A method for increasing the efficiency of generating lasers by pumping two separate wavelengths into an erbium-based medium to populate the 4I11/2 state and depopulate the 4I13/2 state. A first excitation wavelength region is located between approximately 955 nm to approximately 1100 nm. The second excitation wavelength region is located between approximately 1600 nm to approximately 1850 nm. This multi-wavelength pumping scheme may be operated in continuous wave or quasi-continuous wave mode.
|
1. A method of improving lasing efficiency of an erbium-based medium comprising:
a. exposing the medium to a first pump radiation of a first wavelength, such that a first erbium ion is excited from a first state to a second state,
b. thereby increasing the population of erbium ions in the second state, creating a population inversion necessary for lasing between the second state as the upper lasing state and a third state as the lower lasing state, said third state being different in energy level than the first state, and
c. exposing the medium to a second pump radiation of a second wavelength, such that a second erbium ion is excited from the third state to a fourth state, thereby reducing the population of erbium ions in the third state, reducing a bottleneck created by erbium ions populating the third state, and improving the population inversion necessary for lasing between the second state and the third state, wherein the third state is an 4I13/2lower lasing state and the fourth state is an 4I9/2 metastable state or a stark level in the 4I11/2 state above said second state, and
wherein the lasing efficiency between the second state as the upper lasing state and the third state as the lower lasing state is improved.
2. The method of
3. The method of
4. The method of
a. the first pump radiation has a wavelength between approximately 955 nanometers to approximately 1100 nanometers and wherein
b. the second pump radiation has a wavelength between approximately 1600 nanometers to approximately 1850 nanometers.
5. The method of
a. the first pump radiation has a wavelength region located between approximately 959 nanometers to approximately 985 nanometers and wherein
b. the second pump radiation has a wavelength region located between approximately 1610 nanometers to approximately 1680 nanometers.
6. The method of
a. the first pump radiation has a wavelength region located between approximately 959 nanometers to approximately 976 nanometers and wherein
b. the second pump radiation has a wavelength region located between approximately 1610 nanometers to approximately 1680 nanometers.
7. The method of
8. The method of
9. The method of
10. The method of
11. The method of
|
This utility patent application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/812,355, filed Jun. 8, 2006.
This invention relates to the method of enhancing the performance of lasing media.
For certain applications, it is desirable to use mid-infrared lasers that directly emit radiation between wavelengths in the 2-5 micron region operating at pulse repetition frequency (PRF) ranging between 1 Hz-100 kHz or in continuous wave, and which can also be scalable in terms of their output power. Erbium-based (Er-based) lasers, operating on the 4I11/2→4I13/2 transition, have been shown to emit radiation between approximately 2.6 to approximately 3 microns. The terminal lasing state in the above-mentioned Er-based lasers self-terminates due to long fluorescent lifetime of the 4I13/2 lower lasing state (˜2.5-7.5 msec) relative to the 4I11/2 upper lasing state (˜0.09-1.5 msec). To a first order approximation, the highest pulse repetition frequency that can be achieved in these lasers is inversely proportional to the fluorescent lifetime of the lower lasing state (in this case, the 4I13/2 state). In the case of the nominally 50% doped Er:YAG laser medium which emit radiation at approximately 3 microns wavelength, the 2.5-7.5 msec fluorescent lifetime of the 4I13/2 state implies that the highest PRF operation is still less than 1 kHz. In order to achieve operation at PRF greater than few 100 Hz, the effective fluorescent lifetime of the 4I13/2 state in Er must be reduced to a value approximately equal to the reciprocal of the desired PRF value and/or the population of the 4I13/2 state must be significantly reduced to or below that of the population of the 4I11/2 state so as to minimize or eliminate the above-mentioned self-termination process. It has been well documented in published literature that the effective fluorescent lifetime of the 4I13/2 state in Er decreases with increasing Er doping concentration.
In addition, the approximately 3 micron lasing action (especially the continuous wave mode of operation) which occurs as a result of the 4I11/2→4I13/2 transition in Er, is highly dependent on the upconversion process as this energy transfer mechanism assists in alleviating the self-termination process (see
Much of the prior art, which aims to improve the lasing efficiency or enhance the PRF in Er-based lasers emitting at approximately 3 micron does so by attempting to promote the (beneficial) upconversion process involving two Er ions in the 4I13/2 state and/or depopulating the 4I13/2 state by codoping with certain other rare earth ions.
This invention is directed towards a method of improving lasing performance in terms of power scaling, PRF enhancement, or both, of an erbium-based medium comprising exposing the medium to a radiation of a first wavelength, such that a first erbium ion is excited from a first state to a second state and exposing the medium to a radiation of a second wavelength, such that a second erbium ion is excited from a third state to a fourth state; thereby populating the second state and reducing the population in the third state. In one embodiment, the first state is an 4I15/2 ground state, the second state is an 4I11/2 upper lasing state, the third state is an 4I13/2 lower lasing state, and the fourth state is one or more Stark levels in one of the higher states.
The detailed description set forth below in connection with the appended drawings is intended as a description of exemplary embodiments and is not intended to represent the only forms in which these embodiments may be constructed and/or utilized. The description sets forth the functions and the sequence of steps for constructing and operating the exemplary embodiments. It is to be understood, however, that the same or equivalent functions and sequences may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the specification.
As shown in
One method, in keeping with the present invention, involves excitation of the Er-based laser gain medium in two wavelength regions, as shown in
By the foregoing multi-wavelength pumping method of this embodiment, one or more first erbium ions are excited from a first state to a second state, and one or more second erbium ions are excited from a third state to a fourth state. The first state being one or more of the Stark levels of 4I15/2 ground state, the second state being one or more of the Stark levels of 4I11/2 upper lasing state, the third state being one or more of the Stark levels of the 4I13/2 lower lasing state, and the fourth state being on or more of the Stark levels of 4I9/2 metastable state.
As shown in
As shown in
In one embodiment, this multi-wavelength pumping method permits operation in high PRF mode, such as greater than 1 kHz. In another embodiment, this multi-wavelength pumping method can be operated in a continuous wave mode or a quasi-continuous wave mode. In one embodiment, the first excitation wavelength may be exposed to the medium before the second excitation wavelength. In one such embodiment, exposure to the first pump radiation may precede exposure to the second pump radiation by approximately 100 microseconds or greater.
In another embodiment, the second excitation wavelength may be exposed to the medium prior to the first excitation wavelength. In another embodiment, both excitation wavelengths may be applied simultaneously.
This embodiment differs significantly from other existing methods to depopulate the 4I13/2 state in that it does not involve or rely upon any upconversion process. In addition, this embodiment works with commercially available Er-doped materials that are routinely used to generate the approximately 3 micron radiation, thus eliminating the need for any codoped Er-based media. This approach allows for high PRF operation by directly recirculating the Er ions in the 4I13/2 lower lasing state to the 4I9/2 state or higher lying states without having to completely decay to the 4I15/2 ground state thereby increasing the overall efficiency of the laser. The second wavelength λ2 may be selected by applying the selection rules from quantum mechanics and by avoiding or at least minimizing wavelengths which would excite the Er ions from the 4I15/2 ground state to the 4I13/2 state or coincide with the wavelengths that represent typical eye-safe wavelength generating transitions (most notably the approximately 1618 nm and approximately 1645 nm wavelengths associated with eye-safe Er:YAG lasers). The recirculation rate and thus the PRF value is proportional to pump energy and temporal pump pulse format of the power operating at the wavelength λ2.
In closing, it is to be understood that the embodiments described herein are illustrative of the principles of the present invention. Other modifications that may be employed are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations may be utilized in accordance with the teachings herein. Accordingly, the drawings and description are illustrative and not meant to be a limitation thereof.
Patent | Priority | Assignee | Title |
8964799, | Jul 13 2011 | National Cheng Kung University | Q-switching-induced gain-switched erbium pulse laser system |
9559485, | May 03 2013 | Adelaide Research & Innovation Pty Ltd | Dual wavelength pumped laser system and method |
Patent | Priority | Assignee | Title |
4589118, | Mar 09 1984 | Hoya Corporation | Method of optical pumping of erbium-doped laser material and apparatus therefor |
5140456, | Apr 08 1991 | Level 3 Communications, LLC | Low noise high power optical fiber amplifier |
5157683, | Sep 09 1988 | British Telecommunications plc | Laser systems |
5247529, | May 18 1991 | ALCATEL N V | Optical communication transmission system with optical control of an optical amplifier |
5710659, | Dec 19 1995 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Low tilt, high gain fiber amplifier |
5936763, | Nov 15 1996 | Matsushita Electric Industrial Co., Ltd. | Optical fiber amplifier, semiconductor laser module for pumping and optical signal communication system |
6028977, | Nov 13 1995 | Moriah Technologies, Inc. | All-optical, flat-panel display system |
6278719, | Apr 23 1997 | Nippon Telegraph and Telephone Corporation | Lasers, optical amplifiers, and amplification methods |
6407853, | Dec 14 1999 | Corning Incorporated | Broadhead dual wavelength pumped fiber amplifier |
6429964, | Sep 24 1999 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | High power, multiple-tap co-doped optical amplifier |
6459846, | Dec 03 1999 | Electronics and Telecommunications Research Institute | Complex rare-earths doped optical waveguide |
6510276, | May 01 1998 | Science & Technology Corporation @ UNM | Highly doped fiber lasers and amplifiers |
6611372, | Jun 09 2000 | ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA, THE | Erbium and ytterbium co-doped phosphate glass optical fiber amplifiers using short active fiber length |
6650663, | May 19 2000 | Biolitec Pharma Marketing Ltd | Power-scaling of erbium 3/μ m-laser |
6810052, | May 02 2000 | Gula Consulting Limited Liability Company | Eyesafe Q-switched laser |
6816514, | Jan 24 2002 | NP Photonics, Inc. | Rare-earth doped phosphate-glass single-mode fiber lasers |
6891878, | May 01 2003 | OL SECURITY LIMITED LIABILITY COMPANY | Eye-safe solid state laser system and method |
20040240488, | |||
20040246568, | |||
20050047466, | |||
20050100073, | |||
20060039061, | |||
EP561672, | |||
GB2241949, | |||
WO2005002008, | |||
WO9321670, | |||
WO9415385, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
May 02 2013 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Jun 06 2017 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Jun 14 2021 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Dec 15 2012 | 4 years fee payment window open |
Jun 15 2013 | 6 months grace period start (w surcharge) |
Dec 15 2013 | patent expiry (for year 4) |
Dec 15 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 15 2016 | 8 years fee payment window open |
Jun 15 2017 | 6 months grace period start (w surcharge) |
Dec 15 2017 | patent expiry (for year 8) |
Dec 15 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 15 2020 | 12 years fee payment window open |
Jun 15 2021 | 6 months grace period start (w surcharge) |
Dec 15 2021 | patent expiry (for year 12) |
Dec 15 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |