The resheathing tool includes a flexible tubular body with a wall, an inner bore, and an aperture formed in the wall. The tool can be used to facilitate the unsheathing of the vasoocclusive device from the reloadable slotted introducer sheath by threading a proximal portion of the sheath out the aperture of the tool while sliding the vasoocclusive device distally through the sheath. The tool facilitates resheathing of the vasoocclusive device by introducing the vasoocclusive device through the slot of a reloadable slotted introducer sheath into the sheath by threading the reloadable slotted introducer sheath through the aperture and into the inner bore of the tool while threading the vasoocclusive device through the inner bore of the tool. At the same time, the resheathing tool prevents the elongated vasoocclusive device from moving out of the reloadable slotted introducer sheath through the slot.
|
3. A tool to facilitate the sheathing of a vasoocclusive device received in a reloadable slotted introducer sheath, the vasoocclusive device including an elongated flexible pusher member and an embolic coil connected to the elongated flexible pusher member, the tool comprising:
a flexible tubular body including a wall, an inner bore, a proximal end and a distal end, the inner bore being configured to slide over and receive the reloadable slotted introducer sheath and the vasoocclusive device; and
a slanted notch shaped aperture formed in the wall of the flexible tubular body to aid in sheathing of the vasoocclusive device into the reloadable slotted introducer sheath, the slanted notch shaped aperture including a transverse edge that is approximately perpendicular to a longitudinal axis of the flexible tubular body at a distal end of the slanted notch shaped aperture, said transverse edge extending inwardly from the exterior surface of the slanted notch shaped aperture to about half of the diameter of the flexible tubular body;
wherein said slanted notch shaped aperture is formed approximately midway between the proximal and distal ends of the flexible tubular body.
1. In combination, a reloadable slotted introducer sheath and a tool to facilitate the unsheathing of a vasoocclusive device loaded in the reloadable slotted introducer sheath from the reloadable slotted introducer sheath, the reloadable slotted introducer sheath being configured to receive the vasoocclusive device, and to facilitate the resheathing of the vasoocclusive device in the reloadable slotted introducer sheath, the vasoocclusive device including an elongated flexible pusher member and an embolic coil connected to the elongated flexible pusher member, the combination comprising:
a reloadable slotted introducer sheath having an interior channel and a longitudinal slot configured to permit passage of the vasoocclusive device out of and into the interior channel for unsheathing and resheathing of the vasoocclusive device;
a tool having a flexible tubular body including a wall, an inner bore, a proximal end and a distal end, the inner bore being configured to slide over and receive the reloadable slotted introducer sheath and the vasoocclusive device, the reloadable slotted introducer sheath being received in said tool, and at least a portion of the vasoocclusive device being received in said reloadable slotted introducer sheath; and
an aperture formed in the wall of the flexible tubular body to aid in the unsheathing of the vasoocclusive device from the reloadable slotted introducer sheath for deployment of the vasoocclusive device in treatment of a patient, and to aid in resheathing of the vasoocclusive device into the reloadable slotted introducer sheath, wherein said aperture is formed in one side of the flexible tubular body with a first, slanted edge of the aperture that is slanted with respect to a longitudinal axis of the flexible tubular body extending from a proximal end of the aperture at the exterior surface of the flexible tubular member distally and inwardly to a distal end of the aperture at about half of the diameter of the flexible tubular member, and with a second, transverse edge of the aperture that is approximately perpendicular to the longitudinal axis of the flexible tubular body at the distal end of the aperture, extending from the exterior surface of the flexible tubular body to meet the slanted edge at the distal end of the aperture;
wherein said aperture is formed approximately midway between the proximal and distal ends of the flexible tubular body.
2. The combination of
4. The tool of
5. The tool of
6. A method for facilitating the sheathing of a vasoocclusive device in a reloadable slotted introducer sheath, the vasoocclusive device having a proximal end and a distal end and including an elongated flexible pusher member and an embolic coil connected to the elongated flexible pusher member, the method comprising:
providing a reloadable slotted introducer sheath and a tool to facilitate the unsheathing of a vasoocclusive device loaded in the reloadable slotted introducer sheath as defined in
introducing a portion of the reloadable slotted introducer sheath through the aperture of the tool into the inner bore of the tool;
introducing a portion of the vasoocclusive device into the inner bore of the tool adjacent to the longitudinal slot of the reloadable slotted introducer sheath; and
progressively sliding the reloadable slotted introducer sheath through the aperture into the inner bore of the tool and sliding the vasooclusive device through the inner bore of the tool to press the vasoocclusive device through the longitudinal slot of the reloadable slotted introducer sheath into the interior channel of the reloadable slotted introducer sheath to thereby sheathe the vasoocclusive device in the reloadable slotted introducer sheath.
7. A method for facilitating the unsheathing of a vasoocclusive device from a reloadable slotted introducer sheath, the vasoocclusive device having a proximal end and a distal end and including an elongated flexible pusher member and an embolic coil connected to the elongated flexible pusher member, at least a portion of the vasoocclusive device being disposed within the reloadable slotted introducer sheath, the method comprising:
providing a reloadable slotted introducer sheath and a tool to facilitate the unsheathing of a vasoocclusive device loaded in the reloadable slotted introducer sheath as defined in
introducing the reloadable slotted introducer sheath and vasoocclusive device with at least a portion of the vasoocclusive device disposed in the reloadable slotted introducer sheath into the inner bore of the flexible tubular body of the tool;
advancing a proximal portion of the reloadable slotted introducer sheath and vasoocclusive device through the inner bore of the flexible tubular body of the tool; and
advancing the proximal portion of the reloadable slotted introducer sheath out the aperture while simultaneously advancing the vasoocclusive device distally through the inner bore of the tool and through the interior channel of the reloadable slotted introducer sheath.
8. The method of
introducing a portion of the reloadable slotted introducer sheath through the aperture of the tool into the inner bore of the tool;
introducing a portion of the vasoocclusive device into the inner bore of the tool adjacent to the longitudinal slot of the reloadable slotted introducer sheath; and
progressively sliding the reloadable slotted introducer sheath through the aperture into the inner bore of the tool and sliding the vasoocclusive device through the inner bore of the tool to press the vasoocclusive device through the longitudinal slot of the reloadable slotted introducer sheath into the interior channel of the reloadable slotted introducer sheath to thereby sheathe the vasoocclusive device in the reloadable slotted introducer sheath.
|
This is a continuation of U.S. application Ser. No. 11/043,032, filed Jan. 25, 2005.
1. Field of the Invention
This invention relates generally to devices for interventional therapeutic treatment or vascular surgery for treatment of defects in the vasculature, and more particularly concerns a system and method for delivering intravascular interventional devices, such as for treatment of aneurysms.
2. General Background and State of the Art
Vascular interventional devices such as vasoocclusive devices are typically placed within the vasculature of the human body by use of a catheter. Vascular interventional devices such as stents can be placed within an occluded vessel to facilitate blood flow through the vessel, and vasoocclusive devices are typically either placed within a blood vessel to block the flow of blood through a vessel making up that portion of the vasculature by the formation of an embolus, or are placed within an aneurysm stemming from the vessel to form such an embolus within the aneurysm. Vasoocclusive devices used for these procedures can have a wide variety of configurations, and aneurysms have been treated with external surgically placed clips, detachable vasoocclusive balloons and embolus generating vasoocclusive devices such as one or more vasoocclusive or embolic coils.
The delivery of such vasoocclusive devices has typically been accomplished by a variety of means, including via a catheter in which the device is pushed through an opening at the distal end of the catheter by an elongated flexible pusher member to deploy the device. The vasoocclusive devices can be produced in such a way that they will pass through the lumen of a catheter in a linear shape and take on a complex shape as originally formed after being deployed into the area of interest, such as in an aneurysm.
Detachable vasoocclusive devices are typically embolic coils fixed to a distal end of a flexible pusher member for delivery of the embolic coils, and may be detached mechanically, electrically or by some other means from the flexible pusher member at the target location. The detachable embolic coils can be delivered to the target location and detached if correctly sized and positioned, or the embolic coils may be withdrawn without being detached if the coils are not correctly sized, if the coils are not correctly positioned, or if the microcatheter positioning is lost. Some available vasoocclusive devices are not reused during a patient procedure if they are removed during the procedure, due to the inability to reload the device into the microcatheter. It is therefore desirable to provide a system and method for reusing vasoocclusive devices during a clinical procedure after removal from a microcatheter introducer.
