Improved methods and apparatus for capturing emboli and subsequently removing or immobilizing the captured emboli are described. emboli can be captured within a blood vessel and can be withdrawn to a position exterior to the blood vessel. Some filters can remain within a blood vessel yet direct emboli to a position exterior to the blood vessel.
|
1. A method of removing emboli from a blood vessel, the blood vessel including a vessel wall defining an interior of the blood vessel with blood flowing therethrough, the method comprising steps of:
forming an aperture through the vessel wall;
providing a pocket;
positioning the pocket such that the pocket extends through the aperture at least in part to a position exterior to the blood vessel and in fluid communication with the interior of the blood vessel;
providing a diverter positioned within the interior of the blood vessel;
diverting a portion of the blood flow such that emboli within the blood flow are carried into the pocket; and
removing the emboli from the pocket using a syringe inserted into the pocket.
2. The method of
3. The method of
4. The method of
|
The invention relates generally to capturing intravascular emboli.
Heart and vascular disease are major problems in the United Sates and throughout the world. Conditions such as atherosclerosis result in blood vessels becoming blocked or narrowed. This blockage can result in lack of oxygenation of the heart, which has significant consequences since the heart muscle must be well oxygenated in order to maintain its blood pumping action.
Occluded, stenotic or narrowed blood vessels may be treated with a number of relatively non-invasive medical procedures including percutaneous transluminal angioplasty (PTA), percutaneous transluminal coronary angioplasty (PTCA), and atherectomy. Angioplasty techniques such as PTA and PTCA typically involve the use of a balloon catheter. The balloon catheter is advanced over a guidewire such that the balloon is positioned adjacent a stenotic lesion. The balloon is then inflated, and the restriction in the vessel is opened. During an atherectomy procedure, the stenotic lesion may be mechanically or otherwise cut away from the blood vessel wall using an atherectomy catheter.
During procedures such as angioplasty and atherectomy procedures, as well during other operations and even as a result of natural events, embolic debris can be separated from the wall of the blood vessel. If this debris enters the circulatory system, it can block other vascular regions including the neural and pulmonary vasculature. During angioplasty procedures, stenotic debris may also break loose due to manipulation of the blood vessel.
Because of this debris, a number of devices such as intravascular filters have been developed to filter out debris. A need remains for improved methods of capturing and removing intravascular emboli.
The present invention is directed to improved methods and techniques for capturing emboli and subsequently removing or immobilizing the captured emboli. The present invention is also directed to a filter that is adapted to capture emboli and direct emboli away from the vessel in which the filter is deployed.
Accordingly, an example embodiment of the invention can be found in a method of removing emboli from a blood vessel that has a vessel wall that defines an interior of the blood vessel. Blood can flow through the interior of the blood vessel. A pocket is provided that is exterior to the blood vessel but in fluid communication with the interior of the blood vessel. A portion of the blood flowing through the interior of the blood vessel may be diverted such that emboli within the blood flow are carried into the pocket.
Another example embodiment of the invention can be found in a method of removing emboli from a blood vessel that includes a lumen. A filter having an open end and a tapered end may be positioned within the lumen such that the open end is positioned upstream and the tapered end is positioned downstream. The tapered end of the filter may be in fluid communication with a tube leading to a position exterior to the blood vessel. Emboli may be captured within the filter and can be passed through the tube and thus can be passed to a position exterior to the blood vessel.
Another example embodiment of the invention can be found in an intravascular filter that includes an open end that is adapted to fit within a blood vessel, a tapered end and a tube that is in fluid communication with the tapered end. A valve may be positioned at the tapered end.
Another example embodiment of the invention can be found in a method of removing emboli from a blood vessel. The blood vessel includes a vessel wall that defines an interior of the blood vessel having blood flowing therethrough. An external port can be provided that is exterior to the blood vessel but in fluid communication with the interior of the blood vessel. A one-way valve that permits flow from the interior of the blood vessel into the external port but does not permit flow from the external port to the interior of the blood vessel can be provided. A temporal blood pressure increase may permit blood flow through the one-way valve such that emboli within the blood flow are carried into the external portion.
Another example embodiment of the invention can be found in a method of removing emboli from a vein that is transporting blood back from a patient's leg. A filter can be positioned within the vein. Emboli can be captured within the filter and can be shunted into an artery that carries blood into the leg. As a result, the captured emboli are harmlessly ensnared within the patient's feet.
The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The Figures, Detailed Description and Examples which follow more particularly exemplify these embodiments.
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
All numeric values are herein assumed to be modified by the term “about”, whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value, i.e., having the same function or result. In many instances, the term “about” may include numbers that are rounded to the nearest significant figure.
As used in this specification and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and in the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
The following description should be read with reference to the drawings, in which like elements in different drawings are numbered in like fashion. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. Although examples of construction, dimensions, and materials are illustrated for the various elements, those skilled in the art will recognize that many of the examples provided have suitable alternatives that may be utilized.
Turning now to
In some instances, the pocket 10 may be formed from any suitable metallic, polymeric, biological or even autogenous vascular material, i.e. material grafted from another location with the patient's vasculature. The piece of material used to form the pocket 10 can be any suitable fluid-tight mesh or solid polymeric layer. In other embodiments, the pocket 10 can be rigidly formed and can include a narrowed portion adapted to fit through the aperture 16.
As illustrated, a diverter 18 is positioned near to but just downstream of the aperture 16. The diverter 18 functions to divert at least a portion of blood flow into the pocket 10 such that at least some of the emboli that may be present within the blood flow are captured within the pocket 10 as captured emboli 20. The diverter 18 may be formed of any suitable metallic, polymeric, biological or even autogenous vascular material. The diverter 18 can be positioned within the blood vessel 12 by inserting the diverter 18 through the vessel wall 14 from a position exterior to the blood vessel 12. In some embodiments, the diverter 18 can be formed by a portion of a filter positioned within the blood vessel 12. In some cases, the diverter 18 can be stationary while in other instances the diverter 18 may be configured to move back and forth, much like an automotive windshield wiper, to better direct emboli into the pocket 10.
Eventually, the pocket 10 may become full or at least substantially full with captured emboli 20. In
In some instances, the assembly 24 may be advanced through the blood vessel 12 and can be advanced through the aperture 16 to reach its operational position, as indicated. In some cases, however, the assembly 24 may be provided from exterior to the blood vessel 12. The pocket portion 28 remaining outside the blood vessel 12 may be flood sealed. The filter portion 26 located within the blood vessel 12 may include self-unfolding hooks (not illustrated) to assure that the filter portion 26 is properly positioned.
Blood flowing through the blood vessel 12 will encounter the filter portion 26. Blood will pass through, but at least a portion of any emboli that may be present within the blood flow will be captured by the filter portion 26. The filter portion 26 can be formed of any suitable filter mesh such that blood can pass through but potentially harmful emboli are captured. The captured emboli 30 pass into the pocket portion 28 and await removal in any suitable manner. Suction such as that described with respect to
Turning now to
Much as discussed with respect to
Once the balloon 38 has been de-inflated, as shown in
Turning now to
At least a portion of any emboli present within the blood flow will be captured by the filter 58 and can pass through the valve 64 into the tube 66. As a result, the captured emboli can be removed from the patient through valve 74 without removing the filter 58 from the patient.
In some instances, the blood pressure within the artery 82 may be higher than the blood pressure within the vein 80. Consequently, a collection ball 88 may be disposed along the shunt 86. A first one-way valve (not illustrated) within the collection ball 88 permits blood to exit the vein 80 and enter a collection volume within the collection ball 88. A second one-way valve within the collection ball 88 permits blood to exit the collection volume and enter the artery 82. The collection ball 88 may be disposed relatively close to the patient's skin so that squeezing or depressing the collection ball 88 can activate the first and second one-way valves. Captured emboli are carried downward through the artery 82 and can harmlessly collect in the patient's feet.
The invention should not be considered limited to the particular examples described above, but rather should be understood to cover all aspects of the invention as set out in the attached claims. Various modifications, equivalent processes, as well as numerous structures to which the invention can be applicable will be readily apparent to those of skill in the art upon review of the instant specification.
Weber, Jan, Holman, Thomas J., Eidenschink, Tracee E. J., Sogard, David J., WasDyke, Joel M.
Patent | Priority | Assignee | Title |
10610249, | Apr 30 2015 | Septulus AB | Tissue cutting device and system |
11478266, | Apr 30 2015 | Septulus AB | Tissue cutting device and system |
11559672, | Feb 08 2019 | NXT Biomedical, LLC | Left atrial appendage stasis reduction |
11904120, | Feb 08 2019 | NXT Biomedical, LLC | Left atrial appendage stasis reduction |
Patent | Priority | Assignee | Title |
5549626, | Dec 23 1994 | New York Society for the Ruptured and Crippled Maintaining the Hospital for Special Surgery | Vena caval filter |
6048331, | May 12 1997 | Edwards Lifesciences Corporation | Cardioplegia occluder |
6371935, | Jan 22 1999 | SURGERX MEDICAL, LLC | Aortic catheter with flow divider and methods for preventing cerebral embolization |
6395014, | Sep 26 1997 | SURGERX MEDICAL, LLC | Cerebral embolic protection assembly and associated methods |
6406471, | Dec 28 1999 | Edwards Lifesciences Corporation | Arterial filter with aspiration and methods of use |
6499487, | Dec 23 1997 | Edwards Lifesciences Corporation | Implantable cerebral protection device and methods of use |
6508826, | Apr 30 2001 | Boston Scientific Scimed, Inc | Cannula with flow diversion mechanism and methods of use |
6540712, | May 13 1998 | W L GORE & ASSOCIATES, INC | Methods and low profile apparatus for reducing embolization during treatment of carotid artery disease |
6623507, | May 07 2001 | MEDICAL MICRO DEVICES, INC | Vascular filtration device |
6652555, | Oct 27 1999 | Boston Scientific Scimed, Inc | Barrier device for covering the ostium of left atrial appendage |
6652556, | Oct 27 1999 | Boston Scientific Scimed, Inc | Filter apparatus for ostium of left atrial appendage |
6673089, | Mar 11 1999 | Stryker Corporation | Implantable stroke treating device |
6682505, | Mar 12 1999 | W L GORE & ASSOCIATES, INC | Catheter for removing emboli from saphenous vein grafts and native coronary arteries |
6689084, | Dec 05 1996 | Edwards Lifesciences Corporation | Cerebral protection during carotid endarterectomy and downstream vascular protection during other surgeries |
6689150, | Oct 27 1999 | Boston Scientific Scimed, Inc | Filter apparatus for ostium of left atrial appendage |
6692513, | Jun 30 2000 | Medtronic, Inc | Intravascular filter with debris entrapment mechanism |
6695864, | Dec 15 1997 | SURGERX MEDICAL, LLC | Method and apparatus for cerebral embolic protection |
6695865, | Mar 20 2000 | VACTRONIX SCIENTIFIC, LLC | Embolic protection device |
6712834, | Jun 16 1998 | Surpass Medical Ltd | Implantable blood filtering device |
6723085, | Dec 28 1999 | Edwards Lifesciences Corporation | Arterial filter with aspiration and methods of use |
6730108, | Oct 27 1999 | Boston Scientific Scimed, Inc | Barrier device for ostium of left atrial appendage |
6740112, | Mar 11 1999 | Stryker Corporation | Implantable stroke risk reduction device |
6743246, | May 08 1997 | Edwards Lifesciences Corporation | Devices and methods for protecting a patient from embolic material during surgery |
20010049486, | |||
20020045932, | |||
20020107479, | |||
WO76390, | |||
WO2005027751, | |||
WO9945835, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 22 2004 | WEBER, JAN | SciMed Life Systems, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015697 | /0421 | |
Nov 30 2004 | EIDENSCHINK, TRACEE E J | SciMed Life Systems, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015697 | /0421 | |
Nov 30 2004 | HOLMAN, THOMAS J | SciMed Life Systems, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015697 | /0421 | |
Dec 01 2004 | WASDYKE, JOEL M | SciMed Life Systems, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015697 | /0421 | |
Dec 17 2004 | SOGARD, DAVID J | SciMed Life Systems, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015697 | /0421 | |
Dec 23 2004 | Boston Scientific Scimed, Inc. | (assignment on the face of the patent) | / | |||
Jan 01 2005 | SciMed Life Systems, INC | Boston Scientific Scimed, Inc | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 018505 | /0868 |
Date | Maintenance Fee Events |
Mar 23 2010 | ASPN: Payor Number Assigned. |
Oct 18 2013 | REM: Maintenance Fee Reminder Mailed. |
Mar 09 2014 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 09 2013 | 4 years fee payment window open |
Sep 09 2013 | 6 months grace period start (w surcharge) |
Mar 09 2014 | patent expiry (for year 4) |
Mar 09 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 09 2017 | 8 years fee payment window open |
Sep 09 2017 | 6 months grace period start (w surcharge) |
Mar 09 2018 | patent expiry (for year 8) |
Mar 09 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 09 2021 | 12 years fee payment window open |
Sep 09 2021 | 6 months grace period start (w surcharge) |
Mar 09 2022 | patent expiry (for year 12) |
Mar 09 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |