A disk drive is disclosed including a disk, a head coupled to a distal end of an actuator arm, and a voice coil motor (VCM) operable to rotate the actuator arm about a pivot to actuate the head radially over the disk, wherein the VCM comprises a coil. Control circuitry within the disk drive measures a load resistance of the coil prior to executing a load operation, wherein the load operation moves the actuator arm off a ramp to load the head onto the disk. The load resistance of the coil is then converted into an initial coil temperature estimate.

Patent
   7660067
Priority
Sep 19 2007
Filed
Sep 19 2007
Issued
Feb 09 2010
Expiry
Nov 26 2027
Extension
68 days
Assg.orig
Entity
Large
110
18
EXPIRED
18. A disk drive comprising:
a disk;
a head coupled to a distal end of an actuator arm;
a voice coil motor (VCM) operable to rotate the actuator arm about a pivot to actuate the head radially over the disk, the VCM comprising a coil;
a ramp; and
control circuitry operable to:
measure a load resistance of the coil prior to executing a load operation, wherein the load operation moves the actuator arm off the ramp to load the head onto the disk;
convert the load resistance of the coil into an initial coil temperature estimate;
update the coil temperature estimate after the load operation; and
convert the updated coil temperature estimate into an unload resistance of the coil prior to executing an unload operation, wherein the unload operation moves the actuator arm onto the ramp.
19. A method of operating a disk drive, the disk drive comprising a disk, a head coupled to a distal end of an actuator arm, a voice coil motor (VCM) operable to rotate the actuator arm about a pivot to actuate the head radially over the disk, the VCM comprising a coil, and a ramp, the method comprising:
measuring a load resistance of the coil prior to executing a load operation, wherein the load operation moves the actuator arm off the ramp to load the head onto the disk;
converting the load resistance of the coil into an initial coil temperature estimate;
updating the coil temperature estimate after the load operation; and
converting the updated coil temperature estimate into an unload resistance of the coil prior to executing an unload operation, wherein the unload operation moves the actuator arm onto the ramp.
1. A disk drive comprising:
a disk;
a head coupled to a distal end of an actuator arm;
a voice coil motor (VCM) operable to rotate the actuator arm about a pivot to actuate the head radially over the disk, the VCM comprising a coil;
a ramp; and
control circuitry operable to:
measure a load resistance of the coil prior to executing a load operation, wherein the load operation moves the actuator arm off the ramp to load the head onto the disk;
measure a calibrated ambient temperature (Tcal_amb) using a temperature sensor;
measure a calibrated ambient resistance (Rcal_amb) of the coil at the calibrated ambient temperature (Tcal_amb); and
convert the load resistance of the coil into an initial coil temperature estimate according to:
e####
1 α ( Rcoil - R cal _ amb ) + T cal_amb
where:
α is a coefficient; and
Rcoil is the load resistance of the coil.
17. A disk drive comprising:
a disk;
a head coupled to a distal end of an actuator arm;
a voice coil motor (VCM) operable to rotate the actuator arm about a pivot to actuate the head radially over the disk, the VCM comprising a coil;
a ramp;
a means for measuring a load resistance of the coil prior to executing a load operation, wherein the load operation moves the actuator arm off the ramp to load the head onto the disk;
a means for measuring a calibrated ambient temperature (Tcal_amb) using a temperature sensor;
a means for measuring a calibrated ambient resistance (Rcal_amb) of the coil at the calibrated ambient temperature (Tcal_amb); and
a means for converting the load resistance of the coil into an initial coil temperature estimate according to:
1 α ( Rcoil - R cal _ amb ) + T cal_amb
where:
α is a coefficient; and
Rcoil is the load resistance of the coil.
9. A method of operating a disk drive, the disk drive comprising a disk, a head coupled to a distal end of an actuator arm, a voice coil motor (VCM) operable to rotate the actuator arm about a pivot to actuate the head radially over the disk, the VCM comprising a coil, and a ramp, the method comprising:
measuring a load resistance of the coil prior to executing a load operation, wherein the load operation moves the actuator arm off the ramp to load the head onto the disk;
measuring a calibrated ambient temperature (Tcal_amb) using a temperature sensor;
measuring a calibrated ambient resistance (Rcal_amb) of the coil at the calibrated ambient temperature (Tcal_amb); and
converting the load resistance of the coil into an initial coil temperature estimate according to:
1 α ( Rcoil - R cal _ amb ) + T cal_amb
where:
α is a coefficient; and
Rcoil is the load resistance of the coil.
2. The disk drive as recited in claim 1, wherein the control circuitry measures the calibrated ambient resistance (Rcal_amb) of the coil after the VCM has been idle for a predetermined interval.
3. The disk drive as recited in claim 1, wherein the control circuitry is further operable to calibrate the coefficient α according to:
Rtemp 1 - Rtemp 2 temp 1 - temp 2
where:
temp1 is a first ambient temperature;
temp2 is a second ambient temperature;
Rtemp1 is a measured coil resistance at temp1; and
Rtemp2 is a measured coil resistance at temp2.
4. The disk drive as recited in claim 1, wherein the control circuitry is further operable to estimate a change in the coil temperature according to:
1 K t ( K r P r + Tamb - Tcoil )
where:
Kt and Kr are coefficients;
Pr is a heating power of the coil;
Tamb is an ambient temperature measured with a temperature sensor; and
Tcoil is a previous coil temperature estimate.
5. The disk drive as recited in claim 4, wherein the heating power of the coil Pr is estimated according to:

RcIc2
where:
Rc is an estimated resistance of the coil; and
Ic is a measured current flowing through the coil.
6. The disk drive as recited in claim 5, wherein the resistance of the coil Rc is estimated according to:

Rcal_amb[1+α(Tcoil−Tcal_amb)].
7. The disk drive as recited in claim 4, wherein the control circuitry is further operable to convert the coil temperature estimate into an unload resistance of the coil prior to executing an unload operation.
8. The disk drive as recited in claim 7, wherein the control circuitry is further operable to convert the coil temperature estimate into the unload resistance of the coil according to:

Rcal_amb[1+α(Tcoil−Tcal_amb)].
10. The method as recited in claim 9, wherein measuring the calibrated ambient resistance (Rcal_amb) of the coil is performed after the VCM has been idle for a predetermined interval.
11. The method as recited in claim 9, further comprising calibrating the coefficient α according to:
Rtemp 1 - Rtemp 2 temp 1 - temp 2
where:
temp1 is a first ambient temperature;
temp2 is a second ambient temperature;
Rtemp1 is a measured coil resistance at temp1; and
Rtemp2 is a measured coil resistance at temp2.
12. The method as recited in claim 9, further comprising estimating a change in the coil temperature according to:
1 K t ( K r P r + Tamb - Tcoil )
where:
Kt and Kr are coefficients;
Pr is a heating power of the coil;
Tamb is an ambient temperature measured with a temperature sensor; and
Tcoil is a previous coil temperature estimate.
13. The method as recited in claim 12, wherein the heating power of the coil Pr is estimated according to:

RcIc2
where:
Rc is an estimated resistance of the coil; and
Ic is a measured current flowing through the coil.
14. The method as recited in claim 13, wherein the resistance of the coil Rc is estimated according to:

Rcal_amb[1+α(Tcoil−Tcal_amb)].
15. The method as recited in claim 12, further comprising converting the coil temperature estimate into an unload resistance of the coil prior to executing an unload operation.
16. The method as recited in claim 15, wherein the coil temperature estimate is converted into the unload resistance of the coil according to:

Rcal_amb[1+α(Tcoil−Tcal_amb)].

1. Field

The present invention relates to disk drives for computer systems. In particular, the present invention relates to a disk drive initializing a coil temperature estimation algorithm using a resistance of the coil estimated during a load operation.

2. Description of the Related Art

Disk drives comprise a disk and a head connected to a distal end of an actuator arm which is rotated about a pivot by a voice coil motor (VCM) to position the head radially over the disk. The disk typically comprises a number of concentric data tracks each partitioned into a number of data sectors. Access operations are performed by seeking the head to a target data track, and performing a write/read operation on the data sectors within the data track. The prior art has suggested to estimate the temperature of the coil and adjust the seek time accordingly to prevent the VCM from overheating, which may cause the material molded over the voice coil to delaminate, lose its rigidity, and/or outgas particles that may contaminate the disk. Overheating the VCM may also degrade the strength of the fixed magnets that interact with the magnetic flux generated by the voice coil.

A temperature sensor (e.g., a thermistor) has been employed to estimate the temperature of the coil, however, since the temperature sensor is not integrated with the coil, there may be significant estimation error. In order to improve the estimate, the prior art has suggested to estimate the coil temperature as a function of the power input into the coil (i.e., as a function of the current applied to the coil and its resistance). The coil temperature is estimated by making adjustments to an initial coil temperature estimate which is determined, for example, with a temperature sensor. However, if the initial coil temperature estimate is inaccurate, it may take time for the coil temperature estimation algorithm to converge, leading to undesirable VCM overheating during the convergence period. In addition, if the coil resistance is estimated from the coil temperature estimate (e.g., prior to executing an unload operation), the error in the resistance estimate may cause the disk drive to malfunction.

There is, therefore, a need to improve the coil temperature estimation algorithm in a disk drive.

An embodiment of the present invention comprises a disk drive including a disk, a head coupled to a distal end of an actuator arm, and a voice coil motor (VCM) operable to rotate the actuator arm about a pivot to actuate the head radially over the disk, wherein the VCM comprises a coil. Control circuitry within the disk drive measures a load resistance of the coil prior to executing a load operation, wherein the load operation moves the actuator arm off a ramp to load the head onto the disk. The load resistance of the coil is then converted into an initial coil temperature estimate.

In one embodiment, the control circuitry is further operable to measure a calibrated ambient temperature (Tcal_amb) using a temperature sensor, and measure a calibrated ambient resistance (Rcal_amb) of the coil at the calibrated ambient temperature (Tcal_amb). In one embodiment, the control circuitry measures the calibrated ambient resistance (Rcal_amb) of the coil after the VCM has been idle for a predetermined interval. In another embodiment, the control circuitry is further operable to convert the load resistance of the coil into the initial coil temperature estimate according to:

1 α ( Rcoil - R cal _ amb ) + T cal_amb

Rtemp 1 - Rtemp 2 temp 1 - temp 2
where temp1 is a first ambient temperature, temp2 is a second ambient temperature, Rtemp1 is a measured coil resistance at temp1, and Rtemp2 is a measured coil resistance at temp2.

In yet another embodiment, the control circuitry is further operable to estimate a change in the coil temperature according to:

1 K t ( K r P r + Tamb - Tcoil )
where Kt and Kr are coefficients, Pr is a heating power of the coil, Tamb is an ambient temperature measured with a temperature sensor, and Tcoil is a previous coil temperature estimate. In one embodiment, the heating power of the coil Pr is estimated according to:
RcIc2
where, Rc is an estimated resistance of the coil, and Ic is a measured current flowing through the coil. In one embodiment, the resistance of the coil Rc is estimated according to:
Rcal_amb[1+α(Tcoil−Tcal_amb)].

In one embodiment, the control circuitry is further operable to convert the coil temperature estimate into an unload resistance of the coil prior to executing an unload operation, and in one embodiment, the control circuitry is further operable to convert the coil temperature estimate into the unload resistance of the coil according to:
Rcal_amb[1+α(Tcoil−Tcal_amb)]

Another embodiment of the present invention comprises a method of operating a disk drive, the disk drive comprising a disk, a head coupled to a distal end of an actuator arm, and a voice coil motor (VCM) operable to rotate the actuator arm about a pivot to actuate the head radially over the disk, wherein the VCM comprises a coil. A load resistance of the coil is measured prior to executing a load operation, wherein the load operation moves the actuator arm off a ramp to load the head onto the disk. The load resistance of the coil is converted into an initial coil temperature estimate.

FIG. 1A shows a disk drive according to an embodiment of the present invention comprising a disk, a head connected to a distal end of an actuator arm, a voice coil motor comprising a coil, and a ramp.

FIG. 1B shows a format of a servo sector according to an embodiment of the present invention.

FIG. 1C is a flow diagram according to an embodiment of the present invention for measuring a coil resistance prior to executing a load operation, and converting the measured coil resistance into an initial coil temperature estimate.

FIG. 2 is a flow diagram according to an embodiment of the present invention wherein the coil temperature estimate is updated and then converted into a coil resistance prior to executing an unload operation.

FIG. 3A is a flow diagram according to an embodiment of the present invention for measuring a calibrated coil temperature and a corresponding calibrated coil resistance.

FIG. 3B is a flow diagram according to an embodiment of the present invention including an algorithm for converting the load resistance of the coil into the initial coil temperature estimate.

FIG. 4 is a flow diagram according to an embodiment of the present invention for calibrating a coefficient α for use in the coil temperature estimate algorithm.

FIG. 5 is a flow diagram according to an embodiment of the present invention including an algorithm for updating the coil temperature estimate and an algorithm for converting the coil temperature estimate into an estimated coil resistance prior to executing an unload operation.

FIG. 1A shows a disk drive according to an embodiment of the present invention comprising a disk 2, a head 4 coupled to a distal end of an actuator arm 6, and a voice coil motor (VCM) operable to rotate the actuator arm about a pivot to actuate the head 4 radially over the disk 2, wherein the VCM comprises a coil 8. Control circuitry 10 within the disk drive executes the flow diagram of FIG. 1C according to an embodiment of the present invention, wherein prior to executing a load operation (step 12), the control circuitry measures a load resistance of the coil 8 (step 14), wherein the load operation moves the actuator arm 6 off a ramp 18 to load the head 4 onto the disk 2. The load resistance of the coil 8 is then converted into an initial coil temperature estimate (step 16).

In the embodiment of FIG. 1A, the disk 2 comprises a plurality of servo sectors 200-20N that define a plurality of data tracks 22. Each servo sector 20i (e.g., servo sector 203 shown in FIG. 1B) may comprise a preamble 24 for storing a periodic pattern, which allows proper gain adjustment and timing synchronization of the read signal, and a sync mark 26 for storing a special pattern used to symbol synchronize to a servo data field 28. The servo data field 28 stores coarse head positioning information, such as a track address, used to position the head 4 over a target data track during a seek operation. Each servo sector 20i further comprises groups of servo bursts 30 (e.g., A, B, C and D bursts), which comprise a number of consecutive transitions recorded at precise intervals and offsets with respect to a data tract centerline. The groups of servo bursts 30 provide fine head position information used for centerline tracking while accessing a data track during write/read operations.

In the embodiment of FIG. 1A, the disk drive further comprises a crash stop 32 having first and second arms that provide motion limits for a tang 34 attached to the base of the actuator arm 6. When the actuator arm 6 is rotated about the pivot in a clockwise direction during an unload operation, a tab extending out of the distal end of the actuator arm 6 contacts and then moves up the ramp 18 until the tang 34 makes contact with the crash stop 32. During a load operation, the actuator arm 6 is rotated about the pivot in a counter clockwise direction so that the head 4 is loaded onto the disk 2.

In one embodiment, the control circuitry 10 measures the load resistance of the coil 8 prior to executing a load operation by applying a torque to the actuator arm 6 to press the tang 34 against the crash stop 32. With the tang 34 pressed against the crash stop, the voltage drop measured across the voice coil 8 together with the amplitude of the current applied to the coil provide an estimate of the load resistance of the coil 8. Any suitable technique may also be employed to improve the estimate of the load coil resistance, such as by estimating the DC offset of the circuitry that measures the voltage drop across the voice coil 8.

FIG. 2 is a flow diagram executed by the control circuitry 10 according to an embodiment of the present invention wherein when a load operation is to be executed (step 36) the actuator arm is pressed against the crash stop (step 38) in order to measure the load resistance of the coil (step 40). The temperature of the coil is then estimated in response to the load resistance of the coil (step 42), and a coil temperature estimation (CTE) algorithm is initialized with the estimated coil temperature (step 44). The head is then loaded onto the disk (step 46) and the CTE algorithm is updated by evaluating the current applied to the coil (step 48). That is, the temperature of the coil may be estimated as a function of the initial temperature which is then modified by the change in temperature due to the current applied to the coil (e.g., during seek operations). When an unload operation is to be executed (step 50), an unload coil resistance is estimated from the current coil temperature estimate (step 52). That is, the resistance of the coil varies based on the temperature of the coil, and therefore the coil resistance may be estimated in response to the coil temperature. The actuator arm is unloaded (step 54) in response to the BEMF voltage adjusted by the unload coil resistance (i.e., the contribution of the voltage due to the coil resistance is canceled from the measured voice coil voltage to provide a more accurate estimate of the BEMF voltage).

Any suitable technique may be employed to estimate the load coil resistance prior to executing a load operation. FIG. 3A is a flow diagram executed by the control circuitry 10 according to an embodiment of the present invention wherein a calibrated temperature and coil resistance are measured and stored for use in estimating the load coil resistance. The calibration procedure of FIG. 3A is executed after the VCM has been idle (step 56) for enough time to allow the temperature of the coil to settle to an ambient temperature. A calibrated ambient temperature (Tcal_amb) is then measured (step 58) using a suitable temperature sensor, such as a thermistor, and the actuator arm is pressed against a crash stop (outer or inner) in order to measure (step 60) a corresponding calibrated coil resistance (Rcal_amb). The calibrated ambient temperature (Tcal_amb) and the calibrated coil resistance (Rcal_amb) are then stored (step 62) in a suitable memory, such as a FLASH memory.

FIG. 3B is a flow diagram similar to FIG. 2 wherein a particular equation is disclosed (step 42) for estimating the initial coil temperature using the calibrated coil temperature and calibrated coil resistance values according to:

1 α ( Rcoil - R cal _ amb ) + T cal_amb
The above equation includes a coefficient α which represents a temperature coefficient of resistance of the coil (e.g., approximately 3.9e-3° Celsius for copper). In one embodiment, the coefficient α is calibrated by executing the flow diagram of FIG. 4 which may be executed for each disk drive, or once for a group of disk drives employing coils of similar characteristics, such as a coil provided by a particular vendor. The disk drive is placed in a temperature controlled chamber and the temperature is set to a first temperature temp1 (step 64). After allowing the temperature to settle to temp1, a corresponding coil resistance Rtemp1 is measured (step 66). The temperature is then changed to a second temperature temp2 (step 68), and after allowing the temperature to settle, a corresponding coil resistance Rtemp2 is measured (step 70). The temperature coefficient of resistance α is then calibrated (step 72) in response to the two temperature settings (temp1 and temp2) and the two coil resistances (Rtemp1 and Rtemp2) according to:

Rtemp 1 - Rtemp 2 temp 1 - temp 2
Any suitable two temperature settings may be employed as long as they are sufficiently different to provide an accurate estimate of the coefficient α.

Any suitable CTE algorithm may be employed in the embodiments of the present invention. FIG. 5 is a flow diagram executed by the control circuitry 10 according to an embodiment of the present invention wherein a particular CTE algorithm is disclosed (step 48) for estimating a change in the coil temperature according to:

1 K t ( K r P r + Tamb - Tcoil )
In the above equation, Tamb is the current ambient temperature as measured using a suitable temperature sensor, and Tcoil is the previous coil temperature estimate. The coefficient Kt in the above equation is a suitable thermal time constant of the coil, and Kr is a suitable coefficient of thermal resistance. The variable Pr represents the heating power applied to the coil, and in one embodiment the heating power is estimated according to:
RcIc2
where Rc is an estimated resistance of the coil, and Ic is a measured current flowing through the coil.

In one embodiment, the resistance of the coil Rc is estimated for use in the above equation, as well as prior to executing an unload operation to provide a more accurate estimate of the BEMF voltage by canceling the voltage due to the resistance of the coil Rc from the measured voice coil voltage. Referring again to FIG. 5, the current coil resistance is estimated (step 52) according to:
Rcal_amb[1+α(Tcoil−Tcal_amb)]
In the above equation, the coefficient α represents the temperature coefficient of resistance of the coil (as described above), and Tcoil is the estimated coil temperature prior to performing the unload operation.

Estimating the coil resistance in response to the estimated coil temperature avoids having to execute a calibration procedure (e.g., by pressing the actuator arm against a crash stop) to estimate the coil resistance prior to executing an unload operation. In addition, initializing the coil temperature estimate in response to a measured coil resistance prior to executing a load operation helps ensure the coil temperature estimate is accurate immediately following the load operation. Improving the accuracy of the CTE algorithm also improves the accuracy of the coil resistance estimate and thereby the reliability of the unload operation.

Any suitable control circuitry 10 may be employed in the embodiments of the present invention, such as any suitable integrated circuit or circuits. For example, the control circuitry 10 may be implemented within a read channel integrated circuit, or in a component separate from the read channel, such as a disk controller, on certain steps described above may be performed by a read channel and others by a disk controller. In one embodiment, the read channel and disk controller are implemented as separate integrated circuits, and in an alternative embodiment they are fabricated into a single integrated circuit or system on a chip (SOC). In addition, the control circuitry may include a suitable preamp circuit implemented as a separate integrated circuit, integrated into the read channel or disk controller circuit, or integrated into an SOC.

In one embodiment, the control circuitry 10 comprises a microprocessor executing instructions, the instructions being operable to cause the microprocessor to perform the steps of the flow diagrams described herein. The instructions may be stored in any computer-readable medium. In one embodiment, they may be stored on a non-volatile semiconductor memory external to the microprocessor, or integrated with the microprocessor in a SOC. In another embodiment, the instructions are stored on the disk 2 and read into a volatile semiconductor memory when the disk drive is powered on. In yet another embodiment, the control circuitry 10 comprises suitable logic circuitry, such as state machine circuitry.

Phan, Duc T., Ji, Chuanwen, Ding, Jianghong

Patent Priority Assignee Title
10127952, Nov 18 2015 Western Digital Technologies, Inc. Power control module using protection circuit for regulating backup voltage to power load during power fault
8693132, Oct 16 2012 Seagate Technology, LLC Actuator arm unlatching
8824081, Mar 13 2012 Western Digital Technologies, INC Disk drive employing radially coherent reference pattern for servo burst demodulation and fly height measurement
8830617, May 30 2013 Western Digital Technologies, INC Disk drive adjusting state estimator to compensate for unreliable servo data
8879191, Nov 14 2012 Western Digital Technologies, Inc.; Western Digital Technologies, INC Disk drive modifying rotational position optimization algorithm to achieve target performance for limited stroke
8891191, May 06 2014 Western Digital Technologies, INC Data storage device initializing read signal gain to detect servo seed pattern
8891194, May 14 2013 Western Digital Technologies, INC Disk drive iteratively adapting correction value that compensates for non-linearity of head
8896957, May 10 2013 Western Digital Technologies, INC Disk drive performing spiral scan of disk surface to detect residual data
8902538, Mar 29 2013 Western Digital Technologies, INC Disk drive detecting crack in microactuator
8902539, May 13 2014 Western Digital Technologies, INC Data storage device reducing seek power consumption
8913342, Mar 21 2014 Western Digital Technologies, INC Data storage device adjusting range of microactuator digital-to-analog converter based on operating temperature
8917474, Aug 08 2011 Western Digital Technologies, INC Disk drive calibrating a velocity profile prior to writing a spiral track
8917475, Dec 20 2013 Western Digital Technologies, INC Disk drive generating a disk locked clock using radial dependent timing feed-forward compensation
8922931, May 13 2013 Western Digital Technologies, INC Disk drive releasing variable amount of buffered write data based on sliding window of predicted servo quality
8922937, Apr 19 2012 Western Digital Technologies, Inc. Disk drive evaluating multiple vibration sensor outputs to enable write-protection
8922938, Nov 02 2012 Western Digital Technologies, INC Disk drive filtering disturbance signal and error signal for adaptive feed-forward compensation
8922940, May 27 2014 Western Digital Technologies, INC Data storage device reducing spindle motor voltage boost during power failure
8929021, Mar 27 2012 Western Digital Technologies, INC Disk drive servo writing from spiral tracks using radial dependent timing feed-forward compensation
8929022, Dec 19 2012 Western Digital Technologies, INC Disk drive detecting microactuator degradation by evaluating frequency component of servo signal
8934186, Mar 26 2014 Western Digital Technologies, INC Data storage device estimating servo zone to reduce size of track address
8934191, Mar 27 2012 Western Digital Technologies, Inc. Disk drive generating a disk locked clock using radial dependent timing feed-forward compensation
8937784, Aug 01 2012 Western Digital Technologies, Inc.; Western Digital Technologies, INC Disk drive employing feed-forward compensation and phase shift compensation during seek settling
8941939, Oct 24 2013 Western Digital Technologies, Inc. Disk drive using VCM BEMF feed-forward compensation to write servo data to a disk
8941945, Jun 06 2014 Western Digital Technologies, INC Data storage device servoing heads based on virtual servo tracks
8947819, Aug 28 2013 Western Digital Technologies, Inc.; Western Digital Technologies, INC Disk drive implementing hysteresis for primary shock detector based on a more sensitive secondary shock detector
8953271, May 13 2013 Western Digital Technologies, INC Disk drive compensating for repeatable run out selectively per zone
8953278, Nov 16 2011 Western Digital Technologies, Inc. Disk drive selecting disturbance signal for feed-forward compensation
8958169, Jun 11 2014 Western Digital Technologies, INC Data storage device re-qualifying state estimator while decelerating head
8970979, Dec 18 2013 Western Digital Technologies, INC Disk drive determining frequency response of actuator near servo sample frequency
8982490, Apr 24 2014 Western Digital Technologies, INC Data storage device reading first spiral track while simultaneously writing second spiral track
8982501, Sep 22 2014 Western Digital Technologies, INC Data storage device compensating for repeatable disturbance when commutating a spindle motor
8995075, Jun 21 2012 Western Digital Technologies, Inc. Disk drive adjusting estimated servo state to compensate for transient when crossing a servo zone boundary
8995082, Jun 03 2011 Western Digital Technologies, Inc. Reducing acoustic noise in a disk drive when exiting idle mode
9001454, Apr 12 2013 Western Digital Technologies, INC Disk drive adjusting phase of adaptive feed-forward controller when reconfiguring servo loop
9007714, Jul 18 2014 Western Digital Technologies, INC Data storage device comprising slew rate anti-windup compensation for microactuator
9013824, Jun 04 2014 Western Digital Technologies, INC Data storage device comprising dual read sensors and dual servo channels to improve servo demodulation
9013825, Mar 24 2014 Western Digital Technologies, INC Electronic system with vibration management mechanism and method of operation thereof
9025269, Jan 02 2014 Western Digital Technologies, INC Disk drive compensating for cycle slip of disk locked clock when reading mini-wedge
9026728, Jun 06 2013 Western Digital Technologies, INC Disk drive applying feed-forward compensation when writing consecutive data tracks
9047901, May 28 2013 Western Digital Technologies, INC Disk drive measuring spiral track error by measuring a slope of a spiral track across a disk radius
9047919, Mar 12 2013 Western Digital Technologies, INC Disk drive initializing servo read channel by reading data preceding servo preamble during access operation
9047932, Mar 21 2014 Western Digital Technologies, INC Data storage device adjusting a power loss threshold based on samples of supply voltage
9053712, May 07 2014 Western Digital Technologies, INC Data storage device reading servo sector while writing data sector
9053726, Jan 29 2014 Western Digital Technologies, INC Data storage device on-line adapting disturbance observer filter
9053727, Jun 02 2014 Western Digital Technologies, INC Disk drive opening spiral crossing window based on DC and AC spiral track error
9058826, Feb 13 2014 Western Digital Technologies, INC Data storage device detecting free fall condition from disk speed variations
9058827, Jun 25 2013 Western Digital Technologies, INC Disk drive optimizing filters based on sensor signal and disturbance signal for adaptive feed-forward compensation
9058834, Nov 08 2013 Western Digital Technologies, INC Power architecture for low power modes in storage devices
9064537, Sep 13 2013 Western Digital Technologies, INC Disk drive measuring radial offset between heads by detecting a difference between ramp contact
9076471, Jul 31 2013 Western Digital Technologies, INC Fall detection scheme using FFS
9076472, Aug 21 2014 Western Digital Technologies, INC Apparatus enabling writing servo data when disk reaches target rotation speed
9076473, Aug 12 2014 Western Digital Technologies, INC Data storage device detecting fly height instability of head during load operation based on microactuator response
9076490, Dec 12 2012 Western Digital Technologies, INC Disk drive writing radial offset spiral servo tracks by reading spiral seed tracks
9093105, Dec 09 2011 Western Digital Technologies, Inc.; Western Digital Technologies, INC Disk drive charging capacitor using motor supply voltage during power failure
9099147, Sep 22 2014 Western Digital Technologies, INC Data storage device commutating a spindle motor using closed-loop rotation phase alignment
9111575, Oct 23 2014 Western Digital Technologies, INC Data storage device employing adaptive feed-forward control in timing loop to compensate for vibration
9129630, Dec 16 2014 Western Digital Technologies, INC Data storage device employing full servo sectors on first disk surface and mini servo sectors on second disk surface
9141177, Mar 21 2014 Western Digital Technologies, INC Data storage device employing glitch compensation for power loss detection
9142225, Mar 21 2014 Western Digital Technologies, INC Electronic system with actuator control mechanism and method of operation thereof
9142235, Oct 27 2009 Western Digital Technologies, INC Disk drive characterizing microactuator by injecting sinusoidal disturbance and evaluating feed-forward compensation values
9142249, Dec 06 2013 Western Digital Technologies, INC Disk drive using timing loop control signal for vibration compensation in servo loop
9147418, Jun 20 2013 Western Digital Technologies, INC Disk drive compensating for microactuator gain variations
9147428, Apr 24 2013 Western Digital Technologies, Inc. Disk drive with improved spin-up control
9153283, Sep 30 2014 Western Digital Technologies, INC Data storage device compensating for hysteretic response of microactuator
9165583, Oct 29 2014 Western Digital Technologies, INC Data storage device adjusting seek profile based on seek length when ending track is near ramp
9171567, May 27 2014 Western Digital Technologies, INC Data storage device employing sliding mode control of spindle motor
9171568, Jun 25 2014 Western Digital Technologies, INC Data storage device periodically re-initializing spindle motor commutation sequence based on timing data
9208808, Apr 22 2014 Western Digital Technologies, Inc. Electronic system with unload management mechanism and method of operation thereof
9208810, Apr 24 2014 Western Digital Technologies, INC Data storage device attenuating interference from first spiral track when reading second spiral track
9208815, Oct 09 2014 Western Digital Technologies, INC Data storage device dynamically reducing coast velocity during seek to reduce power consumption
9214175, Mar 16 2015 Western Digital Technologies, INC Data storage device configuring a gain of a servo control system for actuating a head over a disk
9230592, Dec 23 2014 Western Digital Technologies, INC Electronic system with a method of motor spindle bandwidth estimation and calibration thereof
9230593, Dec 23 2014 Western Digital Technologies, INC Data storage device optimizing spindle motor power when transitioning into a power failure mode
9245540, Oct 29 2014 Western Digital Technologies, INC Voice coil motor temperature sensing circuit to reduce catastrophic failure due to voice coil motor coil shorting to ground
9245560, Mar 09 2015 Western Digital Technologies, INC Data storage device measuring reader/writer offset by reading spiral track and concentric servo sectors
9245577, Mar 26 2015 Western Digital Technologies, INC Data storage device comprising spindle motor current sensing with supply voltage noise attenuation
9251823, Dec 10 2014 Western Digital Technologies, INC Data storage device delaying seek operation to avoid thermal asperities
9269386, Jan 29 2014 Western Digital Technologies, INC Data storage device on-line adapting disturbance observer filter
9286925, Mar 26 2015 Western Digital Technologies, INC Data storage device writing multiple burst correction values at the same radial location
9286927, Dec 16 2014 Western Digital Technologies, INC Data storage device demodulating servo burst by computing slope of intermediate integration points
9343094, Mar 26 2015 Western Digital Technologies, INC Data storage device filtering burst correction values before downsampling the burst correction values
9343102, Mar 25 2015 Western Digital Technologies, INC Data storage device employing a phase offset to generate power from a spindle motor during a power failure
9349401, Jul 24 2014 Western Digital Technologies, INC Electronic system with media scan mechanism and method of operation thereof
9350278, Jun 13 2014 Western Digital Technologies, INC Circuit technique to integrate voice coil motor support elements
9355667, Nov 11 2014 Western Digital Technologies, INC Data storage device saving absolute position at each servo wedge for previous write operations
9355676, Mar 25 2015 Western Digital Technologies, INC Data storage device controlling amplitude and phase of driving voltage to generate power from a spindle motor
9361939, Mar 10 2014 Western Digital Technologies, INC Data storage device characterizing geometry of magnetic transitions
9390749, Dec 09 2011 Western Digital Technologies, Inc. Power failure management in disk drives
9396751, Jun 26 2015 Western Digital Technologies, INC Data storage device compensating for fabrication tolerances when measuring spindle motor current
9407015, Dec 29 2014 Western Digital Technologies, INC Automatic power disconnect device
9418689, Oct 09 2014 Western Digital Technologies, INC Data storage device generating an operating seek time profile as a function of a base seek time profile
9424868, May 12 2015 Western Digital Technologies, INC Data storage device employing spindle motor driving profile during seek to improve power performance
9424871, Sep 13 2012 Western Digital Technologies, Inc. Disk drive correcting an error in a detected gray code
9437231, Sep 25 2015 Western Digital Technologies, INC Data storage device concurrently controlling and sensing a secondary actuator for actuating a head over a disk
9437237, Feb 20 2015 Western Digital Technologies, INC Method to detect power loss through data storage device spindle speed
9454212, Dec 08 2014 Western Digital Technologies, INC Wakeup detector
9454989, Jun 21 2012 Western Digital Technologies, Inc. Disk drive adjusting estimated servo state to compensate for transient when crossing a servo zone boundary
9471072, Nov 14 2013 Western Digital Technologies, INC Self-adaptive voltage scaling
9484733, Sep 11 2013 Western Digital Technologies, INC Power control module for data storage device
9502060, Mar 14 2014 Renesas Electronics Corporation Semiconductor integrated circuit and operating method for the same
9542966, Jul 09 2015 The Regents of the University of California Data storage devices and methods with frequency-shaped sliding mode control
9564162, Dec 28 2015 Western Digital Technologies, INC Data storage device measuring resonant frequency of a shock sensor by applying differential excitation and measuring oscillation
9568704, Aug 17 2015 Apple Inc. Temperature based control of voice coil motor
9581978, Dec 17 2014 Western Digital Technologies, INC Electronic system with servo management mechanism and method of operation thereof
9620160, Dec 28 2015 Western Digital Technologies, INC Data storage device measuring resonant frequency of a shock sensor by inserting the shock sensor into an oscillator circuit
9761266, Dec 23 2014 Western Digital Technologies, Inc. Data storage device optimizing spindle motor power when transitioning into a power failure mode
9823294, Oct 29 2013 Western Digital Technologies, INC Negative voltage testing methodology and tester
9886285, Mar 31 2015 Western Digital Technologies, INC Communication interface initialization
9899834, Nov 18 2015 Western Digital Technologies, Inc. Power control module using protection circuit for regulating backup voltage to power load during power fault
9959204, Mar 09 2015 Western Digital Technologies, INC Tracking sequential ranges of non-ordered data
Patent Priority Assignee Title
5594603, Dec 02 1993 Toshiba Storage Device Corporation Seek control system based upon a detected temperature of a positioning mechanism in a disk device
6229663, Jun 27 1997 Western Digital Technologies, INC Disk drive loading/unloading apparatus and method for controlling the apparatus
6369972, May 14 1999 Western Digital Technologies, Inc. Temperature monitoring method of a disk drive voice coil motor from a traveled distance
6661598, Nov 30 1998 Kabushiki Kaisha Toshiba Calibration method for use in head loading/unloading type disk apparatus
6731450, Nov 30 2000 Western Digital Technologies, Inc.; Western Digital Corporation Disk drive control system and method for determining the temperature of an actuator coil
6791785, Feb 28 2001 Western Digital Technologies, Inc.; Western Digital Corporation Disk drive with efficient coil temperature estimation
6917486, Jul 18 2003 Western Digital Technologies, INC Direct detection of coil resistance
6937427, Jun 19 2003 EVAULT, INC Method and apparatus for measuring the back EMF of a disc drive VCM
7005820, Dec 27 2002 Western Digital Technologies, INC Apparatus for spindle bearing friction estimation for reliable disk drive startup
7009354, Dec 27 2002 Western Digital Technologies, INC Method for spindle bearing friction estimation for reliable disk drive startup operation
7009806, Feb 19 2003 Western Digital Technologies, INC Accurate tracking of coil resistance
7042673, Dec 12 2003 SAMSUNG ELECTRONICS CO , LTD Hard disk drive calibration method and apparatus
7050254, Feb 11 2005 Western Digital Technologies, Inc. Internal disk drive temperature estimation
7082009, Feb 19 2003 Western Digital Technologies, INC Accurate tracking of coil resistance based on current, voltage and angular velocity
20010026414,
20030179486,
20040047064,
20070247740,
////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 06 2007DING, JIANGHONGWestern Digital Technologies, INCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0198480338 pdf
Sep 07 2007JI, CHUANWENWestern Digital Technologies, INCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0198480338 pdf
Sep 10 2007PHAN, DUC T Western Digital Technologies, INCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0198480338 pdf
Sep 19 2007Western Digital Technologies, Inc.(assignment on the face of the patent)
May 12 2016Western Digital Technologies, INCJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY AGREEMENT0387220229 pdf
May 12 2016Western Digital Technologies, INCU S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTSECURITY AGREEMENT0387440281 pdf
Feb 27 2018U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTWestern Digital Technologies, INCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0455010714 pdf
Feb 03 2022JPMORGAN CHASE BANK, N A Western Digital Technologies, INCRELEASE OF SECURITY INTEREST AT REEL 038744 FRAME 04810589820556 pdf
Date Maintenance Fee Events
Jul 19 2013M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Sep 25 2017REM: Maintenance Fee Reminder Mailed.
Mar 12 2018EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Feb 09 20134 years fee payment window open
Aug 09 20136 months grace period start (w surcharge)
Feb 09 2014patent expiry (for year 4)
Feb 09 20162 years to revive unintentionally abandoned end. (for year 4)
Feb 09 20178 years fee payment window open
Aug 09 20176 months grace period start (w surcharge)
Feb 09 2018patent expiry (for year 8)
Feb 09 20202 years to revive unintentionally abandoned end. (for year 8)
Feb 09 202112 years fee payment window open
Aug 09 20216 months grace period start (w surcharge)
Feb 09 2022patent expiry (for year 12)
Feb 09 20242 years to revive unintentionally abandoned end. (for year 12)