The invention provides a flip chip molded leadless package (MLP) with electrical paths printed in conducting ink. The MLP includes a taped leadframe with a plurality of leads and a non-conducting tape placed thereon. The electrical paths are printed on the tape to connect the features of the semiconductor device to the leads and an encapsulation layer protects the package. In a second embodiment, the MLP includes a pre-molded leadframe with the electrical paths printed directly thereon. The present invention also provides a method of fabricating the semiconductor package according to each embodiment.

Patent
   7638861
Priority
Dec 08 2005
Filed
Feb 28 2006
Issued
Dec 29 2009
Expiry
Feb 28 2026
Assg.orig
Entity
Large
9
11
all paid
1. A packaged semiconductor device, comprising:
a leadframe having a die support and a plurality of electrically conductive leads;
wherein an upper surface of the die support is in the same plane as an upper surface of the plurality of leads;
a non-conductive tape situated on the die support of the leadframe and having an edge overlapping a portion of each of the leads and a plurality of termini disposed in a pattern corresponding to a pattern of contacts on a surface of a die;
wherein a lower surface of the non-conductive tape is in contact with the upper surface of the die support and the upper surface of at least one of the plurality of leads;
a die positioned on the non-conductive tape, the die having a plurality of stud bumps, said bumps arranged in a pattern corresponding to the pattern of termini on the non-conductive tape;
a non-conducting polymer encapsulating the die, and
a plurality of electrical paths between the plurality of termini and the plurality of leads, wherein the electrical paths comprise electrically conductive ink.
2. The packaged semiconductor device of claim 1, wherein the non-conducting polymer over-molds the device.
3. The packaged semiconductor device of claim 2, wherein the non-conducting polymer is an encapsulating molding compound.
4. The packaged semiconductor device of claim 1, wherein the electrical paths are printed on the non-conductive tape.
5. The packaged semiconductor device of claim 4, wherein the leadframe is provided on a leadframe tape having a plurality of leadframes.
6. The packaged semiconductor device of claim 1, wherein each electrical path connects one stud bump to one lead, and wherein the electrical paths follow distinct courses.
7. The packaged semiconductor device of claim 1 wherein said leadframe is planar.
8. The packaged semiconductor device of claim 1 wherein said plurality of electrical paths are not symmetric about any plane orthogonal to the upper surface of said die support.

This application claims priority from U.S. Provisional Patent Application Ser. No. 60/748,435, filed Dec. 8, 2005 and U.S. Provisional Patent Application Ser. No. 60/756,452 filed Jan. 5, 2006.

This invention relates to a semiconductor device, and more particularly, to a semiconductor package for protecting a semiconductor chip and connecting the semiconductor chip with an external device.

It is conventional in the electronic industry to encapsulate one or more semiconductor devices, such as integrated circuit dies, or chips, in a semiconductor package. These plastic packages protect a chip from environmental hazards, and provide an apparatus for electrically and mechanically attaching the chip to an intended device. Such semiconductor packages have included metal lead frames for supporting an integrated circuit chip which is bonded to a chip paddle region formed centrally therein. Bond wires that electrically connect pads on the integrated circuit chip to individual leads of the lead frame are then incorporated. A hard plastic encapsulating material that covers the bond wire, the integrated circuit chip, and other components forms the exterior of the package.

As the integration density of semiconductor chips increases, the number of pads of each semiconductor chip increases. However, semiconductor packages are being continuously demanded to be smaller and lighter with an increasing demand for portable semiconductor products. Further, reductions in cost and increases in reliability in the manufacturing of the packages are demanded.

According to such miniaturization tendencies, semiconductor packages, which transmit electrical signals from semiconductor chips to motherboards and support the semiconductor chips on the motherboards, have been designed to have a small size. Examples of such semiconductor packages are referred to as MLP (molded leadless package) type semiconductor packages. During the manufacturing for a semiconductor package, electrical testing is required to insure proper function of the semiconductor package. This testing occurs after the semiconductor package has been separated from a matrix of semiconductor packages by singulation.

Conventionally, in a molded leadless package (MLP), the features of a semiconductor chip are connected to the leads of the leadframe by bond wires, for example see U.S. Pat. No. 6,475,827 issued to Lee, et al. Such bond wires are typically made of gold or aluminum with a diameter of about 25-μm and are quite fragile. Typically, bond wires have a large minimum radius of curvature at bends in the wire to avoid damage. Thus, the bond wires dictate the dimensions of the MLP, whereas the MLP may have a smaller profile without the bond wires. Further, care must be taken when over-molding the encapsulation layer as the wires may break under stress from the molding resin. The molding stress may also deform the bond wires, potentially causing short circuits.

One method for avoiding the issues with wire bonding is to affix stud bumps to the features on top of the semiconductor chip. The chip is then flipped over onto a leadframe, which includes conductors that connect the bumps with the leads. A drawback of such “flip chip” MLPs is that the leadframe must be specifically designed for the semiconductor chip applied to it. Particularly, the conductors and the leads must account for the number and the pattern of bumps on the chip. A change in the chip design, such as a higher density of features, may require a new leadframe design. Further, if different semiconductor chips are packaged on the same line, the specific leadframe for each chip must be carefully coordinated with the chips.

Therefore, what is needed is a method of manufacturing an MLP that is reliable and less expensive, while providing a leadframe that may be used for multiple semiconductor chip designs.

The invention comprises, in one form thereof, a flip chip molded leadless package (MLP) with electrical paths printed in conducting ink. The MLP includes a taped leadframe with a plurality of leads and a non-conducting tape placed thereon. The electrical paths are printed on the tape to connect the features of the semiconductor device to the leads and an encapsulation layer protects the package. In a second embodiment, the MLP includes a pre-molded leadframe with the electrical paths printed directly thereon. The present invention also provides a method of fabricating the semiconductor package according to each embodiment.

More particularly, the invention includes a packaged semiconductor device comprising a leadframe having a plurality of electrically conductive leads; a die positioned on the leadframe, the die having a plurality of stud bumps; a plurality of electrical paths between the plurality of stud bumps and the plurality of leads, wherein the electrical paths comprise electrically conductive ink; and an over-molded, non-conducting polymer. The non-conducting polymer is, for example, an encapsulating molding compound. In one form, the leadframe comprises a pre-molded frame wherein the leads are embedded in a non-conducting polymer and the electrical paths are printed directly on the pre-molded leadframe. The pre-molded leadframe may be integral with a plurality of additional leadframes during assembly. In another form, the packaged semiconductor device comprises a non-conductive tape situated on the leadframe, the tape including an edge proximate to each of the leads. The electrical paths may then be printed on the non-conductive tape. In this embodiment, the leadframe is provided on a leadframe tape having a plurality of leadframes. Each of the electrical paths connects one stud bump to one lead and the electrical paths follow distinct courses.

The invention further includes a method for packaging a semiconductor device. The method comprises the steps of providing a leadframe having a plurality of electrically conductive leads and an integrated circuit die having a plurality of electrically conductive stud bumps in a pattern on one side of the die; printing a plurality of electrical paths between the leads and a plurality of termini using an electrically conductive ink, wherein the termini are arranged according to the pattern of stud bumps; situating the die on the leadframe such that each of the stud bumps lines up with a terminus thereby connecting the stud bumps to the leads via the electrical paths; and molding the die and the leadframe in a non-conducting polymer. The non-conducting polymer is, for example, an encapsulating molding compound or an epoxy.

In one form of the method, a non-conductive tape is positioned on the leadframe and the electrical paths are subsequently printed on the tape. The non-conductive tape positioning step may comprise a tape stamping process, wherein a punching die removes the non-conductive tape from a sheet and adheres the non-conductive tape to the leadframe. Alternatively, non-conductive tape positioning step comprises a laser cutting process, wherein a non-conductive sheet is placed over the leadframe, a laser cutting tool cuts the non-conductive tape from the sheet, and the remainder of the sheet is removed.

In another form of the method, the leadframe is pre-molded with a non-conducting polymer and the electrical paths are printed on the pre-molded leadframe. The electrical paths may be printed using a stencil printing technique. The semiconductor devices and leadframes may be provided in an array having a plurality of devices and leadframes; the leadframes are integrally connected. In this case, the method further comprises the step of separating the packages from the array. The stud bumps may be provided in a stacked configuration to increase the height of the stud bumps. The method may include the further step of applying an adhesive to the stud bumps prior to the die situating step.

An advantage of the present invention is that the MLP does not include bond wires. Further, the MLP may be used for a new die by simply changing the printing of the conductive paths—the MLP doesn't need to be redesigned and the manufacturing equipment doesn't need to be changed except to reconfigure the printer by programming or changing a stencil.

The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become apparent and be better understood by reference to the following description of several embodiments of the invention in conjunction with the accompanying drawings, wherein:

FIG. 1 is a cross-sectional view of a semiconductor package according to a first embodiment of the present invention;

FIG. 2 is an exploded view of the semiconductor package of FIG. 1;

FIG. 3A is a plan view of the leadframe and the non-conducting tape portions of the semiconductor package of FIG. 1;

FIG. 3B is a cross-sectional view of the leadframe and the non-conducting tape portions of the semiconductor package of FIG. 1;

FIG. 4A is a plan view of the leadframe and tape of FIG. 3A with the added electrical paths;

FIG. 4B is a cross-sectional view of the leadframe and tape of FIG. 3B with the added electrical paths;

FIG. 5A is a plan view of the leadframe and tape of FIG. 4A with the added die;

FIG. 5B is a cross-sectional view of the leadframe and tape of FIG. 4B with the added die;

FIGS. 6A-6C show the steps in a tape stamping process for applying the non-conducting tape to the leadframe;

FIGS. 7A-7C show the steps in a tape laser cutting process for applying the non-conducting tape to the leadframe;

FIG. 8 is a cross-sectional view of a semiconductor package according to a second embodiment of the present invention;

FIG. 9 is an exploded view of the semiconductor package of FIG. 8;

FIG. 10A is a plan view of the leadframe of the semiconductor package of FIG. 8;

FIG. 10B is a cross-sectional view of the leadframe of the semiconductor package of FIG. 8;

FIG. 11A is a plan view of the leadframe of FIG. 10A with the added electrical paths;

FIG. 11B is a cross-sectional view of the leadframe of FIG. 10B with the added electrical paths;

FIG. 12A is a plan view of the leadframe of FIG. 11A with the added die; and

FIG. 12B is a cross-sectional view of the leadframe of FIG. 11B with the added die.

Corresponding reference characters indicate corresponding parts throughout the several views. The examples set out herein illustrate several embodiments of the invention but should not be construed as limiting the scope of the invention in any manner.

Referring to FIGS. 1 and 2, there is shown the packaged semiconductor device of the present invention. The molded leadless package (MLP) 100 includes a die 102, a leadframe 104 with non-conducting tape 106, and an encapsulation material 108. The die 102 is a semiconductor device with a plurality of conductive stud bumps 110 that provide electrical contacts for features on the semiconductor device. The stud bumps 110 are arranged in a pattern unique to the design of the semiconductor device, the pattern depending on the number and location of the integrated circuit features. For example, the stud bumps 110 may be formed on metal pads (not shown) of the semiconductor chip 102 in a method similar to wire bonding. The metal pads are electrically connected to unit elements (not shown) formed therebelow. The bumps and metal pads provide input and output terminals for connecting the chip 102 to other chips. The internal structure of the semiconductor chip 102 may vary, and accordingly does not limit the scope of the present invention. For example, the semiconductor chip 102 may include discrete power semiconductor devices (diodes, transistors, thyristors, IGBTs), linear devices, integrated circuits, and memory devices or various types of logic circuits.

The number of stud bumps 110 may depend on the number of metal pads, which may vary according to the integration density of the semiconductor chip 102. For example, as the integration density of the semiconductor chip 102 increases, the number of metal pads increase, and accordingly, the number of bumps 110 may increase. The bumps 110 may include a conductive material, such as, copper or gold. The bumps 110 may have any shape as long as it protrudes from the bottom surface of the semiconductor chip 102. In the present embodiment, the stud bumps 110 are at least 5-μm large and may be less than several hundreds of pm so as to achieve stable flip chip bonding. For example, the diameter of each of the bumps 110 may range from 10-μm to 200-μm.

The stud bumps 110 may be provided in a single configuration, as shown in the figures, or a stacked configuration. Stacking the stud bumps 110, wherein two or more studs are formed on a single metal pad, increases the space under the flip chip 102, which may relieve stress on the chip.

The leadframe 104 is a taped leadframe provided in an array, though only the leadframe for a single MLP is shown in the figures. The leadframe 104 of the present embodiment has a rectangular shape, as shown by the plan view of FIG. 3A; however, a leadframe having any shape is considered to be within the scope of the invention. The leadframe 104 includes a non-conducting backing 112, a die support 114, a lead support 116, and a plurality of leads 118 (shown in FIG. 3A). The leads 118 are conductive members that may serve as terminals that are connected to an external device. The number of leads 118 included on the leadframe 104 may depend on the number required by the design of the die 102, or a standard number of leads 118 is provided and only the number of leads required by the die 102 are utilized. A trench between the die support 114 and the lead support 116 is filled by the encapsulation material 108 to electrically isolate the supports.

The non-conducting tape 106 covers the die support 114 and a portion of the lead support 116. A plurality of electrically conductive paths 120 comprising an electrically conductive ink connects each of the stud bumps 110 to one of the leads 118. Each of the paths 120 is printed on the non-conducting tape 106 and includes an enlarged portion or terminus 122 (best shown in FIG. 4A) at the interface between the stud bump 110 and the path 120 thereby connecting each of the semiconductor device features with a lead 118.

The encapsulation material 108 is a layer of non-conducting polymer molded over the die 102 and the leadframe 104 to protect the MLP 100 from external environments. The encapsulation material 108 is, for example, an epoxy or an encapsulating molding compound (EMC).

The MLP 100 is assembled by positioning the non-conducting tape 106 on the die support 114 and the lead support 116 such that the edge of the tape 106 is proximate to or covering a portion of each of the leads 118 as shown in FIGS. 3A and 3B. In a particular embodiment, the tape 106 is adhered to the leadframe 104. As shown by FIGS. 4A and 4B, the conductive paths 120 and the termini 122 are printed onto the tape 106 and the leads 118 using any suitable printing technique, such as stencil printing. The conductive paths 120 and the termini 122 are printed such that each of the termini 122 lines up with one of the stud bumps 110 and such that the conductive paths 120 do not cross each other.

The die 102 is situated on the non-conducting tape 106 such that each of the stud bumps 110 contacts a terminus 122 as shown by FIGS. 5A and 5B. An adhesive may be applied to the stud bumps 110 prior to situating the die 102 onto the non-conducting tape 106 to retain the die 102 in position until the encapsulation layer 108 is over-molded and cured. In a particular embodiment, the adhesive is applied by dipping the stud bumps 110 into the adhesive; however care must be taken to prevent the adhesive from contacting the surface of the die 102. The stud bumps 110 having a stacked configuration simplify this process by increasing the space between the surface of the die 102 and the tip of the stud bumps 110.

A non-conducting polymer is over-molded onto the die 102 and leadframe 104 and cured to form the encapsulation layer 108, resulting in the MLP 100 shown in FIG. 1. After molding the encapsulation material 108, the MLP 100 is removed from the array by sawing or another suitable cutting method, thereby exposing the leads 118. The MLP 100 then proceeds to typical end-of-line processing such as final testing.

The non-conducting tape 106 may be applied to the leadframe 104 by a number of methods, such as, for example, by a stamping process. In the tape stamping process, a sheet of the non-conducting tape 106 is run over the array of leadframes. The leadframes 104 are aligned with a plurality of punching dies 124 that, in a downward motion, punch out portions of the tape 106 and contact them with the leadframes 104, as shown in FIGS. 5A-5C. An adhesive on the underside of the tape 106 adheres the tape 106 to the leadframes 104, resulting in the leadframe and tape assembly shown in FIGS. 3A and 3B. In a further example, the tape 106 is applied using a laser cutting process. In this process, a sheet of the non-conducting tape 106 is applied to the array of leadframes and portions of the tape 106 are cut using a laser or other tool as shown for a single leadframe 104 in FIGS. 7A and 7B. The unwanted tape is removed leaving the non-conducting tape 106 on the leadframe 104, as shown in FIG. 7C.

In a second embodiment shown in FIGS. 8 and 9, the MLP includes a pre-molded leadframe. The MLP 200 comprises a die 202, a pre-molded leadframe 204, and an encapsulation material 208. Similarly to the die 102, the die 202 is a semiconductor device with a plurality of conductive stud bumps 210 that provide electrical contacts for features on the semiconductor device.

The non-conducting backing 212 and the leads 218 (shown in FIG. 1 OA) of the pre-molded leadframe 204 are molded with a non-conducting polymer such as an epoxy or an EMC to form a uniform surface onto which the conducting paths 220 may be printed. Thus, no non-conducting tape is needed for this embodiment. Similarly to the leadframe 104, the pre-molded leadframe 204 is provided in an array, though only the leadframe for a single MLP is shown in the figures. The pre-molded leadframe 204 of the present embodiment has a rectangular shape, as shown by the plan view of FIG. 3A; however, a leadframe having any shape is considered to be within the scope of the invention. The leads 218 are conductive members that may serve as terminals that are connected to an external device. The number of leads 218 included on the pre-molded leadframe 204 may depend on the number required by the design of the die 202, or a standard number of leads 218 is provided and only the number of leads required by the die 202 are utilized.

A plurality of electrically conductive paths 220 comprising an electrically conductive ink connects each of the stud bumps 210 to one of the leads 218. Each of the paths 220 is printed on the pre-molded leadframe 204 and includes an enlarged portion or terminus 222 (best shown in FIG. 11A) at the interface between the stud bump 210 and the path 220 thereby connecting each of the semiconductor device features with a lead 218.

The encapsulation material 208 is a layer of non-conducting polymer molded over the die 202 and the pre-molded leadframe 204 to protect the MLP 200 from external environments. The encapsulation material 208 is, for example, an epoxy or an EMC.

The MLP 200 is assembled by molding the pre-molded leadframe 204 such that the top surfaces of the leads 218 are exposed as shown in FIGS. 10A and 10B. As shown by FIGS. 11A and 11B, the conductive paths 220 and the termini 222 are printed onto the pre-molded leadframe 204 and the leads 218 using any suitable printing technique, such as stencil printing. The conductive paths 220 and the termini 222 are printed such that each of the termini 222 lines up with one of the stud bumps 210 and such that the conductive paths 220 do not cross each other.

The die 202 is situated on the pre-molded leadframe 204 such that each of the stud bumps 210 contacts a terminus 222 as shown by FIGS. 12A and 12B. An adhesive may be applied to the stud bumps 210 prior to situating the die 202 onto the pre-molded leadframe 204 to retain the die 202 in position until the encapsulation layer 208 is over-molded and cured. A non-conducting polymer is over-molded onto the die 202 and pre-molded leadframe 204 and cured to form the encapsulation layer 208, resulting in the MLP 200 shown in FIG. 8. After molding the encapsulation material 208, the MLP 200 is removed from the array by sawing or another suitable cutting method, thereby exposing the leads 218. The MLP 200 then proceeds to typical end-of-line processing such as final testing.

It should be noted that the thicknesses of layers and regions are exaggerated in the drawings for clarity.

While the invention has been described with reference to preferred embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof to adapt to particular situations without departing from the scope of the invention. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope and spirit of the appended claims.

Estacio, Maria Cristina B., Shian, Ti Ching, Choi, Seung-yong

Patent Priority Assignee Title
8097495, Jun 30 2005 SanDisk Technologies LLC Die package with asymmetric leadframe connection
8314499, Nov 14 2008 Semiconductor Components Industries, LLC Flexible and stackable semiconductor die packages having thin patterned conductive layers
8420447, Mar 23 2011 STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD Integrated circuit packaging system with flipchip leadframe and method of manufacture thereof
8531004, Jun 14 2012 Microchip Technology Incorporated Metal-on passivation resistor for current sensing in a chip-scale package
9128125, Jun 14 2012 Microchip Technology Incorporated Current sensing using a metal-on-passivation layer on an integrated circuit die
9240367, Oct 19 2009 Texas Instruments Incorporated Semiconductor package with cantilever leads
9331007, Oct 16 2012 JCET SEMICONDUCTOR SHAOXING CO , LTD Semiconductor device and method of forming conductive ink layer as interconnect structure between semiconductor packages
9508635, Jun 27 2013 STATS CHIPPAC PTE LTE Methods of forming conductive jumper traces
9627296, Oct 19 2009 Texas Instruments Incorporated Semiconductor package with cantilever leads
Patent Priority Assignee Title
5332864, Dec 27 1991 VLSI Technology, Inc.; VLSI TECHNOLOGY, INC A CORP OF DELAWARE Integrated circuit package having an interposer
5559316, Sep 25 1993 NEC Electronics Corporation Plastic-molded semiconductor device containing a semiconductor pellet mounted on a lead frame
5644164, Jul 07 1995 Samsung Aerospace Industries, Ltd. Semiconductor device which dissipates heat
6153924, Feb 23 1998 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Multilayered lead frame for semiconductor package
6465279, Dec 14 1999 Sony Corporation Lead frame and production method thereof, and semiconductor device and fabrication method thereof
6475827, Oct 15 1999 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Method for making a semiconductor package having improved defect testing and increased production yield
6661084, May 16 2000 National Technology & Engineering Solutions of Sandia, LLC Single level microelectronic device package with an integral window
6781243, Jan 22 2003 National Semiconductor Corporation Leadless leadframe package substitute and stack package
7112871, Jan 26 2005 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Flipchip QFN package
20020020923,
20050133896,
////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 13 2006CHOI, SEUNG-YONGFairchild Semiconductor CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0214000892 pdf
Feb 16 2006SHIAN, TI CHINGFairchild Semiconductor CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0214000892 pdf
Feb 20 2006ESTACIO, MARIA CRISTINA B Fairchild Semiconductor CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0214000892 pdf
Feb 28 2006Fairchild Semiconductor Corporation(assignment on the face of the patent)
Sep 16 2016Fairchild Semiconductor CorporationDEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT0400750644 pdf
Jul 22 2021Fairchild Semiconductor CorporationSemiconductor Components Industries, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0576940374 pdf
Oct 27 2021DEUTSCHE BANK AG NEW YORK BRANCHFairchild Semiconductor CorporationRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0579690206 pdf
Oct 28 2021Semiconductor Components Industries, LLCDEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0588710799 pdf
Jun 22 2023DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENTSemiconductor Components Industries, LLCRELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 040075, FRAME 06440640700536 pdf
Jun 22 2023DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENTFairchild Semiconductor CorporationRELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 040075, FRAME 06440640700536 pdf
Jun 22 2023DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENTSemiconductor Components Industries, LLCRELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 058871, FRAME 07990656530001 pdf
Jun 22 2023DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENTFairchild Semiconductor CorporationRELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 058871, FRAME 07990656530001 pdf
Date Maintenance Fee Events
Jul 01 2013M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
May 23 2017M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
May 20 2021M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Dec 29 20124 years fee payment window open
Jun 29 20136 months grace period start (w surcharge)
Dec 29 2013patent expiry (for year 4)
Dec 29 20152 years to revive unintentionally abandoned end. (for year 4)
Dec 29 20168 years fee payment window open
Jun 29 20176 months grace period start (w surcharge)
Dec 29 2017patent expiry (for year 8)
Dec 29 20192 years to revive unintentionally abandoned end. (for year 8)
Dec 29 202012 years fee payment window open
Jun 29 20216 months grace period start (w surcharge)
Dec 29 2021patent expiry (for year 12)
Dec 29 20232 years to revive unintentionally abandoned end. (for year 12)