A method of producing safe drinking water from virtually any water source utilizing a water purification system is disclosed. The method includes a combination of water purification methods with a control system that evaluates water quality and functional processing parameters, such as pressure and flow. The control system determines what water processing methods to utilize and how most efficiently to operate them. The system is capable of treating highly contaminated water to the necessary degree to produce safe drinking water. Furthermore, the system regulates and cleans itself to maintain functionality despite receiving high concentrations of various contaminants from the feed water source.
|
24. A water purification method comprising the steps of:
filtering the water through a screen having a pore size of between about 30 microns and about 50 microns;
ultrafiltration of the water through a membrane having a pore size between about 0.05 microns and about 0.1 micron;
exposing the water to an ultraviolet light source of intensity sufficient to destroy chlorine;
analyzing the conductivity of water exposed to the ultraviolet light source;
pumping the water through a first reverse osmosis system under processing parameters modified by the conductivity of water exposed to the ultraviolet light source comprising operating pressure
analyzing the conductivity of water received from the first reverse osmosis system;
pumping the water through a second reverse osmosis system under processing parameters modified by the conductivity of water received from the first reverse osmosis system comprising an operating pressure lower that that of the first reverse osmosis system;
combining the water from the second reverse osmosis system with ozone; and
exposing the water containing ozone to ultraviolet light.
1. A water purification device comprising:
at least one ultrafiltration membrane positioned to receive water flowing from a water source;
a first ultraviolet light source positioned to expose water exiting the at least one ultrafiltration membrane to ultraviolet light of intensity adequate to destroy chlorine;
a first conductivity analyzer receiving water from the at least one ultrafiltration membrane and measuring conductivity prior to a reverse osmosis membrane;
a first reverse osmosis membrane receiving water exposed to the ultraviolet light source coupled with a means of passing water through the reverse osmosis membrane wherein the conductivity measurement collected by the first conductivity analyzer determines operation of the first reverse osmosis membrane comprising operating pressure of the water passing through the membrane;
a second conductivity analyzer receiving and analyzing conductivity of water from the first reverse osmosis membrane;
a second reverse osmosis membrane receiving water from the first osmosis membrane with a means of passing water through the reverse osmosis membrane wherein the conductivity measurement collected by the second conductivity analyzer determines processing operation of the second reverse osmosis membrane comprising an operating pressure lower than that in the first reverse osmosis membrane;
a second storage vessel that receives water from the second reverse osmosis membrane;
an ozone source positioned to contact water from the second storage vessel with ozone;
a second ultraviolet source positioned to expose water contacted with ozone from the ozone source to ultraviolet light; and
a control system that monitors and regulates the movement of water through the water purification device.
2. The water purification device of
3. The water purification device of
4. The water purification device of
5. The water purification device of
6. The water purification device of
7. The water purification device of
8. The water purification device of
9. The water purification device of
10. The water purification device of
11. The water purification device of
12. The water purification system of
13. The water purification device of
14. The water purification device of
15. The water purification device of
16. The water purification device of
17. The water purification device of
18. The water purification device of
19. The water purification device of
20. A method of purifying water comprising pumping water into the water purification device of
21. The water purification device of
22. The water purification device of
23. The water purification device of
25. The method of
26. The method of
27. The method of
28. The method of
29. The method of
30. The method of
31. The method of
32. The method of
33. The method of
|
This application claims priority to U.S. Provisional Patent Application Ser. No. 60/497,244, filed Aug. 21, 2003, which is incorporated herein in its entirety by this reference.
The invention resides in the field of water purification and specifically in methods of making and using water purification systems having self-regulation and cleaning functionality.
The production of safe drinking water from contaminated source water has been practiced for many years. Traditionally, surface water is contaminated with particulate matter from contact with the earth and microorganisms from contact with wildlife. The salinity of water is highly variable from fresh water in streams to salt water in oceans. Common sources of water contamination include agricultural, industrial, and conflict activity.
Most communities have stationary water treatment facilities designed to produce safe drinking water from the source water to the community. Natural or man-made disasters can compromise the functionality of existing water treatment facilities requiring mobile water purification equipment be deployed for disaster relief by organizations such as the Red Cross. There are also many areas that are under developed and have no water treatment infrastructure. People living and working in these areas require a mobile water purification system to treat the available water source. The military is also a large user of mobile water purification systems.
Many systems have been developed to address the need for mobile water purification systems for use on source water of unknown and variable quality. However, the success of these systems has been limited. The first mobile systems developed simply filtered and chlorinated water. These systems were ineffective for treatment of salt water or chemically contaminated water. The next generation of mobile water purification systems utilized reverse osmosis to remove dissolved salts in sea water and provide some protection against chemical contamination. But, these systems fouled very quickly when they encountered turbid water. The most advanced systems currently available continue to have fouling problems, have limited ability to remove nuclear, biological, and chemical agents, and require highly trained operational personnel.
There has been fairly extensive evaluation of the performance of the Army's “ROWPU” (reverse osmosis water purification unit). There have also been several iterations of this device with different flow rates. Despite several design changes, the “ROPWU” units remain plagued by fouling problems. Additionally, it has been recognized that for several contaminants of concern, reverse osmosis alone is not adequate to provide sufficient removal. Therefore, add on filter cartridges have been employed to increase contaminant removal capability. U.S. Army document TB MED 77 provides documentation of how to operate its “ROPWU” units for maximum effectiveness. This involves an extensive chain of command with approval of the water source to be treated following analysis of the source water, evaluation of any threat of warfare agents, and operation of the units by highly trained personnel.
All the prior art mobile water purification systems have some deficiency. Deficiencies exist in resistance to fouling, contaminant removal capability, and operator intervention requirements. Unknown source water has a high potential to foul water purification equipment as it is likely that highly turbid water will be encountered. Many systems have inadequate particulate removal capability. For example, the use of a 5 micron cartridge filter prior to reverse osmosis. The reverse osmosis membrane has a very fine pore size of less than 0.005 microns. An abundance of particulate matter resides in the range of size difference between 5 and 0.005 microns including most microorganisms, fine sand or silt, and colloidal matter. Thus, the reverse osmosis membrane is easily fouled and the foulant is difficult to remove. Biofouling is particularly difficult to remove from membranes and is well documented as a common fouling problem in membrane systems. There is also potential for oil to be present in the water source which will readily foul membrane surfaces. Furthermore, all of the prior art systems rely on operator intervention to clean the fouled systems.
There are an abundance of contaminants that may be present in an unknown source water and must be removed for the water to be safe for human consumption. The US Environmental Protection Agency and the World Health Organization have established acceptable levels for many contaminants in drinking water. The military has evaluated some contaminants and determined maximum acceptable levels for short term exposure. These appear in the Tri Service Field Water Quality Standards. Establishment of acceptable contaminant levels for drinking water is an ongoing process and standards are regularly being revised by all of these organizations.
In 1998 the U.S. Army released Medical Issues Information Papers No. 31-017 and 31-018 discussing biological warfare agents and suggesting acceptable levels of these contaminants in drinking water. As noted in these papers, extremely low concentrations of certain biotoxins are highly toxic. They recommend acceptable levels in drinking water as low as 10−5 μg/L (for Staphylococcal Enterotoxins). Therefore it is clear that water purification equipment must provide very high reduction of concentration of contaminants to be able to effectively treat potential contaminants in the source water.
The U.S. Army has also evaluated the ability of reverse osmosis to remove a number of contaminants in its Water Quality Information Paper No. IP-31-014. Some contaminants are not removed well by reverse osmosis. It is also noted that reverse osmosis membranes may become compromised. A study was presented at the American Water Works Membrane Technology Conference in 2003 that evaluated the ability of reverse osmosis membranes to remove viruses under a number of conditions including the presence of a pinhole and torn O-ring seals. Compromising of the membrane or O-ring significantly lowers the rejection ability of the reverse osmosis element.
For a mobile water purification system to be highly effective at contaminant removal, it must provide more than one pass of reverse osmosis and a means of providing adequate removal of contaminants not removed well by reverse osmosis. Previously, systems have been described that typically operate with one pass of reverse osmosis, but can be set up to run two passes of reverse osmosis. The problem with this approach is that it relies on operator intervention to convert to two pass operation and provides no means of determining if and when two pass operation should be employed. Any additional treatment for contaminants not removed well by reverse osmosis may be provided by add on cartridges but again, this relies on operator intervention to determine when and if the add on cartridges are required. Furthermore, cartridges have limited capacity and no means are provided to determine if cartridge exhaustion is provided.
Thus, there is a need for a mobile water purification system that does not require highly trained operators and pre-screening of source water. To accomplish this, the mobile water purification system should be less sensitive to fouling and capable of removal of higher levels of contaminants. Preferably, reliance on disposable filter elements that may become quickly fouled would be avoided to minimize operator intervention requirements.
The invention herein described is a water purification system that does not have the deficiencies of the prior art systems. It is not plagued by fouling, adequately removes all potential contaminants, and does not require a highly trained operator.
The process consists of numerous water purification technologies including: particle barriers in several pore sizes, ultrafiltration membranes, reverse osmosis membranes, ultraviolet light, hydrocarbon adsorbent media, ozonation, chlorination, and dechlorination. The system requires minimal operator attention and does not need highly trained personnel to operate. The system is capable of deployment worldwide.
In one embodiment, the invention provides a water purification device including a screen having a pore size between about 30 microns and about 50 microns, at least one ultrafiltration membrane positioned to filter water exiting the screen, a first ultraviolet light source positioned to expose water exiting the ultrafiltration membrane to ultraviolet light, a first reverse osmosis membrane receiving water exposed to the ultraviolet light source coupled with a means of passing water through the reverse osmosis membrane, a first storage vessel that receives water from the first reverse osmosis membrane, a second reverse osmosis membrane receiving water from the storage vessel coupled with a means of passing water through the reverse osmosis membrane, a second storage vessel that receives water from the second reverse osmosis membrane, an ozone source positioned to contact water from the second storage vessel with ozone, a second ultraviolet light source positioned to expose water contacted with ozone from the ozone source to ultraviolet light; and a control system that monitors and regulates the movement of water through the water purification device. The water purification device may optionally have a means of passing water over the surface of the screen to dislodge accumulated particles on the surface of the screen as well as a means of passing water through the ultrafiltration membrane in a direction opposite to a flow of water through the water purification device to dislodge accumulated particles on the surface of the membrane.
The water purification device may contain other cleaning and control devices such as a means of scouring the first and the second reverse osmosis membranes with a cleaning solution such as an acid, or a base.
The water purification device may also include 5 micron filter cartridges and hydrocarbon absorbent cartridges positioned between the screen and the ultrafiltration membrane.
Preferably, the control system monitors and controls the flow of water through the entire water purification device in response to input from pressure detection and water quality monitors located throughout the water purification device.
Optionally, the water purification device contains means of recirculating water exposed to the ultraviolet light to the ozone source.
Optionally, the water purification device contains an injection system for injecting chlorine or a coagulant into water directed into the ultrafiltration membrane or an antiscalent into water directed into the first reverse osmosis membrane or sodium metabisulfate into water exposed to the first ultraviolet light source.
Optionally, the coagulant added to the water directed into the ultrafiltration membrane may be generated electrically in situ.
Preferably, the water purification device includes a means of monitoring chlorine concentration in water exposed to the first ultraviolet light and communicating those concentrations to the control system.
Another embodiment of the invention provides a method of purifying water that includes pumping water into the water purification device described above.
Another embodiment of the present invention is a water purification method that includes filtering water through a coarse screen to remove large debris, filtering the water through a screen having a pore size between about 30 microns and about 50 microns, ultrafiltration of the water through a membrane having a pore size between about 0.05 microns and about 0.1 micron, exposing the water to an ultraviolet light source, pumping the water through a first reverse osmosis system, pumping the water through a second reverse osmosis system, combining the water with ozone, exposing the water to ultraviolet light and mixing the water with chlorine.
The present invention provides a water purification system incorporating numerous water purification technologies including particle barriers in several pore sizes, ultrafiltration membranes, reverse osmosis membranes, ultraviolet light, hydrocarbon adsorbent media, ozonation, chlorination, and dechlorination.
Water is pumped into the treatment train from the water source (1). The rate of influent water flow is variable and maintained by the advanced control system (ACS). The system can utilize a stationary pump (5) with a suction-line placed into the water source or a portable submersible pump (3) that is placed into the water source. A very course screen (2,4) protects the inlet to the pump to prevent sticks and leaves and other large objects that could damage the pump form entering it. The pressurized water from the pump proceeds through a Y-type strainer with a pore size of 30-50 microns. Preferably, there are two strainers (6,7) plumbed in parallel. The Y strainers have automated valves on their purging ports that the ACS will open periodically and upon sensing an increase in pressure drop or decrease in flow due to restriction. During normal operation, only one strainer is on-line at a time. The ACS will route water flow to the parallel Y strainer in the event of clogging.
Following the Y strainer, there are two banks of cartridge filters having 5 micron pore size (8,9). These filters will only be on-line if the ACS determines that they are necessary based upon operational performance of downstream processes. One bank or the other will be placed on-line at a time.
Following the 5 micron cartridge filters, there are two banks of cartridge filters of hydrocarbon adsorptive media (10,11). These filters will only be on-line if the ACS determines that they are necessary based upon operational performance of downstream processes. One bank or the other will be placed on-line at a time.
The ACS will place the 5 micron and hydrocarbon adsorptive media cartridges on-line when the downstream UF exhibits an indication of fouling by oil as determined by operational changes or due to a rapid increase in total organic carbon (TOC) readings. The 5 micron cartridges protect the hydrocarbon adsorptive media cartridges from particle fouling.
Downstream of the piping to the hydrocarbon adsorptive media cartridge filters, there is a turbidity analyzer (12) and a total organic carbon (TOC) analyzer (13). The data from these analyzers is provided to the ACS and used to make operational determinations for the system. The level of influent turbidity determines duration between backwashes of the UF modules and chemical dosages. TOC levels determine the need for hydrocarbon adsorptive media and are used to measure percent reduction of TOC through the system.
Following the analyzers, chlorine (15) and coagulant (16) are injected. Optionally, the coagulant can be electrically generated in situ. Chlorine can also be generated electrically and piped to the injection pump reservoir. The ACS determines the level of chemical injection based on performance of downstream processes and downstream chlorine readings.
Following the chemical injection, the water proceeds into a storage reservoir (14). The ACS periodically purges the reservoir to evacuate accumulations of particulate matter. The storage reservoir feeds the ultrafiltration (UF) system. Ultrafiltration is the ideal pretreatment to reverse osmosis. The pore size of the UF membranes is in the range of about 0.05 to about 0.1 micron. This very fine filtration removes particles that could foul the reverse osmosis membranes including microorganisms. UF membranes are more durable than reverse osmosis membranes and can be backwashed. UF membranes are also resistant to chlorine. The UF system may utilize immersed or pressurized membrane modules. In the case of immersed modules, the storage reservoir (14) serves as the basin for module immersion. The UF system consists of UF modules (18,19), pumps (17, 20), valves, and sensors for pressure and flow. Pressurized modules utilize pump placement as shown in position 17. Immersed modules utilize pump placement as shown in position 20. The UF modules are arranged in two banks for a twin alternating configuration. The ACS determines the flux and recovery of the UF system based on the inlet turbidity and TOC data, combined with the flow and pressure data. The UF system automatically back flushes on a periodic basis determined by the ACS, utilizing the backwash/cleaning pump (26). If back flushes alone cannot sustain adequate flux, then the ACS will place the system into a cleaning process. There are three cleaning chemicals; acid, base, and chlorine. Each chemical is used for cleaning on a periodic basis, and different cleaning chemicals may be used in succession if the ACS determines that a particular cleaning was unsuccessful. The UF permeate water is accumulated in a tank (24). UF permeate is utilized for back flushing and cleaning of the UF modules. The performance of the UF system determines what pretreatment chemical injections are utilized as well as whether to bring the 5 micron and hydrocarbon adsorptive media cartridges on-line.
Following the UF modules, there are analyzers for turbidity (21), chlorine (22), and conductivity (23). The turbidity measurement verifies the integrity of the UF modules. The chlorine measurement determines when enough rinsing has occurred to reduce chlorine level low enough following a chlorine cleaning and pre UF chlorine injection rate. The conductivity measurement determines the processing mode of the downstream reverse osmosis system.