One such system and method allowing the reuse of vasoocclusive devices after removal from a microcatheter introducer during a clinical procedure provides for an introducer sheath for a therapeutic vasoocclusive device which includes an assembly of a flexible pusher member and an embolic coil. The introducer sheath is formed from a hollow, elongated tubular member, and includes a longitudinal slot formed in the upper wall of the introducer sheath and extending the length, or majority of the length, of elongated tubular member. The slot permits introduction of the vasoocclusive device into the interior channel of the introducer sheath, and permits the introducer sheath to release the vasoocclusive device for introduction into a microcatheter, for deployment during a clinical procedure. The vasoocclusive device can be manually placed into the introducer sheath by an operator by using the finger and thumb of one hand to pinch the device positioning unit into the introducer sheath. Similarly, the vasoocclusive device can be manually released from the introducer sheath by pinching the introducer sheath to open the slot, and bending the introducer sheath to expose the distal tip of the vasoocclusive device, which can then be stripped out of the introducer sheath along the length of the slot. However, such manual techniques of sheathing and unsheathing a vasoocclusive device from the introducer sheath are highly dependent upon the manual dexterity of the operator. It would be desirable to improve the resheathing and unsheathing of a vasoocclusive device from such an introducer sheath by providing a tool that will aid in the unsheathing and resheathing of the vasoocclusive device in such an introducer sheath. The present invention satisfies these and other needs.
Briefly, and in general terms, the invention provides for a tool to facilitate the unsheathing and resheathing of a vasoocclusive device, which includes a flexible pusher member and an embolic coil, in a reloadable slotted introducer sheath. The resheathing tool is formed from a round tube that slides over the reloadable slotted introducer sheath. The tubular resheathing tool advantageously includes an aperture approximately at the middle of the tubular resheathing tool which aids in the unsheathing of the vasoocclusive device from the reloadable slotted introducer sheath during introduction of the vasoocclusive device into a microcatheter for deployment of the vasoocclusive device in treatment of a patient, and which aids in the resheathing of the vasoocclusive device in the reloadable slotted introducer sheath. The tubular resheathing tool also provides a mechanism for locking the reloadable slotted introducer sheath and vasoocclusive device together.
The present invention accordingly provides for a resheathing tool having a flexible tubular body with a wall, a central inner bore, proximal and distal ends, and an aperture formed in the wall of the flexible tubular body approximately midway between the proximal and distal ends of the flexible tubular body. In a presently preferred aspect, the aperture is formed as a slanted notch shaped aperture in one side of the flexible tubular body with a first slanted edge at a proximal end of the slanted notch shaped aperture extending from the exterior surface of the flexible tubular member distally, and inwardly to about half of the diameter of the flexible tubular member, and with a second transverse edge at a distal end of the slanted notch shaped aperture extending approximately perpendicular to the axis of the flexible tubular member, from the exterior surface to meet the distal end of the slanted edge. The slanted notch shaped aperture provides an oblique ramp on the slanted edge extending from the inner surface of the wall of the flexible tubular member to the outer surface of the wall of the flexible tubular member.
In the method of the invention, the tool can be used for progressively unsheathing an elongated vasoocclusive device from a reloadable slotted introducer sheath by threading the reloadable slotted introducer sheath out through the aperture of the tool, while threading the elongated vasoocclusive device distally toward a patient through the inner bore of the reloadable slotted introducer sheath, and sliding the resheathing tool distally toward the patient over the reloadable slotted introducer sheath, to deliver the elongated vasoocclusive device through a delivery catheter to a desired treatment target site in the vasculature of the patient.
The tool can also be used to facilitate the resheathing of the elongated vasoocclusive device in the reloadable slotted introducer sheath, by advancing the tool proximally away from the patient over the reloadable slotted introducer sheath, which is received in the inner bore of the tool through the aperture of the tool, and over the elongated vasoocclusive device which is received in the inner bore of the tool and pressed through the slot of the reloadable slotted introducer sheath into the inner bore of the reloadable slotted introducer sheath.
Other features and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiments in conjunction with the accompanying drawings, which illustrate, by way of example, the operation of the invention.
Referring to the drawings, which are provided for purposes of illustration and by way of example, one example of a prior art reloadable slotted introducer sheath 10 for a therapeutic vasoocclusive device 12 is illustrated in
Referring to FIGS. 1 and 3-5, the reloadable slotted introducer sheath is generally formed of a hollow, elongated tubular member 22 having an upper wall 24 and an opposing lower wall 26, opposing side walls 28 and 30, and a longitudinal interior channel 32. The upper wall of the elongated tubular member includes a slot 34 or slit with opposing interior sides 36 having surfaces extending through the upper wall leading to the interior channel, permitting introduction of the vasoocclusive device into the interior channel. The reloadable slotted introducer sheath may have the exemplary dimensions illustrated in
System
“A” (in.)
“B” (in.)
10
0.016
0.030
18
0.020
0.034
As is best seen in
The upper wall of the elongated tubular member adjacent to the slot typically has an outer angled or V-shaped configuration on the outside surface of the tubing, to facilitate loading of the vasoocclusive device into the reloadable slotted introducer sheath. The slot may, for example, have opposing exterior surfaces forming an interior angle of about 110° to 150°. The lower wall of the tubing is typically about 0.002 to 0.004 inches thick to allow opposing sides of the slot of the hollow, elongated tubular member to flex outwardly to allow the slot to open to accept the vasoocclusive device. In this embodiment, the upper angled surface portions of the upper wall of the elongated tubular member adjacent to the slot may be formed as outwardly extending walls or wing members 38 to facilitate insertion of the flexible pusher member and embolic coil assembly into the slotted sheath.
As is illustrated in
Referring to
In a presently preferred aspect, the aperture is formed as a slanted notch shaped aperture in one side 68 of the flexible tubular body with a first, slanted edge 70 that is slanted or oblique with respect to the longitudinal axis 72 of the flexible tubular body at a proximal end 74 of the slanted notch shaped aperture extending from the exterior surface 76 of the flexible tubular member distally and inwardly to about half or slightly more of the diameter of the flexible tubular member, and with a second, transverse edge 78 that is approximately perpendicular to the longitudinal axis of the flexible tubular body at a distal end 80 of the slanted notch shaped aperture, extending from the exterior surface of the flexible tubular body to meet the distal end 82 of the slanted edge. The slanted notch shaped aperture provides an oblique ramp on the slanted edge.
As is illustrated in
Similarly, the resheathing tool can be used in combination with a reloadable slotted introducer sheath and an elongated vasoocclusive device to facilitate the resheathing of the vasoocclusive device in the reloadable slotted introducer sheath. Again referring to
In each of the foregoing embodiments, the elongated tubular member forming the reloadable slotted introducer sheath is typically formed from a thermoplastic material. The tubing may be formed from a thermoplastic material such as high density polyethylene, for example. Alternatively, other similar polymeric materials may also be suitable, such as polyurethane, nylons, polyetheretherketone (PEEK), polytetrafluoroethylene (PTFE), polyethylene terephthalate (PET), and the like.
It will be apparent from the foregoing that, while particular forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited, except as by the appended claims.
Patent | Priority | Assignee | Title |
10299755, | Dec 21 2007 | MicroVention, Inc. | System and method for locating detachment zone of a detachable implant |
8192480, | Dec 21 2007 | MICROVENTION, INC | System and method of detecting implant detachment |
8460332, | Dec 21 2007 | MicroVention, Inc. | System and method of detecting implant detachment |
9242070, | Dec 21 2007 | MICROVENTION, INC | System and method for locating detachment zone of a detachable implant |
Patent | Priority | Assignee | Title |
1621159, | |||
3459184, | |||
3815604, | |||
4306562, | Dec 01 1978 | Cook, Inc. | Tear apart cannula |
4430081, | Jan 06 1981 | Cook, Inc. | Hemostasis sheath |
4748982, | Jan 06 1987 | Advanced Cardiovascular Systems, Inc. | Reinforced balloon dilatation catheter with slitted exchange sleeve and method |
4775371, | Sep 02 1986 | Advanced Cardiovascular Systems, Inc. | Stiffened dilatation catheter and method of manufacture |
4887997, | Nov 21 1986 | Sherwood Services AG; TYCO GROUP S A R L | Catheter for nasogastric intubation |
5026377, | Jul 13 1989 | AMS Research Corporation | Stent placement instrument and method |
5035706, | Oct 17 1989 | Cook Incorporated | Percutaneous stent and method for retrieval thereof |
5040548, | Apr 15 1986 | Angioplasty mehtod | |
5061273, | Apr 15 1986 | Angioplasty apparatus facilitating rapid exchanges | |
5071407, | Apr 12 1990 | SciMed Life Systems, INC; Boston Scientific Scimed, Inc | Radially expandable fixation member |
5135535, | Jun 11 1991 | Advanced Cardiovascular Systems, Inc. | Catheter system with catheter and guidewire exchange |
5154725, | Jun 07 1991 | ADVANCED CARDIOVASCULAR SYSTEMS, INC A CORP OF CALIFORNIA | Easily exchangeable catheter system |
5184627, | Jan 18 1991 | Boston Scientific Scimed, Inc | Infusion guidewire including proximal stiffening sheath |
5217482, | Aug 28 1990 | Boston Scientific Scimed, Inc | Balloon catheter with distal guide wire lumen |
5222970, | Sep 06 1991 | William A. Cook Australia Pty. Ltd. | Method of and system for mounting a vascular occlusion balloon on a delivery catheter |
5230348, | Oct 12 1990 | DYMEC CO , LTD | Guide wire for a catheter |
5242396, | Dec 19 1991 | Advanced Cardiovascular Systems, Inc. | Dilatation catheter with reinforcing mandrel |
5275173, | Aug 26 1991 | TARGET THERAPEUTICS, A DELAWARE CORPORATION | Extendable guidewire assembly |
5279562, | Jul 24 1991 | Advanced Cardiovascular Systems, Inc. | Low profile perfusion-type dilatation catheter |
5300085, | Apr 15 1986 | Advanced Cardiovascular Systems, Inc. | Angioplasty apparatus facilitating rapid exchanges and method |
5324304, | Jun 18 1992 | Cook Medical Technologies LLC | Introduction catheter set for a collapsible self-expandable implant |
5346505, | Jun 07 1991 | Advanced Cardiovascular Systems, Inc. | Easily exchangeable catheter system |
5350395, | Apr 15 1986 | Angioplasty apparatus facilitating rapid exchanges | |
5350397, | Nov 13 1992 | TARGET THERAPEUTICS, A DELAWARE CORPORATION | Axially detachable embolic coil assembly |
5372138, | Aug 21 1990 | Boston Scientific Scimed, Inc | Acousting imaging catheters and the like |
5373856, | Sep 29 1992 | NIVAROX-FAR S A | Catheter guide formed notably from a multistrand spring sheath |
5380290, | Apr 16 1992 | SciMed Life Systems, INC; Boston Scientific Scimed, Inc | Body access device |
5380304, | Aug 07 1991 | Cook Medical Technologies LLC | Flexible, kink-resistant, introducer sheath and method of manufacture |
5387193, | Feb 09 1994 | Advanced Cardiovascular Systems, INC | Balloon dilation catheter with hypotube |
5389087, | Sep 19 1991 | Advanced Cardiovascular Systems, INC | Fully exchangeable over-the-wire catheter with rip seam and gated side port |
5391172, | May 24 1993 | Advanced Cardiovascular Systems, Inc. | Stent delivery system with coaxial catheter handle |
5400785, | Feb 03 1994 | Boston Scientific Scimed, Inc | Acoustic window and septum for imaging catheters |
5415178, | Aug 26 1991 | Target Therapeutics | Extendable guidewire assembly |
5415664, | Mar 30 1994 | Corvita Corporation | Method and apparatus for introducing a stent or a stent-graft |
5421338, | Mar 21 1988 | Boston Scientific Corporation | Acoustic imaging catheter and the like |
5451233, | Apr 15 1986 | Angioplasty apparatus facilitating rapid exchanges | |
5456680, | Sep 14 1993 | THE SPECTRANETICS CORPORATION; POLYMICRO TECHNOLOGIES, INC | Fiber optic catheter with shortened guide wire lumen |
5458613, | Jul 15 1993 | Advanced Cardiovascular Systems, Inc. | Rapid exchange type intraluminal catheter with guiding element |
5480423, | May 20 1993 | Boston Scientific Scimed, Inc | Prosthesis delivery |
5489271, | Mar 29 1994 | Boston Scientific Scimed, Inc | Convertible catheter |
5496346, | Jan 06 1987 | Advanced Cardiovascular Systems, Inc. | Reinforced balloon dilatation catheter with slitted exchange sleeve and method |
5501227, | Apr 15 1986 | Angioplasty apparatus facilitating rapid exchange and method | |
5507769, | Oct 18 1994 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Method and apparatus for forming an endoluminal bifurcated graft |
5516336, | Feb 07 1990 | Advanced Cardiovascular Systems, Inc. | Readily exchangeable perfusion dilatation catheter |
5527336, | Dec 09 1986 | Boston Scientific Scimed, Inc | Flow obstruction treatment method |
5531690, | Oct 30 1992 | Cordis Corporation | Rapid exchange catheter |
5533968, | May 15 1991 | Advanced Cardiovascular Systems, Inc. | Low profile catheter with expandable outer tubular member |
5549109, | Oct 01 1993 | TRANSAMERICA BUSINESS CREDIT CORP | Sheathed multipolar catheter and multipolar guidewire for sensing cardiac electrical activity |
5549556, | Nov 19 1992 | Medtronic, Inc | Rapid exchange catheter with external wire lumen |
5567203, | Feb 29 1988 | Boston Scientific Scimed, Inc | Balloon dilatation catheter with proximal hypotube |
5571094, | Jan 09 1992 | Advanced Cardiovascular Systems, Inc. | Guidewire replacement device |
5578009, | Jul 20 1994 | Danforth Biomedical Incorporated | Catheter system with push rod for advancement of balloon along guidewire |
5603694, | Feb 16 1996 | Infusion coil apparatus and method for delivering fluid-based agents intravascularly | |
5626600, | Jan 06 1987 | Advanced Cardiovascular Systems, Inc. | Reinforced balloon dilatation catheter with slitted exchange sleeve and method |
5658251, | Feb 29 1988 | Boston Scientific Scimed, Inc | Intravascular catheter with distal guide wire lumen and transition member |
5662712, | Apr 28 1993 | Focal, Inc | Apparatus for intraluminal photothermoforming |
5700253, | Aug 07 1991 | Cook Medical Technologies LLC | Flexible, kink-resistant, introducer sheath and method of manufacture |
5702439, | Aug 28 1990 | Boston Scientific Scimed, Inc | Balloon catheter with distal guide wire lumen |
5735816, | Jul 23 1996 | Medtronic, Inc. | Spiral sheath retainer for autoperfusion dilatation catheter balloon |
5743875, | May 15 1991 | Advanced Cardiovascular Systems, Inc. | Catheter shaft with an oblong transverse cross-section |
5749888, | Apr 15 1986 | Method of using angioplasty apparatus facilitating rapid exchanges | |
5749921, | Feb 20 1996 | Medtronic Ave, Inc | Apparatus and methods for compression of endoluminal prostheses |
5755685, | Mar 29 1994 | Boston Scientific Scimed, Inc | Convertible catheter and the like |
5769868, | Apr 15 1986 | Angioplasty apparatus facilitating rapid exchanges | |
5782740, | Aug 29 1996 | Advanced Cardiovascular Systems, INC | Radiation dose delivery catheter with reinforcing mandrel |
5807398, | Apr 28 1995 | Shuttle stent delivery catheter | |
5863294, | Jan 26 1996 | Ethicon, Inc | Folded-end surgical tubular cutter and method for fabrication |
5868706, | Dec 27 1994 | Advanced Cardiovascular Systems, Inc. | Catheter with reinforced oblong transverse cross section |
5993460, | Mar 27 1998 | Advanced Cardiovascular Systems, Inc. | Rapid exchange delivery system for stenting a body lumen |
6036717, | Nov 17 1995 | PHELPS, DAVID Y | Embolectomy catheter |
6165197, | Apr 15 1986 | Angioplasty apparatus facilitating rapid exchanges | |
6273899, | Jun 11 1991 | Advanced Cardiovascular Systems, Inc. | Catheter system with catheter and guidewire exchange |
6299595, | Dec 17 1999 | Advanced Cardiovascular Systems, Inc. | Catheters having rapid-exchange and over-the-wire operating modes |
6447540, | Nov 15 1996 | Cook Medical Technologies LLC | Stent deployment device including splittable sleeve containing the stent |
7018394, | Jan 10 2001 | Codman & Shurtleff, Inc | Embolic coil introducer system |
20030093085, | |||
FR2631835, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 16 2006 | Micrus Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 04 2013 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Sep 21 2017 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Oct 17 2017 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
May 07 2018 | M1559: Payment of Maintenance Fee under 1.28(c). |
May 07 2018 | PTGR: Petition Related to Maintenance Fees Granted. |
Sep 22 2021 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 06 2013 | 4 years fee payment window open |
Oct 06 2013 | 6 months grace period start (w surcharge) |
Apr 06 2014 | patent expiry (for year 4) |
Apr 06 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 06 2017 | 8 years fee payment window open |
Oct 06 2017 | 6 months grace period start (w surcharge) |
Apr 06 2018 | patent expiry (for year 8) |
Apr 06 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 06 2021 | 12 years fee payment window open |
Oct 06 2021 | 6 months grace period start (w surcharge) |
Apr 06 2022 | patent expiry (for year 12) |
Apr 06 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |