A removable storage device includes a substrate whereon a plurality of components are arranged. Advantageously, the removable storage device comprises a casing of the package type suitable to completely cover these components and to form, together with the substrate, an external coating of the removable storage device. Moreover, a method is described for assembling at least one removable storage device thus realized.

Patent
   7656676
Priority
Jan 31 2005
Filed
Jan 31 2006
Issued
Feb 02 2010
Expiry
Jan 31 2026
Assg.orig
Entity
Large
1
52
all paid
1. A removable storage device, comprising:
a substrate whereon a plurality of electrical components are arranged; and a package casing suitable to completely cover said components, said package casing having exposed electrical contacts;
wherein the components, the substrate and the package casing comprise a device of reduced dimensions with respect to desired dimensions for said removable storage device, with the removable storage device further comprising an additional casing having such dimensions so as to realize, together with said device of reduced dimensions, a removable storage device having said desired dimensions, said additional casing having no electrically functional element; and
wherein said contacts, and at least portions of each of the substrate, the package casing and the additional casing are exposed to form an external surface of said removable storage device.
2. The removable storage device according to claim 1 wherein said package casing entirely extends above and contacts said substrate.
3. The removable storage device according to claim 1 wherein said components do not have single containment packages.
4. The removable storage device according to claim 1 wherein said package casing is realized in plastic material.
5. The removable storage device according to claim 1 wherein said package casing is realized in resin.
6. The removable storage device according to claim 1, further comprising contact pads realized in said substrate.
7. The removable storage device according to claim 1 wherein said package casing has a substantially parallelepiped-like shape.
8. The removable storage device according to claim 1 wherein said package casing has a substantially parallelepiped-like shape with rounded edges.
9. The removable storage device according to claim 1 wherein it uses a universal communication protocol.
10. The removable storage device according to claim 1 wherein said device of reduced dimensions is housed in a housing made in said additional casing.
11. The removable storage device according to claim 10 wherein said housing comprises a base of dimensions substantially corresponding to those of said device of reduced dimensions.
12. The removable storage device according to claim 10 wherein said housing comprises:
a base of dimensions substantially corresponding to those of said device of reduced dimensions; and
side walls having a length substantially corresponding to a length of said base and a height substantially corresponding to a height of said device of reduced dimensions.
13. The removable storage device according to claim 10 wherein said housing comprises side walls having a length and a height substantially corresponding to a length and a height of said device of reduced dimensions.

1. Field of the Invention

The present invention relates to a removable data storage device.

More specifically, the invention relates to a removable storage device comprising at least one substrate whereon a plurality of components are arranged.

More in particular the present invention relates to a removable data storage device of the USB type and the following description is made with reference to this field of application by way of illustration only.

2. Description of the Related Art

As it is well known, data storage devices of the removable type, such as USB peripherals (acronym of the English: “universal serial bus”) or Flash cards, are currently realized by mounting, on small and thin printed circuit boards or PCBs (acronym of the English: “printed circuit board”), silicon-based components incorporated in suitable packages, such as memories and ASICs (acronym of the English: “application specific integrated circuit”) just as non-silicon components, such as passive components and crystals.

To assemble these components traditional assembling techniques are generally used for PCBs, remarkably improved in time but however always limited due to the physical constraints linked to the dimensions of the single packages and to the physical realization of the PCB itself. These constraints impose in particular limits to the reduction of the integration scale of the storage devices as a whole.

On the contrary, market needs currently require data storage devices with higher and higher densities and lower and lower form factors, up to the desired limit of the hard disk on silicon.

This trend is also followed by packaging technologies offering very complex and state-of-the-art approaches to decrease the dimensional impact of the single packages.

In particular, using these “packaging” technologies is known for the manufacturing of MMC™ boards (acronym of the trademark: “MultiMediaCard™”) providing, after a molding process similar to the one used to obtain an SMD component (acronym of the English “Surface Mounted Device”) and wherein the separation (singling) of each package is carried out by means of mechanical blanking before the application of a cover, that the final packaging step is carried out by using a supplemental plastic cover which is constrained, by means of adhesive, to a substrate of the MMC board and to the forming mold.

A package is thus obtained which can be shaped according to a specific profile, as needed for MMC boards. In particular, rounded edges are obtained with a suitable shape of this plastic cover.

It is however remarked that, even if this advanced packaging technology allows one to use a manufacturing line of SMD components also for the manufacturing of MMC boards, some difficulties in the singling and finishing operations remain.

In these last years, remarkable progresses have been made in the laser cutting process on organic materials such as the material as substrate. The laser cutting is a very interesting solution for the singling of MMC boards, especially because the profile is neither squared nor rectangular.

However, the problem of obtaining rounded edges remains, and the standard laser cutting technique does not ensure this particular shaping of the substrate whereon the MMC board is realized.

In general, these technologies are extremely expensive and they are currently used only for devices with very high density having a very high cost in terms of silicon and thus not suffering, in their final price, from the packaging costs.

The same approach has thus not been used so far for low density storage devices for which the impact of the packaging cost would be comparable to the cost in silicon and thus non realistic on an industrial scale.

Storage devices of the USB type, i.e., devices using communication protocols according to this USB standard, are the most diffused and the most suitable ones to realize removable storage devices with high density, in other words the desired removable hard disk.

One embodiment of the present invention provides a removable data storage device, in particular of the USB type, having such structural and functional characteristics as to allow to overcome the limits and drawbacks still affecting the devices realized according to the prior art.

One embodiment of the present invention provides the removable storage device with a casing of the package type able to realize, at the same time, the package for the components of the storage device and the desired external coating of the device itself.

One embodiment of the invention is a removable storage device that includes:

a substrate whereon a plurality of electrical components are arranged; and

a package casing suitable to completely cover said components and to form, together with said substrate, an external coating of said removable storage device.

One embodiment of the invention is a method for assembling a removable storage device that includes:

arranging a plurality of components on a substrate; and

realizing a package casing suitable to cover the components, said casing forming with said substrate an external coating of said removable storage device.

The characteristics and the advantages of the removable storage device and of the assembling method according to the invention will be apparent from the following description of embodiments thereof given by way of indicative and non-limiting example with reference to the annexed drawings.

FIG. 1 schematically shows the removable storage device realized according to the invention during different steps of the assembling method according to the invention;

FIG. 2 schematically shows a plurality of storage devices realized according to the invention during different steps of a further version of the assembling method according to the invention;

FIG. 3 schematically shows the plurality of storage devices of FIG. 2 during further steps of the further version of the assembling method according to the invention;

FIGS. 4A-4C schematically show embodiments of the storage device of FIG. 1.

With reference to these figures, and in particular to the example of FIG. 1, 10 globally and schematically indicates a removable storage device realized according to one embodiment of the invention.

The removable storage device 10 comprises a substrate 1, which is a PCB, whereon a plurality of components 2, 3 of the silicon and non-silicon type, respectively, are arranged.

Advantageously, the removable storage device 10 also comprises a casing 4 of the package type. Suitably, this casing 4 completely covers the components 2, 3 of the removable storage device 10.

Moreover, advantageously, the casing 4 extends above the entire substrate 1 of the removable storage device 10 and it is in contact with it, having suitably chosen dimensions to realize a removable storage device 10 of the desired dimensions. In substance, the dimensions of the casing 4 in plan are equal to the dimensions of the substrate 1.

The removable storage device 10 also comprises contact pads 6 realized in said substrate 1.

In a preferred embodiment of the removable storage device 10 according to the invention and shown in FIG. 1, the casing has a substantially parallelepiped-like shape.

In particular, the casing 4 has edges 5 suitable to be rounded when needed. Alternatively, a mold for realizing the casing 4 is used already providing suitable roundings in correspondence with the edges 5.

In substance, the removable storage device 10 comprises a plurality of “naked” components, i.e., not equipped with single packages, suitably arranged on a substrate and advantageously incorporated in a single casing 4 of the package type which realizes, at the same time, together with the substrate 1, the external coating of the removable storage device 10 itself.

Advantageously, the removable storage device 10 is realized so as to use a universal communication protocol, such as the USB protocol which is currently the mainly used protocol especially among storage units with high capacity (hard disk and USB cards used as an extractable hard disk).

To assemble this removable storage device 10, the assembling method according to one embodiment of the invention, as shown in FIG. 1, provides the following steps:

prearranging a plurality of components 2, 3 of the silicon and non-silicon type, respectively (indicated with A in FIG. 1);

prearranging a substrate 1 (indicated with B in FIG. 1); and

arranging the components 2, 3 on the substrate 1 (indicated with C in FIG. 1).

In particular, this arranging step of the components 2, 3 on the substrate 1 comprises a fixing and sealing step of these components, in a way known to the technician of the field.

The assembling method can also provide a step of:

electrical connection of at least one of these components 2, 3 to the substrate 1 by means of a plurality of wires 7—the so called bonding—(indicated with D in FIG. 1).

Advantageously, the components 2, 3 do not have single containment packages and the method further comprises the step of:

realizing a casing 4 of the package type suitable to cover the components 2, 3 (indicated with E in FIG. 1).

In particular, the casing 4 is obtained, for example, by means of molding of a suitable plastic material or of a resin.

Moreover, this realization step of the casing 4 provides a dimensioning of the casing itself so as to obtain a removable storage device 10 having the desired dimensions.

Moreover, the casing 4 is suitably realized in contact with the substrate 1 forming with it the external coating of the removable storage device 10.

In this way the removable storage device 10 is fully assembled as indicated with F in FIG. 1.

Finally, the assembling method can provide a final step of:

shaping the casing 4 to obtain a desired shape for the removable storage device 10.

Alternatively, a mold is used to realize the casing 4 which allows to obtain the desired shape, for example already providing suitable roundings in correspondence with the edges 5.

In particular, this shaping step comprises for example a rounding step of the edges 5.

Advantageously, the assembling method can be used also to simultaneously realize a plurality of removable storage devices, being, in this way, more convenient on an industrial scale.

An assembling method of assembling a plurality of removable storage devices according to one embodiment of the invention is shown in FIGS. 2 and 3 and it provides the steps of:

prearranging a plurality of components 2, 3 of the silicon and non-silicon type, respectively (indicated with A in FIG. 2);

prearranging a substrate 1 whereon a plurality of areas 8 are defined (indicated with B in FIG. 2); and

arranging the components 2, 3 on the areas 8 of the substrate 1 (indicated with C in FIG. 1).

In particular, as seen in relation with the assembling method of a single removable storage device 10, the arranging step of the components 2, 3 on the substrate 1 comprises a fixing and sealing step of these components, in a way known to the technician of the field. An additional electric connection step of at least one of these components 2,3 to the substrate 1 by means of a plurality of wires 7—the so called bonding—(indicated with D in FIG. 2) can also be provided.

Advantageously, the components 2, 3 do not have single containment packages and the method further comprises the step of:

realizing a plurality of casings 4 of the package type suitable to cover the components 2, 3 (indicated with E1 in FIG. 2).

The plurality of casings 4 is obtained, for example, by molding a suitable plastic material or a resin.

Moreover, as already seen, the casings 4 are advantageously dimensioned so as to obtain a plurality of removable storage devices 10 having the desired dimensions.

The assembling method of a plurality of removable storage devices 10 according to the invention also provides a step of:

singling the removable storage devices 10 by means of laser cutting in correspondence with the areas 8 of the substrate 1 (indicated with E2 in FIG. 3).

This laser cutting is realized by using a laser tool 9 able to “cut” the areas 8 on the substrate 1 and to separate them, together with the casings 4, so as to obtain a plurality of removable storage devices 10, as indicated with F1 and F2 in FIG. 3.

In particular, the casings 4 are suitably realized in contact with the areas 8 of the substrate 1 to form with them, after the singling step, the external coatings of the removable storage devices 10 thus obtained.

It is to be noted that the singling step, by means of laser cutting, is carried out at the end of the assembling process and it succeeds in adapting to the progressive decrease of the physical dimension of the devices which are to be realized. This laser cutting step, which would remarkably affect the working cost of a single device with respect to a standard process, such as a mechanical cutting, is, in reality, advantageous in the method described above since it is applied to a plurality of devices already assembled on a single substrate.

Moreover, the cost of the substrate 1 being a main part of the total cost of the removable storage device 10, advantageous embodiments of the removable storage device 10 according to the invention are shown in FIG. 4A-4C.

In particular, the removable storage device 10 comprises a device 10a of reduced dimensions with respect to the final dimensions which are to be obtained.

The device 10a of reduced dimensions is realized on a substrate area 8 of reduced dimensions and it is associated with an additional casing 11, in particular of the plastic type, equipped with a housing 12 having such dimensions as to realize, together with the device 10a of reduced dimensions, a removable storage device 10 having the desired dimensions.

In this way, in fact, the device 10a of reduced dimensions requires lower areas 8 of substrate 1 for its realization, reducing the manufacturing cost, which is only minimally affected by the realization cost of the additional casing 11.

In particular, in FIG. 4A, this additional casing 11 has a housing 12 comprising a base 13 of dimensions substantially corresponding to those of the area 8 of substrate of the device 10a of reduced dimensions.

Similarly, in FIG. 4B, the additional casing 11 has a housing 12 comprising a base 13 of dimensions substantially corresponding to those of the area 8 of substrate of the device 10a of reduced dimensions and side walls 14 having length substantially corresponding to the length of the base 13 and height substantially corresponding to the height of the device 10a of reduced dimensions.

Finally, in FIG. 4C, the additional casing 11 has a housing 12 comprising side walls 14 having length and height substantially corresponding to the length and height of the device 10a of reduced dimensions.

It is to be noted that the correspondence of the dimensions as above indicated must obviously take into account the working tolerances of the pieces.

In any case, the housing 12 made in the additional casing 11 must be dimensioned, taking into account these tolerances, so as to contain the device 10a of reduced dimensions. Moreover the additional casing 11 itself must be dimensioned so as to realize, together with the device 10a of reduced dimensions, a removable storage device 10 having the desired final dimensions.

In conclusion, the removable storage device 10 has the following advantages:

it allows to realize storage units with low capacity and low cost;

it allows to use components which are not equipped with single packages;

it simplifies the assembling process of the devices;

it simplifies the realization of the external coating of the single devices;

in its embodiments, it reduces the material used for the substrate with abatement of the costs relative to the single removable storage devices thus obtained.

From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

Costanzo, Luigi, Ghezzi, Stefano, Villa, Davide, Zonca, Romina, Roveda, Marco, Saltutti, Stefano

Patent Priority Assignee Title
10257934, Apr 28 2017 Shinko Electric Industries Co., Ltd. Circuit board module
Patent Priority Assignee Title
4905124, Mar 31 1987 Mitsubishi Denki Kabushiki Kaisha IC card
5155663, Feb 19 1990 FUJIFILM Corporation Memory cartridge system with adapter
5225968, Mar 10 1992 Connecting apparatus for connecting computer functional cards to a mother board
5635756, Apr 06 1990 Renesas Electronics Corporation Semiconductor device, lead frame therefor and memory card to provide a thin structure
6121681, May 14 1996 LONGITUDE SEMICONDUCTOR S A R L Semiconductor device
6137710, Feb 28 1997 Kabushiki Kaisha Toshiba Connecting apparatus, and information processing apparatus
6323064, Oct 11 1999 Samsung Electronics Co., Ltd Method for fabricating a memory card
6552423, Feb 18 2000 Samsung Electronics Co., Ltd. Higher-density memory card
6590850, Mar 07 2001 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Packaging for storage devices using electron emissions
6624005, Sep 06 2000 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor memory cards and method of making same
6854984, Sep 11 2003 SUPER TALENT TECHNOLOGY, CORP Slim USB connector with spring-engaging depressions, stabilizing dividers and wider end rails for flash-memory drive
6867485, Jun 11 1998 SanDisk Technologies LLC Semiconductor package using terminals formed on a conductive layer of a circuit board
6938227, Aug 08 2002 FRY S METALS, INC System and method for modifying electronic design data
6948983, Aug 10 2004 DEXIN CORPORATION Slim USB male connector with anti-disorientation design
6962613, Mar 24 2000 Cymbet Corporation Low-temperature fabrication of thin-film energy-storage devices
6994568, Mar 04 2004 C-One Technology Corporation Portable storage device
7004794, Sep 11 2003 Super Talent Electronics, Inc. Low-profile USB connector without metal case
7008240, Apr 16 2004 Super Talent Electronics, Inc. PC card assembly
7021971, Sep 11 2003 SUPER TALENT TECHNOLOGY, CORP Dual-personality extended-USB plug and receptacle with PCI-Express or Serial-At-Attachment extensions
7032827, Jun 18 2004 Super Talent Electronics, Inc.; Super Talent Electronics, Inc Combination SD/MMC flash memory card with thirteen contact pads
7035110, Oct 12 2004 Super Talent Electronics, Inc. Portable computer peripheral apparatus with reinforced connecting ring
7044802, Sep 11 2003 Super Talent Electronics, Inc USB flash-memory card with perimeter frame and covers that allow mounting of chips on both sides of a PCB
7052287, May 16 2005 Super Talent Electronics, Inc. USB device with plastic housing having integrated plug shell
7062585, Aug 21 2003 Altek Corporation Memory card for integrating the USB interface and an adaptor for the memory card
7068517, Jan 30 2002 Power Quotient International Co., Ltd. Low height USB interface connecting device and a memory storage apparatus thereof
7089661, Apr 11 2003 ELEX-P INDUSTRIES SDN BHD Method for packaging small size memory cards
7094074, Sep 11 2003 SUPER TALENT ELECTRONICS INC Manufacturing methods for ultra-slim USB flash-memory card with supporting dividers or underside ribs
7104848, Sep 11 2003 SUPER TALENT TECHNOLOGY, CORP Extended USB protocol plug and receptacle for implementing multi-mode communication
7108560, Sep 11 2003 SUPER TALENT TECHNOLOGY, CORP Extended USB protocol plug and receptacle for implementing single-mode communication
7125287, Sep 11 2003 SUPER TALENT TECHNOLOGY, CORP Extended USB protocol plug and receptacle
7151673, Feb 27 2004 Imation Corp.; Imation Corp Memory card host connector with retractable shieldless tab
7182646, Sep 11 2003 SUPER TALENT TECHNOLOGY, CORP Connectors having a USB-like form factor for supporting USB and non-USB protocols
7186147, Sep 11 2003 SUPER TALENT TECHNOLOGY, CORP Peripheral device having an extended USB plug for communicating with a host computer
7235423, Nov 05 2004 SUPER TALENT TECHNOLOGY, CORP Molded memory card production using carrier strip
7301776, Nov 16 2004 SUPER TALENT TECHNOLOGY, CORP Light-weight flash hard drive with plastic frame
20010015485,
20010038547,
20020021596,
20020030256,
20020116668,
20020147882,
20030137859,
20040038592,
20040083320,
20040089717,
20040153595,
20050059301,
20050070138,
20050085133,
20050156333,
20050164532,
20060023433,
//////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 03 2006COSTANZO, LUIGISTMICROELECTRONICS S R L ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0175090361 pdf
Apr 03 2006SALTUTTI, STEFANOSTMICROELECTRONICS S R L ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0175090361 pdf
Apr 06 2006GHEZZI, STEFANOSTMICROELECTRONICS S R L ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0175090361 pdf
Apr 06 2006ZONCA, ROMINASTMICROELECTRONICS S R L ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0175090361 pdf
Apr 06 2006ROVEDA, MARCOSTMICROELECTRONICS S R L ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0175090361 pdf
Apr 12 2006VILLA, DAVIDESTMICROELECTRONICS S R L ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0175090361 pdf
Feb 06 2008STMICROELECTRONICS S R L STMicroelectronics NVASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0321460367 pdf
Sep 30 2011NUMONYX B V Micron Technology, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0270750682 pdf
Apr 25 2012STMicroelectronics NVNUMONYX BVASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0321480068 pdf
Apr 26 2016Micron Technology, IncU S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0386690001 pdf
Apr 26 2016Micron Technology, IncU S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTCORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001 ASSIGNOR S HEREBY CONFIRMS THE SECURITY INTEREST 0430790001 pdf
Apr 26 2016Micron Technology, IncMORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENTPATENT SECURITY AGREEMENT0389540001 pdf
Jun 29 2018U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTMicron Technology, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0472430001 pdf
Jul 03 2018MICRON SEMICONDUCTOR PRODUCTS, INC JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0475400001 pdf
Jul 03 2018Micron Technology, IncJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0475400001 pdf
Jul 31 2019JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTMICRON SEMICONDUCTOR PRODUCTS, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0510280001 pdf
Jul 31 2019JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTMicron Technology, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0510280001 pdf
Jul 31 2019MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENTMicron Technology, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0509370001 pdf
Date Maintenance Fee Events
Mar 13 2013M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Sep 09 2013ASPN: Payor Number Assigned.
Jul 24 2017M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jul 20 2021M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Feb 02 20134 years fee payment window open
Aug 02 20136 months grace period start (w surcharge)
Feb 02 2014patent expiry (for year 4)
Feb 02 20162 years to revive unintentionally abandoned end. (for year 4)
Feb 02 20178 years fee payment window open
Aug 02 20176 months grace period start (w surcharge)
Feb 02 2018patent expiry (for year 8)
Feb 02 20202 years to revive unintentionally abandoned end. (for year 8)
Feb 02 202112 years fee payment window open
Aug 02 20216 months grace period start (w surcharge)
Feb 02 2022patent expiry (for year 12)
Feb 02 20242 years to revive unintentionally abandoned end. (for year 12)