The UF permeate is pumped (25) from the UF permeate tank to the next processes of dechlorination and disinfection. A high intensity ultraviolet (UV) light (27) provides both dechlorination and disinfection. The light is sized at about 40-80 times disinfection dosage and is equipped with 185 nm bulbs. This dosage of UV light is adequate to destroy chlorine and also provides an extremely strong dose of disinfection. The UV light is equipped with an automatic wiper mechanism to keep the quartz sleeve free of deposits that could block the transmission of light. Optionally, the system can be equipped with a magnetic field generator in front of the UV light to promote ease of wiping hardness compounds from the quartz sleeve.
Following the UV light there is a chlorine analyzer (28). If residual chlorine exists following the UV light, sodium bisulfite (29) is injected into the water stream in an amount proportional to the chlorine level.
Following sodium bisulfite injection there is an oxidation reduction potential (ORP) sensor (30). This sensor verifies that adequate sodium bisulfite has been injected (if required). Following the ORP sensor is antiscalant injection (31). The ACS determines the injection rate of antiscalant based on performance of the downstream reverse osmosis system.
Following antiscalant injection, the water proceeds to a high pressure reverse osmosis pump (32). The ACS determines the operating pressure, flux, and recovery of the reverse osmosis system based on the influent water quality. The conductivity of the feed water to the reverse osmosis system is examined and categorized with specific ranges of conductivity dictating a desired recovery and flux. The ACS then computes a desired driving pressure. Therefore the reverse osmosis system operates appropriately on both sea water and fresh water. The discharge of the high pressure pump feeds the membrane modules (33). There is also an alternative feed to the membrane modules from another pump (36) that draws water from a reservoir of reverse osmosis permeate water (35). This is utilized to flush the membranes with reverse osmosis permeate water whenever the system stops processing water. This same water path also serves for automated cleaning of the reverse osmosis modules. The ACS determines when a cleaning cycle should be initiated based on flow and pressure data. There are two cleaning chemicals used; acid and base. Each chemical is used for cleaning on a periodic basis, and different cleaning chemicals may be used in succession if the ACS determines that a particular cleaning was unsuccessful.
The reverse osmosis permeate is collected in a tank (37). The conductivity of the reverse osmosis permeate is monitored (34) to verify integrity of the reverse osmosis modules and to determine the processing parameters for the next pass of reverse osmosis.
The accumulated reverse osmosis permeate is pumped (38) to another membrane bank (39) for a second pass through reverse osmosis. The second pass of reverse osmosis is not required to be capable of operating at as high a pressure as the first pass. The second pass is also operated at higher recovery than the first pass. Other than the lower pressure and higher recovery, the second pass operation is similar to the first pass, with integral cleaning and flushing capability controlled by the ACS.
The second pass reverse osmosis permeate can be routed back to the first pass reverse osmosis permeate tank (37) and therefore be recirculated to the inlet of the second pass reverse osmosis. The ACS will determine when the water is recirculated. The ACS can be placed in several threat modes. In the higher threat modes, the second pass reverse osmosis permeate is recirculated adequately to provide greater than two passes of reverse osmosis. Even during low threat mode operation, the water will be recirculated whenever it is not being demanded by downstream usage. Conductivity of the permeate from the second pass reverse osmosis is monitored (40) to insure integrity and evaluate overall percent reduction of conductivity.
The water then proceeds through an oxidation process. Light organic compounds that are not rejected well by reverse osmosis are destroyed in the oxidation process. The oxidation process is far superior to any cartridge filters for organic removal because there is no media to become exhausted. Therefore capacity is not limited. Because the water has already been through multiple passes of reverse osmosis there are no particles to protect compounds from oxidation or dissolved inorganic compounds to squander the oxidative capability of ozone and free hydroxyl radicals. Ozone is injected (41) into a contact chamber (42). Following the contact chamber it is passed through a UV light (43) with 185 nm bulbs. The combination of ozone and ultraviolet light generates free hydroxyl radicals providing high oxidative power. The water then proceeds to a final storage tank (44). The water is pumped (45) from this tank and analyzed for TOC (48), conductivity (47), and ORP (46) and can be recirculated through the ozone injection and UV light portions of the system, or proceed out of the system for use, as determined by the ACS based on percentage removal of TOC, final level of TOC, conductivity change, and ORP. Chlorine is injected (49) into the final product water to provide a residual disinfectant. The ACS determines the injection rate based on the measured value of chlorine as indicated by a chlorine analyzer (50).
The system is constructed to be mobile. It is containerized and temperature controlled. It is assembled to withstand shock and vibration. It may be provided with or without a generator. The system can be produced in a variety of flow rates that dictate the size of the system.
Patent | Priority | Assignee | Title |
10040699, | Jul 08 2013 | SENSOR ELECTRONIC TECHNOLOGY, INC | Ultraviolet water disinfection system |
10307712, | Nov 12 2015 | UNGER MARKETING INTERNATIONAL, LLC | Fluid conditioning systems having caps with filter cartridge sealing and removal devices and/or locking devices |
10549239, | Nov 12 2015 | UNGER MARKETING INTERNATIONAL, LLC | Water conditioning systems having diversion devices |
10717046, | Nov 12 2015 | UNGER MARKETING INTERNATIONAL, LLC | Water conditioning systems |
10745295, | Jul 08 2013 | Sensor Electronic Technology, Inc. | Ultraviolet water disinfection system |
10787375, | Jul 08 2013 | SENSOR ELECTRONIC TECHNOLOGY, INC | Ultraviolet water disinfection system |
10882760, | May 13 2020 | System and method for reducing water pump cycling and TDS creep when producing purified water | |
10894725, | Oct 11 2017 | TANGENT COMPANY LLC | Control process for wastewater treatment system |
11185822, | Nov 12 2015 | UNGER MARKETING INTERNATIONAL, LLC | Water conditioning systems having diversion devices |
11292732, | Dec 07 2018 | Samsung Electronics Co., Ltd. | Water purifier and control method of the same |
11369923, | Nov 12 2015 | UNGER MARKETING INTERNATIONAL, LLC | Water conditioning systems |
11806667, | Apr 05 2021 | GOVERNMENT OF THE UNITED STATES, AS REPRESENTED BY THE SECRETARY OF THE ARMY | Portable membrane filtration |
11813570, | Nov 12 2015 | UNGER MARKETING INTERNATIONAL, LLC | Water conditioning systems |
11857939, | Sep 04 2020 | BUCKMAN LABORATORIES INTERNATIONAL, INC | Predictive systems and methods for proactive intervention in chemical processes |
12053742, | Nov 12 2015 | UNGER MARKETING INTERNATIONAL, LLC | Water conditioning systems having diversion devices |
8486275, | May 14 2009 | Omni Water Solutions, Inc. | Self-contained portable multi-mode water treatment system and methods |
8808537, | Jun 23 2010 | Self-contained transportable water treatment system | |
8852437, | Sep 30 2010 | KRONES AG | Method and production plant for producing sterile water |
9227159, | Nov 15 2011 | BL TECHNOLOGIES, INC | Combined microfiltration or ultrafiltration and reverse osmosis processes |
9475717, | Aug 23 2012 | TOTAL WATER TREATMENT SYSTEMS, INC | Water purification system engineered for legionella control in industrial and commercial water systems |
9688560, | Aug 23 2012 | TOTAL WATER TREATMENT SYSTEMS, INC. | Water purification system engineered for Legionella control in industrial and commercial water systems |
9802840, | Jul 08 2013 | SENSOR ELECTRONIC TECHNOLOGY, INC | Ultraviolet water disinfection system |
ER1621, | |||
ER7893, |
Patent | Priority | Assignee | Title |
4169789, | Jun 01 1978 | Permo SA | Process and apparatus for purifying sea water by reverse osmosis |
4273660, | Feb 21 1979 | Purification of water through the use of ozone and ultraviolet light | |
4349431, | Sep 05 1980 | Apparatus for electrochemical purification of contaminated liquids | |
4361485, | Jul 03 1979 | Wafilin B.V. | Method of and apparatus for washing and cleaning membrane filtration units |
4391712, | Jul 21 1981 | BEALL, RICHARD W , JR 500 POINSETTIA AVE MANHATTAN BEACH, CA 90266 22 37% ; FAVARA, LOUIS J 2152 SONOMA COURT, THOUSAND OAKS, CA 91360 17 9% ; GAUSEWITZ, RICHARD L SUITE 830, BANK OF AMERICA TOWER ONE CITY BLVD WEST, ORANGE, CA 92668 S PROFESSIONAL LAW CORP 3 485% ; CARR, RICHARD F SUITE 830, BANK OF AMERICA TOWER, ONE CITY BLVD WEST, ORANGE, CA 92668 A PROFESSIONAL LAW CORPORATION 3 485% ; ROTHENBERG, ALLAN SUITE 830, BANK OF AMERICA TOWER, ONE CITY BLVD WEST, ORANGE, CA 92668 A PROFESSIONAL LAW CORP OF CA 3 03% ; EDWARDS, ELGIN, SUITE 830, BANK OF AMERICA TOWER, ONE CITY BLVD WEST, ORANGE, CA 92668 A PROFESSIONAL LAW CORP OF CA 0 5% | Reverse-osmosis water purifier apparatus and method |
4563272, | Oct 16 1982 | Yamato Scientific Co., Ltd. | Demineralizer |
4680109, | May 17 1985 | Ebara Corporation | Membrane separator |
4702842, | Jan 16 1987 | Apparatus for reverse osmosis using fluid recirculation | |
4772385, | Apr 11 1983 | Ebara Corporation | Control for use with reverse osmotic treatment system |
4872959, | Jul 17 1982 | CURE PATENT RIGHTS TRUST DOUGLAS A SYKES, TRUSTEE | Electrolytic treatment of liquids |
5059317, | Oct 02 1989 | MARIUS, DIETRICH, UFERSTRASSE 9, A-5201 SEEKIRCHEN, AUSTRIA; MUELLER, ERICH, GEISMAYERSTR 7, A-5020 SALZBURG, AUSTRIA; MACHTLINGER, GERHARD, UFERSTRASSE 9, A-5201 SEEKIRCHEN AUSTRIA | Transportable apparatus for producing drinking water |
5236595, | Jul 06 1990 | International Environmental Systems, Inc., USA | Method and apparatus for filtration with plural ultraviolet treatment stages |
5244579, | Oct 09 1992 | Zenon Technology Partnership | Transportable reverse osmosis water purification unit |
5256299, | Jul 02 1990 | International Environmental Systems, Inc., USA | Method and apparatus for liquid treatment |
5266202, | Jul 25 1985 | MORINAGA MILK INDUSTRY CO , LTD | Reverse osmosis treatment process |
5272091, | Jul 27 1992 | MILLIPORE INVESTMENT HOLDINGS LTD | Water purification method and apparatus |
5385653, | Nov 09 1993 | Method of and device for industrial waste water treatment | |
5422013, | May 15 1992 | Matsushita Electric Industrial Co., Ltd. | Device and method of producing pure water |
5494573, | Feb 14 1994 | AQUATEC WATER SYSTEMS, INC | Reverse osmosis water purification diagnostic system |
5496466, | Sep 14 1993 | Teledyne Industries, Inc. | Portable water purification system with double piston pump |
5501798, | Apr 06 1994 | Zenon Environmental Inc | Microfiltration enhanced reverse osmosis for water treatment |
5547584, | Mar 17 1994 | CAPEHART, KAREN RUTH | Transportable, self-contained water purification system and method |
5587057, | Mar 19 1992 | METZLER, LYNDA L | Highly conductive liquid media electrocoagulation |
5589066, | Sep 14 1993 | Teledyne Industries, Inc. | Portable water purification system |
5611907, | Apr 18 1994 | GLOBAL WATER INDUSTRIES, INC | Electrolytic treatment device and method for using same |
5647973, | May 02 1994 | Master Flo Technology Inc. | Reverse osmosis filtration system with concentrate recycling controlled by upstream conductivity |
5725758, | Aug 22 1996 | WATER REFINING INC ; WATER REFINING, INC | Filtration system and assembly |
5741416, | Oct 15 1996 | Tempest Environmental Systems, Inc. | Water purification system having plural pairs of filters and an ozone contact chamber |
5788858, | May 03 1996 | HDT EXPEDITIONARY SYSTEMS, INC | Mobile water purification unit with modular dechlorination input stage |
5897780, | Dec 23 1994 | BERKEFELD FILTER ANLAGENBAU GMBH | Method and facility for treating water contaminated with warfare agents |
5972216, | Oct 24 1997 | HDT EXPEDITIONARY SYSTEMS, INC | Portable multi-functional modular water filtration unit |
6074551, | Apr 30 1998 | JONES, LARRY T | Automatic cleaning system for a reverse osmosis unit in a high purity water treatment system |
6077435, | Mar 15 1996 | Evoqua Water Technologies LLC | Filtration monitoring and control system |
6090294, | Jun 23 1995 | Agrimond USA Corporation | Apparatus for the purification of water and method therefor |
6217773, | Jan 09 1997 | Garfield International Investments Ltd. | Treatment of water |
6328896, | Apr 24 1998 | Evoqua Water Technologies LLC | Process for removing strong oxidizing agents from liquids |
6398965, | Mar 31 1998 | SIEMENS INDUSTRY, INC | Water treatment system and process |
6402954, | Dec 01 1997 | Method and apparatus for monitoring and cleaning a fluid filter system | |
6488835, | Feb 27 1998 | Method for electrocoagulation of liquids | |
6537456, | Aug 12 1996 | Method and apparatus for high efficiency reverse osmosis operation | |
6607668, | Aug 17 2001 | PURE H2O TECHNOLOGIES, INC | Water purifier |
6613201, | Dec 31 1999 | Hans Sasserath & Co KG | Apparatus for treating water by means of an electric field |
6613202, | Jun 28 1999 | Current Water Technology, Inc. | Tank batch electrochemical water treatment process |
6613217, | Apr 29 1999 | Electrocoagulation chamber and method | |
6651383, | Jul 06 1998 | Methods of utilizing waste waters produced by water purification processing | |
6663783, | Jan 28 2000 | MISSION CREEK CONSULTING LTD | Electrochemical cell for removing contaminants from a wastewater stream |
6673321, | Feb 10 1999 | HYDRO-MET LLC | Apparatus and process for extracting and recovering metals from aqueous solutions |
6679988, | Jan 09 2002 | Mechanical Equipment Company, Inc. | Apparatus for producing USP or WFI purified water |
6689271, | Nov 23 1998 | Truist Bank | Process and apparatus for electrocoagulative treatment of industrial waste water |
6746593, | Jan 18 2002 | H2OTECH, INC | High volume electrolytic water treatment system and process for treating wastewater |
6780292, | Apr 11 2001 | GlobalSep Corporation | Electrolytic treatment apparatus having replaceable and interchangeable electrode reactor cartridges therefor |
6783687, | Feb 13 2002 | GND Engineering, PLLC | Method and apparatus for separating ions from a fluid stream |
6797179, | Jun 12 2001 | Hydrotreat, Inc. | Method for removing dissolved metals from wastewater by electrocoagulation |
6800206, | Mar 15 2000 | Ozcent PTY Ltd. | Electrolysis based water treatment |
6849178, | Aug 13 2001 | Hans Sasserath & Co. KG | Apparatus for treating water by means of an electric field |
6866757, | Oct 12 2001 | GEMINI STRATEGIES, LLC; GEMINI MASTER FUND, LTD | Electrocoagulation reaction chamber and method |
6908546, | Nov 05 2001 | Bionomics LTD | Apparatus and method for producing purified water having microbiological purity |
6936172, | Jan 24 2003 | Catalytic treatment of hard water in a reverse osmosis system | |
6972077, | May 28 2003 | Andrew Corporation | Cells and electrodes for electrocoagulation treatment of wastewater |
20040007452, | |||
20050087484, | |||
20050121388, | |||
20050230312, | |||
20060060532, | |||
20080087603, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Jun 05 2013 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Jun 01 2017 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Aug 02 2021 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Aug 02 2021 | M2556: 11.5 yr surcharge- late pmt w/in 6 mo, Small Entity. |
Aug 02 2021 | REM: Maintenance Fee Reminder Mailed. |
Date | Maintenance Schedule |
Dec 15 2012 | 4 years fee payment window open |
Jun 15 2013 | 6 months grace period start (w surcharge) |
Dec 15 2013 | patent expiry (for year 4) |
Dec 15 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 15 2016 | 8 years fee payment window open |
Jun 15 2017 | 6 months grace period start (w surcharge) |
Dec 15 2017 | patent expiry (for year 8) |
Dec 15 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 15 2020 | 12 years fee payment window open |
Jun 15 2021 | 6 months grace period start (w surcharge) |
Dec 15 2021 | patent expiry (for year 12) |
Dec 15 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |