 2 retains less than about 2% (by weight), typically less than about 0.1% (by weight), of its initial toxic material pay load. Thereafter, the projectile base end retainer member 48 is moved from the first retainer member position to the second retainer member position and the projectile 2 is removed from the apparatus 10 for further detoxification.
The invention provides a simple but reliable apparatus and method for removing most of the toxic materials from toxic weapon projectiles.
Having thus described the invention, it should be apparent that numerous structural modifications and adaptations may be resorted to without departing from the scope and fair meaning of the instant invention as set forth hereinabove.
Patent | Priority | Assignee | Title |
11014801, | Nov 10 2017 | Pentair Flow Technologies, LLC | Coupler for use in a closed transfer system |
11214479, | Nov 10 2017 | Pentair Flow Technologies, LLC | Probe assembly for use in a closed transfer system |
11795047, | Nov 10 2017 | Pentair Flow Technologies, LLC | Probe assembly for use in a closed transfer system |
8516937, | Mar 31 2009 | KABUSHIKI KAISHA KOBE SEIKO SHO KOBE STEEL, LTD | Blast treatment method and blast treatment device |
Patent | Priority | Assignee | Title |
1492905, | |||
1492922, | |||
1492925, | |||
1516343, | |||
2517106, | |||
3993221, | Oct 24 1975 | WELLS FARGO BANK N A | Closed system chemical transfer apparatus |
4166481, | May 30 1978 | Closed liquid transfer system | |
4407341, | May 16 1980 | Colgate-Palmolive Company | Apparatus for removing contents of damaged aerosol containers |
4690180, | Nov 08 1984 | CERES EQUIPMENT AND SERVICES, INC ; INTEGRATED ENVIRONMENT SERVICES, INC | Cylinder rupture vessel |
4760783, | Jul 09 1986 | NGK Insulators, Ltd. | Compression apparatus having a main compression device and a tapered precompression device |
5025730, | Jun 18 1990 | Jacketed projectile for ammunition | |
5383498, | Dec 13 1993 | CERES EQUIPMENT AND SERVICES, INC ; INTEGRATED ENVIRONMENT SERVICES, INC | Cylinder rupture vessel with cylinder rotation mechanism and rupture mechanism |
5427157, | May 28 1993 | CERES EQUIPMENT AND SERVICES, INC ; INTEGRATED ENVIRONMENT SERVICES, INC | Apparatus and method for controlled penetration of compressed fluid cylinders |
5463887, | Jan 20 1993 | Sfanid Renov'cuves | Device for the preparation of used metal barrels with a view to facilitating handling and recycling thereof |
5626042, | May 12 1995 | Device for the preparation of used metal barrels with a view to facilitating handling and recycling thereof | |
5737709, | Dec 29 1994 | KMT WATERJET SYSTEMS, INC | High pressure washout of explosives agents |
5781868, | Dec 29 1994 | Alliant Techsystems Inc. | High pressure washout of chemical agents |
5974937, | Apr 03 1998 | Day & Zimmermann, Inc. | Method and system for removing and explosive charge from a shaped charge munition |
6245958, | Sep 12 1997 | ENERGOTECH, LLC | Methods for non-incendiary disposal of rockets, projectiles, missiles and parts thereof |
6320092, | Aug 11 1997 | Krasnoarmeisky Nauchno-Issledovatelsky Institut Mekmanizaishi | Removing an explosive substance for reprocessing |
6393900, | Nov 17 1999 | Glaxo Wellcome Inc | Aerosol can content analyzer workstation |
6470783, | Jul 24 2000 | Kabushiki Kaisha Kobe Seiko Sho. | Installation for dismantling chemical bombs |
6805844, | Mar 03 2000 | Tennessee Valley Authority | Reactor vessel, method and system for treating, sampling, and transporting toxic waste |
6901835, | Nov 26 2003 | DAY & ZIMMERMANN, INC | Cone and charge extractor |
EP622605, | |||
FR1464807, | |||
JP2001066100, | |||
JP2002195800, | |||
JP2003075099, | |||
JP2003075100, | |||
JP2003314998, | |||
RE33799, | Apr 02 1990 | CERES EQUIPMENT AND SERVICES, INC ; INTEGRATED ENVIRONMENT SERVICES, INC | Cylinder rupture vessel |
WO9534797, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 28 2005 | OSTERLOH, JAMES | Parsons Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 047644 | /0208 | |
Jan 11 2006 | Parsons Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 19 2013 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 12 2017 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Aug 02 2021 | REM: Maintenance Fee Reminder Mailed. |
Jan 17 2022 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Dec 15 2012 | 4 years fee payment window open |
Jun 15 2013 | 6 months grace period start (w surcharge) |
Dec 15 2013 | patent expiry (for year 4) |
Dec 15 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 15 2016 | 8 years fee payment window open |
Jun 15 2017 | 6 months grace period start (w surcharge) |
Dec 15 2017 | patent expiry (for year 8) |
Dec 15 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 15 2020 | 12 years fee payment window open |
Jun 15 2021 | 6 months grace period start (w surcharge) |
Dec 15 2021 | patent expiry (for year 12) |
Dec 15 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |