A water meter has a meter register having an encoder having electromagnetic wave emitters, e.g., infrared emitters to measure water flow and direction of water flow through the meter. The encoder has two of three spaced emitters directing infrared rays at predetermined time intervals toward a rotating detector wheel having a reflective surface portion and a non-reflective surface portion facing the emitters and an infrared sensor. The reflective surface portion of the detecting wheel reflects the infrared rays incident thereon toward the sensor. A microprocessor connected to the sensor acts on signals from the sensor to determine material flow. The meter register transmits the signal to a distant receiver. The microprocessor of a meter register has an algorithm to prevent the meter register from sending signals until after the meter register or a water meter having a meter register is installed and water moved through the meter.
|
24. A meter register for coupling with a meter, the meter having components adapted to transmit radio waves as material passes through the meter, the meter register adapted to generate an algorithm to act on components of the meter to prevent the components of the meter from transmitting the radio waves until the components determine that a particular amount of material passes through the meter.
1. A meter register, comprising:
a register body having a rotatable drive shaft coupled thereto, a drive magnet attached to the drive shaft, at least one wheel co-acting with the drive shaft, the wheel having a first surface and an opposite second surface, and a reflective surface and a non-reflective surface on the second surface of the wheel;
a plurality of optical emitters in facing relation to the second surface of the wheel and spaced about an axis which the wheel rotates, wherein the emitters are adapted to emit radiation on the reflective and non-reflective surfaces; and
a single sensor mounted in facing relationship to the second surface of the wheel, wherein the plurality of emitters are between the second surface of the wheel and the sensor, the sensor adapted to co-act with reflected radiation from the reflective surface, whereby in operation when the drive shaft rotates, the wheel rotates about the axis and one or more emitters emit radiation that is reflected from the wheel to the sensor for a determination of flow through the meter and direction of flow.
4. A meter register comprising:
an optical encoder responsive to material flow, the optical encoder comprising:
a single sensor responsive to one or more wavelengths of the electromagnetic spectrum, the sensor having a perimeter;
a plurality of devices mounted in a fixed spaced relationship to one another and to the perimeter of the sensor, each of the devices capable of generating the one or more wavelengths of the electromagnetic spectrum; and
a member mounted to rotate about an axis and having a major surface with the major surface spaced from and facing the single sensor and the plurality of devices, the major surface having a first surface portion for directing the one or more of the wavelengths from one or more of the plurality of devices incident thereon toward the sensor, and a second surface portion for preventing the one or more wavelengths from the one or more of the plurality of devices from impinging on the sensor, wherein the plurality of devices is positioned between the member and the sensor such that the one or more wavelengths of the electromagnetic spectrum directed toward the member, and reflected from the member are reflected toward and past the plurality of devices to impinge on the sensor; and
a system responsive to material flow acting on the member to rotate the member about its axis when the system responds to flow of material, wherein as the member rotates about its axis, the first and the second surface portions of the member move relative to the sensor and each one of the plurality of the devices.
16. A meter register comprising:
an encoder responsive to material flow, the optical encoder comprising:
a sensor responsive to one or more wavelengths of the electromagnetic spectrum, the sensor having a perimeter;
a plurality of devices mounted in a fixed spaced relationship to one another and to the perimeter of the sensor, each of the devices capable of generating the one or wavelengths of the electromagnetic spectrum;
a microprocessor electrically connected to the sensor and to each of the devices: and
a member mounted to rotate about an axis and having a major surface with the major surface spaced from and facing the sensor and the plurality of devices, the major surface having a first surface portion for directing the one or more of the wavelengths from one or more of the plurality of devices incident thereon toward the sensor, and a second surface portion for preventing the one or more wavelengths from the one or more of the plurality of devices from impinging on the sensor; and
a system responsive to material flow acting on the member to rotate the member about its axis when the system responds to flow of material, wherein as the member rotates about its axis, the first and the second surface portions of the member move relative to the sensor and each one of the plurality of the devices, wherein the system responsive to material flow comprises a drive arrangement having a magnet spaced from a gear drive;
an electric power unit to power the devices and the microprocessor; and
wherein the meter register includes a sealed container having the encoder, the system responsive to material flow, the microprocessor and the electrical power unit therein, and further comprising a housing having a first end for connection to a material flow inlet and a second end for connection to a material flow outlet, a chamber through which material flows as it moves between the ends of the housing, the meter register mounted in the housing and a low detector having a magnet which is rotated as the material flows through the chamber between the ends, wherein rotation of the magnet of the detector rotates the magnet of the meter register to rotate the member of the encoder: and
wherein the microprocessor includes a signal generator that transmits the flow of the material through the chamber as measured by the encoder and includes an algorithm for making the signal generator inoperative until a predetermined amount of material has passed through the chamber.
23. A meter register comprising:
an encoder responsive to water flow, the optical encoder comprising:
a sensor responsive to one or more wavelengths of the electromagnetic spectrum, the sensor having a perimeter;
three devices positioned in a circle and spaced 120° and the one or more wavelengths of the electromagnetic spectrum are selected from the group of the infrared wavelength range and the visible wavelength range of the electromagnetic spectrum, each of the devices capable of generating the one or more wavelengths of the electromagnetic spectrum;
a support having a first surface and a second opposite surface with a hole extending through the body of the support from the first surface to the second surface, wherein the three devices are mounted on the first surface of the support with the circle circumscribing the hole and the sensor adjacent the second surface of the support overlaying the hole, wherein the axis about which the member rotates and an axis through center of the circle are coincident axes, wherein the first surface portion of the major surface of the member is a reflective surface and the second surface portion of the major surface of the member is a non-reflective surface; further comprising a microprocessor connected to the sensor, an electrical power unit to power the devices and the microprocessor, the microprocessor electrically connected to the sensor and to each of the devices, and wherein the system responsive to water flow comprises a drive arrangement having a magnet at one end and a gear arrangement at the other end;
a microprocessor electrically connected to the sensor and to each of the devices; and
a member mounted to rotate about an axis and having a major surface with the major surface spaced from and facing the sensor and the plurality of devices, the major surface having a first surface portion for directing the one or more of the wavelengths from one or more of the plurality of devices incident thereon toward the sensor, and a second surface portion for preventing the one or more wavelengths from the one or more of the plurality of devices from impinging on the sensor; and
an electrical power unit to power the devices and the microprocessor;
a system responsive to water flow comprises a drive arrangement having a magnet at one end and a gear arrangement at the other end to act on the member to rotate the member about its axis when the system responds to flow of water, wherein as the member rotates about its axis, the first and the second surface portions of the member move relative to the sensor and each one of the plurality of the devices; and
wherein the microprocessor includes a signal generator that transmits the flow of the material through the chamber as measured by the encoder and includes an algorithm for making the signal generator inoperative until a predetermined amount of material has passed through the chamber and the predetermined amount of water is measured by a measuring system selected from the group of (1) the encoder, (2) an optical measuring system other than the encoder, and (3) a magnet mounted on a wheel and a reed switch mounted in a fixed relationship to the circumference of the wheel, such rotation of the wheel moves the magnet past the reed switch to change the status of the reed switch.
5. The meter register as claimed in
6. The meter register as claimed in
7. The meter register as claimed in
8. The meter register as claimed in
9. The meter register as claimed in
10. The meter register as claimed in
11. The meter register as claimed in
12. The meter register as claimed in
13. The meter register as claimed in
14. The meter register as claimed in
15. The meter register as claimed in
17. The meter register as claimed in
18. The meter register as claimed in
19. The meter register as claimed in
20. The meter register as claimed in
21. The meter register as claimed in
further comprising a support having a first surface and a second opposite surface with a hole extending through the body of the support from the first surface to the second surface, wherein the three devices are mounted on the first surface of the support with the circle circumscribing the hole and the sensor adjacent the second surface of the support overlaying the hole, wherein the axis about which the member rotates and an axis through center of the circle are coincident axes, wherein the first surface portion of the major surface of the member is a reflective surface and the second surface portion of the major surface of the member is a non-reflective surface;
further comprising a microprocessor connected to the sensor, an electrical power unit to power the devices and the microprocessor, the microprocessor electrically connected to the sensor and to each of the devices, and
wherein the system responsive to material flow comprises a drive arrangement having a magnet at one end and a gear arrangement at the other end.
22. The meter register as claimed in
25. The meter register as claimed in
|
The present invention is a divisional application of U.S. application Ser. No. 10/864,312, filed Jun. 9, 2004 now U.S. Pat. No. 7,135,986, which claims the benefit of U.S. Provisional Application Ser. No. 60/478,522, filed Jun. 13, 2003, and U.S. Provisional Application Ser. No. 60/478,310, filed Jun. 13, 2003, which applications are hereby incorporated by reference in their entirety.
1. Field of the Invention
The present invention relates to a meter register having an encoder, e.g., a light or infrared encoder, for measuring material flow, e.g., flow volume, and flow direction of water, and an algorithm to selectively block signal transmission by the meter register, e.g., prevent or block signal transmission, during transport of the meter register and permit or unblock transmission after the meter register is installed, e.g., in a home, and a predetermined amount of water flow has been sensed by the meter register.
2. Description of Related Art
One technique to determine utility consumption is to visually read the utility meters. The meters, such as water meters, include an odometer that identifies the consumption of the water consumed. The odometer is read periodically and the difference between the present and the prior reading determines the amount of utility water used. This procedure of individually and visually reading water meters is time consuming, labor intensive, and expensive. To overcome this drawback, remote reading systems were developed.
One such system is described in PCT Publication No. WO 02/073735 (hereinafter also referred to as “WO 02/073735”) to Winter and titled “Meter Register.” The meter register disclosed in WO 02/073735 is a sealed meter register and includes a magnetic follower coupled to a gear. The gear includes a magnet that co-acts with one or more reed switch sensors. The reed switch sensors are coupled to a circuit board which determines the volume that flows through the meter by counting the number of pulses created by the magnet co-acting with the reed switches. Then, the register circuitry creates a signal that causes a radio wave to be transmitted or emitted by the meter register and picked up by a transmitter external of the meter register.
Although the meter register of WO 02/073735 is acceptable, there are limitations. More particularly, the use of reed switches and magnets on a wheel are rather expensive and, due to their mechanical nature, can fail in the field. As can be appreciated by those skilled in the art, it would be advantageous to provide a meter register that does not have these limitations.
Another limitation of the meter register of WO 02/073735 is that, after calibration of the meter register, it continues to transmit a radio signal. Presently, the Federal Communications Commission (FCC) of the United States limits the ability of the registers to transmit their signal prior to installation. Specifically, under the FCC rules, the register is not permitted to transmit radio signals until the meter is installed for operation. In a sealed meter environment, this is very difficult since the meter register cannot be easily modified once constructed and sealed.
As can be appreciated by those skilled in the art, it would be advantageous to provide a sealed meter register that only transmits signals after it has been installed.
The invention relates to a meter register that includes a meter body having a rotatable drive shaft coupled thereto. A wheel co-acts with the drive shaft and is rotatable. The wheel includes a reflective portion and a non-reflective portion. At least one, and preferably three light emitters, such as infrared sensors, are spaced from the rotatable shaft so that the emitters emit light onto the rotatable wheel spaced approximately 120° apart. A light sensor is provided to detect reflective light from the emitters off of the wheel. The sensor is coupled to a microprocessor to determine if reflected light is reflected thereon. A microprocessor controls the emission of the light emitters so that the microprocessor can determine which of the light emitters reflects off of the wheel. Depending on the reflection of light off of the wheel over a period of time, the microprocessor can determine the direction of flow through a meter on which the register is attached.
Further, the invention relates to a meter register having an encoder, such as an optical encoder, responsive to material flow, e.g., water flow. The encoder includes a sensor responsive to one or more wavelengths of the electromagnetic spectrum, e.g., infrared energy or visible light. The sensor having a perimeter, a plurality of devices mounted in a fixed spaced relationship to one another, and to the perimeter of the sensor, each of the devices are capable of generating the one or more wavelengths of the electromagnetic spectrum, e.g., infrared energy or visible light. A member mounted to rotate about an axis and having a major surface, with the major surface spaced from and facing the sensor and the plurality of devices, the major surface having a first surface portion for directing the one or more of the wavelengths from one or more of the plurality of devices incident thereon toward the sensor, and a second surface portion for preventing the one or more wavelengths from the one or more of the plurality of devices from impinging on the sensor. A system responsive to material flow acts on the member to rotate the member about its axis when the system responds to flow of material, wherein as the member rotates about its axis, the first and the second surface portions of the member move relative to the sensor and each one of the plurality of the devices.
In a non-limiting embodiment of the invention, the meter register includes a sealed container having the encoder, the system responsive to material flow, a microprocessor, and an electrical power unit therein. A housing having a first end for connection to a material flow inlet and a second end for connection to a material flow outlet, and a chamber through which material flows as it moves between the ends of the housing. The meter register is mounted in the housing. A flow detector mounted in the chamber of the housing has a magnet which is rotated as the material flows through the chamber. The rotation of the magnet of the flow detector rotates the magnet of the meter register to rotate the member of the encoder.
In a further non-limiting embodiment of the invention, the meter register includes a microprocessor having an algorithm and a signal generator that transmits the flow of the material through the chamber as measured by the encoder. The algorithm makes the signal generator inoperative until a predetermined amount of material has passed through the chamber.
Still further, the invention relates to a utility meter register that transmits a radio frequency signal that includes an arrangement that, once activated, prevents a meter register from transmitting a signal until the meter register measures a fixed amount of volume passing through the meter body, at which time the meter register will transmit a radio frequency signal. The present invention is also a water meter having a sealed meter register. The meter body has a magnetic drive wheel that co-acts with a follower wheel of the meter register. The follower wheel co-acts with another wheel having a magnet attached thereto. A sensor, such as a reed switch, is positioned in close proximity to the wheel so that the magnet activates the reed switch every time it rotates about an axis. The sensor is coupled to a microprocessor which detects a complete revolution of the magnet. The meter register will begin transmitting a radio signal after about one or more, and more preferably three, complete revolutions of the magnet.
In a non-limiting embodiment of the invention, the meter register includes a device for detecting flow of material and generating a first signal representative of material flow; a microprocessor for receiving the first signal and acting on the first signal to determine the amount of flowed material and generating a second signal representative of the amount of flowed material, the microprocessor further includes an algorithm and a transmitter operated on by the algorithm to change the transmitter from a non-transmitting state to a transmitting state, wherein the meter changes from the non-transmitting to the transmitting state after the microprocessor has determined that the device for detecting flow of a material has detected the flow of a predetermined amount of material.
The invention also relates to a method of blocking the transmission of a signal from a meter register, the meter register having a measuring system for material flow moving past the meter register. The method includes the steps of calibrating the meter register; transmitting a signal to the meter register from an external source to a microprocessor contained in the meter register to block the microprocessor from forwarding signals to an antenna of the meter register; installing the meter register to measure material flow; using the meter register to measure the material flowing past the meter register; forwarding a signal of measured material flow to the microprocessor and, after passing of a predetermined amount of material past the meter register, the microprocessor is unblocked and the microprocessor forwards signals to the antenna.
In the following discussion of the non-limiting embodiments of the invention, spatial or directional terms, such as “inner”, “outer”, “left”, “right”, “up”, “down”, “horizontal”, “vertical”, and the like, relate to the invention as it is shown in the drawing figures. However, it is to be understood that the invention can assume various alternative orientations and, accordingly, such terms are not to be considered as limiting. Further, all numbers expressing dimensions, physical characteristics, and so forth, used in the specification and claims are to be understood as being modified in all instances by the term “about”. Accordingly, unless indicated to the contrary, the numerical values set forth in the following specification and claims can vary depending upon the desired properties sought to be obtained by the practice of the invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Moreover, all ranges disclosed herein are to be understood to encompass any and all subranges subsumed therein. For example, a stated range of “1 to 10” should be considered to include any and all subranges between (and inclusive of) the minimum value of 1 and the maximum value of 10; that is, all subranges beginning with a minimum value of 1 or more and ending with a maximum value of 10 or less, and all subranges in between, e.g., 1 to 6.3, or 5.5 to 10, or 2.7 to 6.1. Also, as used herein, terms such as “positioned on” or “supported on” mean positioned or supported on but not necessarily in direct contact with the surface.
Further, in the discussion of the non-limiting embodiments of the invention, it is understood that the invention is not limited in its application to the details of the particular non-limiting embodiments shown and discussed since the invention is capable of other embodiments. Further, the terminology used herein is for the purpose of description and not of limitation and, unless indicated otherwise, like reference numbers refer to like elements.
The non-limiting embodiments of the invention are discussed for use on a water meter; however, as will be appreciated, the invention is not limited thereto, and the non-limiting embodiments of the invention can be used with any type of signal transmitting device, e.g., but not limiting the invention thereto, any type of signal transmitting meter measuring the movement of materials, e.g., but not limiting the invention thereto, fluids such as water and gas. Although not limiting to the invention, the water meter in the following discussion is of the type disclosed in WO 02/073735, which document is hereby incorporated by reference.
The body 12 of the water meter 10 is preferably made of a metallic material, such as bronze, copper, or stainless steel, although it can be made of other materials, such as plastic. The measuring chamber 14 can contain any one of the measuring-type arrangements known in the art, such as positive displacement arrangement and/or a vane or a multi-jet type displacement arrangement. The inlet connection 16 and the outlet connection 18 are adapted to be secured to pipes 22 and 24, respectively. The meter register 20 is preferably sealed and is preferably magnetically coupled to the magnetic drive arrangement 21 in the measuring chamber 14. Magnetic drive arrangements are well known in the art and no further discussion is deemed necessary. The meter register 20 of the water meter 10 may include an antenna and/or receiver to transmit and/or receive RF signals, e.g., radio waves 26, respectively, and when the meter is mounted in a pit (not shown), an auxiliary antenna and/or receiver 28, shown in phantom in
With reference to
Referring to
With reference to
The circuit board 56 further includes three electromagnetic wave emitters 64-66 (see
With reference to
As can be seen in
In operation, the microprocessor 98 will only activate two emitters at a time. More specifically, each emitter of the two emitters activated at one time will actually be activated and deactivated individually in short intervals. If the microprocessor 98 detects reflection from both emitters impinging on the sensor 72, then the emitters are reactivated again. Once the microprocessor does not detect reflection from one of the emitters, the other emitter, which had been off during the whole sequence, is then activated and the emitter, which did not have any reflection, is deactivated. This is because the newly deactivated emitter has its emitted infrared rays hitting the non-reflective surface 90 of the detector wheel 80. This process continues until the infrared rays of another one of the emitters is sensed by the microprocessor to be impinging on the non-reflective surface 90 of the detector wheel 80. Tables 1 and 2 below show various sequences indicating clockwise flow or positive flow (Table 1), as well as counterclockwise flow or reverse flow (Table 2).
TABLE 1
Status of Emitters and Rays Incident on the Detector Wheel
as the Detector Wheel 80 Moves in a Clockwise Direction.
Period
Emitter 64
Emitter 65
Emitter 66
1
On ref
On ref
Off
2
Off
Off
Off
3
On no ref
On ref
Off
4
Off
Off
Off
5
Off
On ref
On ref
6
Off
Off
Off
7
Off
On no ref
On ref
8
Off
Off
Off
9
On ref
Off
On ref
10
Off
Off
Off
11
On ref
Off
On no ref
12
Off
Off
Off
1
On ref
On ref
Off
2
Off
Off
Off
3
On no ref
On ref
Off
4
Off
Off
Off
5
Off
On ref
On ref
6
Off
Off
Off
On Table 1, the listing of the emitters is 64, 66, and 65 which is the sequence with the detector wheel rotating in the clockwise direction. The designation “off” means that the emitters are turned off. The designation “on ref” means that the emitter is turned on and the ray of the emitter is incident on the reflective surface 87 of the detector wheel 80. The designation “on no ref” means that the emitter is turned on and the ray of the emitter is incident on the non-reflective surface 88 of the detector wheel 80. One cycle is 12 periods.
TABLE 2
Status of the Emitters and Rays Incident on the Detector Wheel
as the Detector Wheel 80 Moves in a Counterclockwise Direction
Period
Emitter 64
Emitter 65
Emitter 66
1
On ref
On ref
Off
2
Off
Off
Off
3
On ref
On no ref
Off
4
Off
Off
Off
5
On ref
Off
On ref
6
Off
Off
Off
7
On no ref
Off
On ref
8
Off
Off
Off
9
Off
On ref
On ref
10
Off
Off
Off
11
Off
On ref
On no ref
12
Off
Off
Off
1
On ref
On ref
Off
2
Off
Off
Off
3
On ref
On no ref
Off
4
Off
Off
Off
5
On ref
Off
On ref
6
Off
Off
Off
On Table 2, the listing of the emitters is 64, 65, and 66 which is the sequence with the detector wheel rotating in the counterclockwise direction. The designations “off”, “on ref” and “on no ref” have the meaning given above. One cycle is 12 periods.
The flow volume through the meter 10 can be determined by measuring the time it takes to complete one period.
Preferably, the calculated result has an accuracy of 60° of the wheel, which then can correspond to a volume flow and a volume flow rate through the meter. In the practice of the invention, but not limiting thereto, it is preferred to activate the emitters (emitters on) for 200 nanoseconds and deactivate the emitters (emitters off) for 125 milliseconds. It is found that in this arrangement the life of the batteries 54 and 55 are increased.
Although the two magnetic reed switch designs disclosed in WO 02/073735 is acceptable, the encoder of the invention can detect flow through the meter more accurately than the two magnetic reed switch designs described in the WO 02/073735 because three emitters are used with a rotating detector instead of two reed switches activated by a rotating magnetic. Further, the encoder of the present invention can determine a leak with more accuracy than the prior art flow detectors. Specifically, the encoder of the invention can determine a very slow rotation of the detector wheel 80 over a long period of time, which is indicative of a leak, for example, a water leak. Further, the encoder of the present invention uses considerably less electrical power than the prior art magnetic activated reed switch arrangement, resulting in longer battery life.
As can be appreciated by those skilled in the art, the register disclosed in WO 02/073735 can be modified to use the encoder of the present invention by replacing the magnetic reed switches with the circuit board 56 (see
Another non-limiting embodiment of the invention is to prevent the meter register from transmitting radio waves during transport of the meter register and/or of a water meter having the meter register until the meter register and/or water meter having the register is installed and used, i.e., measuring flow through the meter. In accordance to this embodiment of the invention, the foregoing is accomplished by installing an algorithm in the meter register, i.e., in the microprocessor 98 that prevents or blocks the microprocessor from sending signals to the antenna of the meter register until the meter is put into service.
In the practice of this embodiment of the invention, a water meter, e.g., the water meter 10, having the meter register 20 having features of the invention are tested at a test facility. After the meter 10 is calibrated, a signal is transmitted to the meter register 20 from an external source and received by the microprocessor 98 to deactivate the transmitting and receiving feature of the register 20, e.g., block the microprocessor from forwarding signals to the antenna. With the transmitting and receiving features of the register 20 blocked, the meter 10 can be transported throughout the United States pursuant to the FCC rules. After the meter is installed at an installation site, such as in a pit or a house, water or gas or any other material which will pass through the meter is permitted to pass through the meter 10 causing the measuring drive arrangement 21 in the measuring chamber 14 to drive the magnetic drive arrangement 52 (see
The invention further contemplates using other types of sensors to activate the transmitting and receiving features of the meter register. With reference to
As can be appreciated, the invention is not limited to the use of an encoder having electromagnetic wave emitters, e.g., infrared emitters or light emitters, and a magnetic reed switch sensor, but can be used with other types of activating systems that measure the flow of material and generate a useable indicator of material flow. Alternatively, the signal transmitting and receiving arrangement of the meter register can be activated based upon the requirement of more than one rotation of the wheel 116, or less than one rotation of the wheel 116, or less than one cycle of the encoder.
The form of the invention shown and described above represents illustrative non-limiting embodiments of the invention. It is understood that various changes may be made without departing from the teachings of the invention defined by the claimed subject matter that follows.
Patent | Priority | Assignee | Title |
8157160, | Jun 13 2003 | Arad Measuring Technologies Ltd. | Meter register and remote meter reader utilizing a stepper motor |
8448845, | Jun 13 2003 | Arad Measuring Technologies Ltd. | Meter register and remote meter reader utilizing a stepper motor |
9109922, | Jul 11 2013 | Honeywell International Inc.; Honeywell International Inc | Magnetically-impervious retrofit kit for a metered-commodity consumption meter |
Patent | Priority | Assignee | Title |
4194180, | Jul 30 1976 | AB Svensk Varmematning SVM | Apparatus for registering quantity values of corresponding volume or energy quantities by means of counters in a central station |
4264897, | Jun 13 1979 | General Electric Company | Meter register encoder including electronics providing remote reading capability |
4305281, | Jun 04 1979 | M&FC HOLDING COMPANY, INC , A DE CORP | Self-correcting self-checking turbine meter |
4327362, | Oct 23 1978 | Rockwell International Corporation | Meter rotor rotation optical sensor |
4481805, | Jun 03 1981 | MALONEY PIPELINE SYSTEMS, INC , HOUSTON, TEXAS, A CORP OF DELAWARE | Meter prover apparatus and method |
4670737, | Sep 13 1984 | Sangamo Weston, Inc. | Method of initializing an optical encoder |
4680704, | Dec 28 1984 | TeleMeter Corporation; TELEMETER CORPORATION, A MN CORP | Optical sensor apparatus and method for remotely monitoring a utility meter or the like |
4683472, | Aug 05 1982 | SIGMA INSTRUMENTS, INC , 170 PEARL STREET, BRAINTREE, MA 02184 A CORP OF MASSACHUSETTS | Signal reading system such as for remote reading of meters |
4774463, | Oct 31 1985 | Ebara Corporation | Bearing associated with means for determining rotational speed |
4799059, | Mar 14 1986 | Itron, Inc | Automatic/remote RF instrument monitoring system |
4827123, | Apr 11 1986 | Itron, Inc | Direction sensitive optical shaft encoder |
5111407, | Aug 25 1989 | Arad Ltd. | System for measuring and recording a utility consumption |
5261275, | Sep 12 1991 | Water meter system | |
5284053, | Jan 10 1992 | The BOC Group, Inc. | Controlled flow volumetric flowmeter |
5377529, | Nov 15 1993 | Leak detecting device, and method of constructing and utilizing same | |
5442281, | Jun 01 1993 | Itron, Inc | Method and apparatus for deriving power consumption information from the angular motion of a rotating disk in a watt hour meter |
5455781, | Aug 31 1993 | DRESSER EQUIPMENT GROUP, INC | Apparatus and method for determining the measurement accuracy of electronic gas meters |
5506404, | Sep 08 1993 | Retrofitting device providing automatic reading capability for metering systems | |
5526685, | Jan 17 1995 | GRASEBY ANDERSEN INC | Fluid flow rate measuring and controlling apparatus and method for using same |
5530258, | May 28 1993 | Simmonds Precision Products, Inc. | Liquid gauging apparatus and remote sensor interrogation |
5726646, | Apr 04 1994 | MOTOROLA SOLUTIONS, INC | Method and apparatus for activating and accessing remote meter interface devices |
5747703, | Dec 07 1993 | Schlumberger Industries S.A. | Method and apparatus for monitoring variation in the current value of a rate of fluid flow through a flow meter |
5874731, | Mar 20 1995 | Itron, Inc | Ambient light filter |
5874732, | Dec 22 1995 | Advanced Technology Ramar Limited | Rotation sensor |
5996806, | Mar 07 1995 | Ahlstrom Machinery Oy | Method and apparatus for treating filler-containing material such as recycled fibers |
6133850, | Mar 16 1998 | Google Technology Holdings LLC | Method and apparatus for reducing channel capacity required to report a billable consumption of a utility commodity |
6232593, | Apr 01 1998 | Fanuc Ltd. | Optical encoder |
6232885, | Oct 15 1998 | LANDIS+GYR INNOVATIONS, INC | Electricity meter |
6271523, | Dec 05 1997 | PRECURSIVE WAVE TECHNOLOGIES CORPORATION | Optical sensor system and method for monitoring consumables |
7135986, | Jun 13 2003 | Arad Measuring Technologies LTD | Meter register having an encoder for measuring material flow and an algorithm to selectively block signal transmission |
20020145568, | |||
CN1125003, | |||
FR2850748, | |||
WO9928428, | |||
WO2073735, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 17 2006 | Arad Measuring Technologies Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jul 17 2013 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 03 2017 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 04 2021 | REM: Maintenance Fee Reminder Mailed. |
Jan 21 2022 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Jan 21 2022 | M1556: 11.5 yr surcharge- late pmt w/in 6 mo, Large Entity. |
Date | Maintenance Schedule |
Feb 16 2013 | 4 years fee payment window open |
Aug 16 2013 | 6 months grace period start (w surcharge) |
Feb 16 2014 | patent expiry (for year 4) |
Feb 16 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 16 2017 | 8 years fee payment window open |
Aug 16 2017 | 6 months grace period start (w surcharge) |
Feb 16 2018 | patent expiry (for year 8) |
Feb 16 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 16 2021 | 12 years fee payment window open |
Aug 16 2021 | 6 months grace period start (w surcharge) |
Feb 16 2022 | patent expiry (for year 12) |
Feb 16 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |