An intervertebral implant comprising a lower implant part, having a central axis and an apposition section, designed to rest against the covering surface of the adjacent lower vertebra and an upper implant part comprising a bore with an internal thread, a central axis and an apposition section, designed to rest against the covering surface of the adjacent upper vertebra. Specifically, the lower and upper implant parts are secured in relation to each other against rotation about the central axis and a threaded screw with an external thread is guided in the upper implant part and connected to the lower implant part, the external thread cooperating with the internal thread. The lower and upper implant parts, and the threaded screw lie coaxially along their common central axis, the threaded screw being connected to the lower implant part so that it is axially fixed but able to rotate.
|
1. An intervertebral implant insertable into an intervertebral disc space between adjacent upper and lower vertebral bodies, the implant having a central axis and comprising:
a lower implant part having an apposition surface intended to rest against the adjacent lower vertebral body, the lower implant part including a hollow-cylinder cavity defining an inner surface, the lower implant part having at least one guide slot formed in the inner surface;
an upper implant part having an essentially circular-cylindrical shaft including a bore with an inside thread and an apposition surface intended to rest against the adjacent upper vertebral body, the shaft including at least one wedge extending therefrom, the at least one wedge being parallel to the central axis, the bore passing axially through the shaft, parallel to the central axis, the at least one wedge being axially received within the at least one guide slot so that said lower and upper implant parts are secured relative to one another, to prevent rotation about the central axis, wherein the circular-cylindrical shaft has a circumference that is spaced apart from the inner surface of the cavity so that the upper implant part and the lower implant part only contact one another via the at least one wedge contacting the at least one guide slot; and
a threaded spindle, insertable into the bore formed in said upper implant part and connected with said lower implant part, the threaded spindle having an outside thread that interacts with said inside thread and a gear crown that is concentric to the central axis, wherein:
said lower and upper implant parts and said threaded spindle are disposed to be coaxial along the central axis;
and
the distance between said two apposition parts can be changed in a stepless manner by rotating said threaded spindle, said threaded spindle being fixed in place on said lower implant part so as to be fixed axially but movable rotationally, by means of a clip connection.
2. The intervertebral implant according to
3. The intervertebral implant according to
4. The intervertebral implant according to
5. The intervertebral implant according to
6. The intervertebral implant according to
7. The intervertebral implant according to
8. The intervertebral implant according to
9. The intervertebral implant according to
10. The intervertebral implant according to
11. The intervertebral implant according to
12. The intervertebral implant according to
13. The intervertebral implant according to
14. The intervertebral implant according to
15. The intervertebral implant according to
16. The intervertebral implant according to
|
This application is a continuation of International Patent Application No. PCT/CH2002/000674, filed Dec. 6, 2002, the entire contents of which is expressly incorporated herein by reference.
The invention relates generally to an intervertebral implant.
An intervertebral implant is known from US-A 2002082695 NEUMANN. Here, the central implant part, configured as a threaded ring having an inside thread, is connected with the upper implant part that stands in the end position. The upper part of the lower implant part is structured with a conical surface that serves as an accommodation for the threaded ring. By means of a special instrument that has a bevel wheel that can be brought into engagement with the bevel wheel on the threaded ring, the threaded ring can be rotated about the central axis of the intervertebral implant and the upper implant part can be axially displaced. The threaded ring serves only as an axial stop for the upper implant part, i.e., as a support surface, so that the upper, end-position implant part can be moved axially (nut/spindle drive). The two end-position implant parts are therefore loosely mounted relative to one another, which is also indicated by the fact that axial slots are provided in one of the two implant parts, with pins affixed to the other implant part engaging in them, to secure the parts axially. Therefore this known intervertebral implant has the disadvantage that it is not secured against axial displacements before and during the operation.
In this regard, a need exists of creating an intervertebral implant that forms a compact whole, free of axial play, while maintaining the lowest possible construction height, and can be made available to the surgeon as a pre-assembled set.
The present invention may relate to an intervertebral implant comprising a lower implant part having a central axis and an apposition part intended to rest against the covering surface of the adjacent lower vertebra; an upper implant part having a bore with an inside thread and a central axis, and an apposition part intended to rest against the covering surface of the adjacent upper vertebra; and a threaded spindle, guided in the upper implant part and connected with the lower implant part, having an outside thread that interacts with the inside thread. The lower and upper implant parts are secured relative to one another to prevent rotation about the central axis. The lower and upper implant parts and the threaded spindle are disposed to be coaxial along their common central axis, and the threaded spindle is connected with the lower implant part so as to be fixed axially but movable rotationally. The distance between the two apposition parts can be changed by rotating the threaded spindle on the inside thread. The distance can also be changed in a stepless manner, the threaded spindle being fixed in place on the lower implant part so as to be fixed axially but movable rotationally, by means of a clip connection.
The advantages achieved according to the invention include simple handling, since introduction of the implant proceeds very quickly because of the distractibility of the implant and a simple set of instruments. In this way, safety is increased, and the time required for the implantation is reduced. The distance between the two apposition parts can be changed by rotating the threaded spindle on the inside thread, in stepless manner.
In a preferred embodiment, the threaded spindle may be fixed in place on the lower implant part so as to be fixed axially but movable rotationally, by means of a clip connection. This clip connection is preferably formed by a torus-shaped undercut on the lower end of the threaded spindle, and a corresponding ring-shaped bead in a bore in the lower implant part. This ensures that the two implant parts are axially held together by means of the threaded spindle. The threaded spindle preferably has a lower surface that stands perpendicular to the central axis and rests on the lower implant part.
In another embodiment, the threaded spindle comprises a gear crown that preferably lies adjacent to the lower implant part. The gear crown serves for rotational movement of the threaded spindle, by means of an instrument that can be placed at the anterior.
In yet another embodiment, the lower implant part comprises a posterior, hollow-cylinder cavity having a mantle. The mantle is preferably open at the anterior.
In yet another embodiment, the upper implant part comprises an essentially circular-cylindrical shaft, through which the bore with inside thread passes.
Preferably, the mantle of the lower implant part is provided with two slots standing perpendicular to the central axis. These slots are placed laterally on the intervertebral implant, and serve to position and support an instrument relative to the gear crown.
In yet another embodiment, it is provided that the upper implant part is secured against rotation relative to the lower implant part. This securing consists of the fact that the circular-cylindrical shaft of the upper implant part has at least one, but preferably two wedges affixed parallel to the central axis and laterally, and that the mantle of the lower implant part has at least one, but preferably two laterally placed guide slots on its inside. The wedges are axially displaceable in the guide slots, but prevent rotation of the two implant parts relative to one another.
In another embodiment, the circular-cylindrical shaft is configured in such a manner that it has a smaller circumference than the cavity, so that the two components touch one another only by means of the two wedges in the guide slots.
In yet another embodiment, the inside thread in the bore of the circular-cylindrical shaft and the outside thread of the threaded spindle are configured to be self-locking. The advantage of this embodiment consists of the fact that because of the self-locking of the thread, the implant can be distracted at any desired height, and can be held in this position without additional locking.
The pitch of the inside thread in the bore in the shaft and of the outside thread on the threaded spindle lies in the range of 0.5-1.0 mm, preferably of 0.6-0.8 mm.
Preferably, both the inside thread and the outside thread are configured to be right-hand threads. With this, the advantage can be achieved that the instrument that bears the pinion can be rotated clockwise, in usual manner, like a normal screwdriver, in order to distract the implant.
In another embodiment, two circular recesses may be placed in the anterior side surfaces of the two apposition parts, which are suitable for the accumulation of substances that support fusion, for example spongiosa.
In yet another embodiment, the two apposition parts may be configured as plate-shaped elements that stand crosswise to the central axis, having an apposition surface intended to rest against the covering surface of the adjacent vertebra.
In another embodiment, the apposition surfaces may be disposed not orthogonal to the central axis and preferably enclose an angle of 80° to 89° with the central axis. The covering plates of the vertebrae run, in a sagittal direction, not orthogonal to the axis of the vertebrae, but instead have an acute angle to it. The development of the apposition surfaces takes this anatomical situation into consideration.
Preferably, the two apposition surfaces may enclose an angle of 2° to 20° with one another.
In yet another embodiment, at least one of the two apposition surfaces, preferably the one of the upper implant, has a dome that is present in the sagittal direction. The advantage of this embodiment lies in the optimal adaptation of the apposition surfaces to the vertebrae.
In yet another embodiment, at least one of the two apposition surfaces may have a dome that is present in the coronal direction. The advantage of this embodiment lies in the optimal adaptation of the apposition surfaces to the vertebrae.
In another embodiment, a bore having a thread is placed in the shaft, crosswise to the central axis, into which a setting screw can be screwed. The setting screw serves to secure the threaded spindle from rotating about the central axis.
In yet another embodiment, the intervertebral implant is produced at least partially from a material permeable for X-rays, preferably from PEEK. This makes it possible to achieve the advantage that the fusion can be assessed more readily after the operation.
The invention and further developments of the invention will be explained in greater detail below, using the representations of several exemplary embodiments, some of them schematic.
Preferred features of the present invention are disclosed in the accompanying drawings, wherein similar reference characters denote similar elements throughout the several views, and wherein:
For convenience, the same or equivalent elements in the various embodiments of the invention illustrated in the drawings have been identified with the same reference numerals. Further, in the description that follows, any reference to either orientation or direction is intended primarily for the convenience of description and is not intended in any way to limit the scope of the present invention.
An embodiment of the intervertebral implant according to the invention is shown in
The lower implant part 2 comprises a posterior cavity 3 that is coaxial with the central axis 11 and cylindrical, having a mantle 14 that is open at the anterior (
Furthermore, the intervertebral implant 1 comprises a threaded spindle 9 having an outside thread 10. This threaded spindle 9 is disposed coaxial to the central axis 11 and has a lower surface 12 that stands perpendicular to the central axis 11 and rests on the lower implant part 2. The outside thread 10 of the threaded spindle 9 is configured to be complementary to the inside thread 7 in the bore 30 made in the upper implant part 5, so that the threaded spindle 9 can be screwed into the inside thread 7. By turning the threaded spindle 9 about the central axis 11, the two implant parts 2; 5 are therefore displaced relative to one another, parallel to the central axis 11, so that the distance between the two apposition parts 4; 8 can be changed in stepless manner. Furthermore, the threaded spindle 9 is connected with the lower implant part 2 so that it is fixed axially but can be moved rotationally about the central axis 11. Here, this connection comprises a clip connection, which is implemented by means of a torus-shaped undercut 21 on the journal 36 (
Between the outside thread 10 and the end-position journal 36, the threaded spindle 9 comprises a gear crown 23 that is coaxial to the central axis 11. Furthermore, two slots 15 that run perpendicular to the central axis 11 are placed laterally on the mantle 14. To adjust the distance between the apposition parts 4; 8 by means of rotating the threaded spindle 9 about the central axis 11, the front part, which is fork-shaped, for example, of an instrument is positioned in the slots 15 and the instrument is supported. The instrument preferably comprises rotary drive means at the back, for example a rotating handle, which is connected with a deflection gear mechanism disposed at the front end of the instrument, for example, by means of an axle. The rotation movement of the rotating handle is converted into a rotation movement having an axis of rotation that stands perpendicular to the axis of the rotating handle, for example, by means of the deflection gear mechanism, so that when the instrument is in position, the end-position gear wheel of the deflection gear mechanism can be brought into engagement with the gear crown 23.
The anterior side surfaces 41; 82 of the two apposition parts 4; 8 are each structured with a circular recess 13; 18. The recesses 13; 18 are suitable for the accumulation of spongiosa.
A bore 32 having an inside thread 25 (
Gütlin, Michael, Schär, Manuel
Patent | Priority | Assignee | Title |
10016283, | Apr 13 2012 | Neuropro Technologies, Inc. | Bone fusion device |
10058433, | Jul 26 2012 | DePuy Synthes Products, Inc. | Expandable implant |
10085843, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
10092422, | Aug 09 2011 | Neuropro Spinal Jaxx, Inc. | Bone fusion device, apparatus and method |
10098757, | Mar 15 2013 | NEUROPRO TECHNOLOGIES, INC | Bodiless bone fusion device, apparatus and method |
10111760, | Jan 18 2017 | NEUROPRO TECHNOLOGIES, INC | Bone fusion system, device and method including a measuring mechanism |
10130489, | Apr 12 2010 | Globus Medical, Inc. | Expandable vertebral implant |
10159582, | Sep 16 2011 | DePuy Synthes Products, Inc. | Removable, bone-securing cover plate for intervertebral fusion cage |
10159583, | Apr 13 2012 | NEUROPRO TECHNOLOGIES, INC | Bone fusion device |
10213321, | Jan 18 2017 | NEUROPRO TECHNOLOGIES, INC | Bone fusion system, device and method including delivery apparatus |
10238500, | Jun 27 2002 | DePuy Synthes Products, Inc. | Intervertebral disc |
10292830, | Aug 09 2011 | NEUROPRO TECHNOLOGIES, INC | Bone fusion device, system and method |
10292832, | Mar 14 2013 | K2M, INC | Spinal fixation device |
10314717, | Jan 12 2009 | Globus Medical, Inc. | Expandable vertebral prosthesis |
10327908, | Sep 18 2015 | K2M, INC | Corpectomy device and methods of use thereof |
10327911, | Jun 24 2010 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
10363142, | Dec 11 2014 | K2M, INC | Expandable spinal implants |
10369000, | Apr 12 2010 | Globus Medical, Inc. | Expandable vertebral implant |
10369015, | Sep 23 2010 | DEPUY SYNTHES PRODUCTS, INC | Implant inserter having a laterally-extending dovetail engagement feature |
10376372, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
10390963, | Dec 07 2006 | DePuy Synthes Products, Inc. | Intervertebral implant |
10398563, | May 08 2017 | MEDOS INTERNATIONAL SARL | Expandable cage |
10398566, | Dec 07 2006 | DePuy Synthes Products, Inc. | Intervertebral implant |
10405986, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
10413419, | May 06 2009 | STRYKER EUROPEAN HOLDINGS III, LLC | Expandable spinal implant apparatus and method of use |
10420651, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
10420654, | Aug 09 2011 | NEUROPRO TECHNOLOGIES, INC | Bone fusion device, system and method |
10433881, | Mar 06 2004 | DePuy Synthes Products, Inc. | Dynamized interspinal implant |
10433971, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
10433974, | Jun 30 2003 | DePuy Synthes Products, Inc. | Intervertebral implant with conformable endplate |
10433977, | Jan 17 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
10433982, | Jan 17 2014 | STRYKER EUROPEAN HOLDINGS III, LLC | Implant insertion tool |
10441430, | Jul 24 2017 | K2M, INC | Expandable spinal implants |
10449056, | Apr 05 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
10449058, | Jan 17 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
10492918, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
10492928, | Apr 12 2010 | Globus Medical, Inc. | Angling inserter tool for expandable vertebral implant |
10500062, | Dec 10 2009 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
10512489, | Mar 06 2004 | DePuy Synthes Products, Inc. | Dynamized interspinal implant |
10537436, | Nov 01 2016 | DEPUY SYNTHES PRODUCTS, INC | Curved expandable cage |
10548741, | Jun 29 2010 | DePuy Synthes Products, Inc. | Distractible intervertebral implant |
10555817, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
10575959, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
10575966, | Mar 15 2013 | Neuropro Technologies, Inc. | Bodiless bone fusion device, apparatus and method |
10583013, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
10583015, | Dec 07 2006 | DePuy Synthes Products, Inc. | Intervertebral implant |
10624758, | Mar 30 2009 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
10639164, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
10682240, | Nov 03 2004 | Neuropro Technologies, Inc. | Bone fusion device |
10709574, | Apr 13 2012 | Neuropro Technologies, Inc. | Bone fusion device |
10729560, | Jan 18 2017 | NEUROPRO TECHNOLOGIES, INC | Bone fusion system, device and method including an insertion instrument |
10729562, | Jan 18 2017 | Neuropro Technologies, Inc. | Bone fusion system, device and method including a measuring mechanism |
10736754, | Aug 09 2011 | Neuropro Spinal Jaxx, Inc. | Bone fusion device, apparatus and method |
10786361, | Feb 14 2003 | DEPUY SYNTHES PRODUCTS, INC | In-situ formed intervertebral fusion device and method |
10813773, | Sep 16 2011 | DePuy Synthes Products, Inc. | Removable, bone-securing cover plate for intervertebral fusion cage |
10888433, | Dec 14 2016 | DEPUY SYNTHES PRODUCTS, INC | Intervertebral implant inserter and related methods |
10940016, | Jul 05 2017 | DEPUY SYNTHES PRODUCTS, INC; MEDOS INTERNATIONAL SARL | Expandable intervertebral fusion cage |
10952723, | Apr 12 2005 | Moskowitz Family LLC | Artificial intervertebral impant |
10966840, | Jun 24 2010 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
10973652, | Jun 26 2007 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
10973657, | Jan 18 2017 | NEUROPRO TECHNOLOGIES, INC | Bone fusion surgical system and method |
11026806, | Dec 07 2006 | DePuy Synthes Products, Inc. | Intervertebral implant |
11096794, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
11141289, | Jan 18 2017 | Neuropro Technologies, Inc. | Bone fusion system, device and method including delivery apparatus |
11173041, | Mar 14 2013 | Ohio State Innovation Foundation; K2M, Inc. | Spinal fixation device |
11207187, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
11273050, | Dec 07 2006 | DePuy Synthes Products, Inc. | Intervertebral implant |
11291552, | Jul 24 2017 | K2M, Inc. | Expandable spinal implants |
11298243, | Apr 12 2010 | Globus Medical, Inc. | Angling inserter tool for expandable vertebral implant |
11331200, | Dec 11 2014 | K2M, INC | Expandable spinal implants |
11344424, | Jun 14 2017 | MEDOS INTERNATIONAL SARL | Expandable intervertebral implant and related methods |
11344426, | Sep 18 2015 | K2M, Inc. | Corpectomy device and methods of use thereof |
11399951, | Jan 12 2009 | Globus Medical, Inc. | Expandable vertebral prosthesis |
11399956, | Mar 15 2013 | Neuropro Technologies, Inc. | Bodiless bone fusion device, apparatus and method |
11426286, | Mar 06 2020 | EIT Emerging Implant Technologies GmbH | Expandable intervertebral implant |
11426287, | Apr 12 2010 | Globus Medical Inc. | Expandable vertebral implant |
11426290, | Mar 06 2015 | SYNTHES USA PRODUCTS, LLC; DEPUY SYNTHES PRODUCTS, INC | Expandable intervertebral implant, system, kit and method |
11432938, | Feb 14 2003 | DEPUY SYNTHES PRODUCTS, INC | In-situ intervertebral fusion device and method |
11432940, | Aug 09 2011 | Neuropro Technologies, Inc. | Bone fusion device, system and method |
11432942, | Dec 07 2006 | DEPUY SYNTHES PRODUCTS, INC | Intervertebral implant |
11439517, | Apr 13 2012 | Neuropro Technologies, Inc. | Bone fusion device |
11446155, | May 08 2017 | MEDOS INTERNATIONAL SARL | Expandable cage |
11446156, | Oct 25 2018 | MEDOS INTERNATIONAL SARL | Expandable intervertebral implant, inserter instrument, and related methods |
11452607, | Oct 11 2010 | DePuy Synthes Products, Inc. | Expandable interspinous process spacer implant |
11452609, | Mar 30 2009 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
11452616, | Aug 09 2011 | Neuropro Spinal Jaxx, Inc. | Bone fusion device, apparatus and method |
11458029, | Jan 18 2017 | Neuropro Technologies, Inc. | Bone fusion system, device and method including a measuring mechanism |
11464646, | May 06 2009 | STRYKER EUROPEAN HOLDINGS III, LLC | Expandable spinal implant apparatus and method of use |
11491028, | Feb 26 2016 | K2M, Inc. | Insertion instrument for expandable spinal implants |
11497618, | Dec 07 2006 | DePuy Synthes Products, Inc. | Intervertebral implant |
11497619, | Mar 07 2013 | DePuy Synthes Products, Inc. | Intervertebral implant |
11497623, | Jan 18 2017 | Neuropro Technologies, Inc. | Bone fusion system, device and method including an insertion instrument |
11510788, | Jun 28 2016 | EIT Emerging Implant Technologies GmbH | Expandable, angularly adjustable intervertebral cages |
11571313, | Apr 24 2020 | Warsaw Orthopedic, Inc. | Spinal implant system and method |
11583414, | Nov 03 2004 | Neuropro Technologies, Inc. | Bone fusion device |
11596522, | Jun 28 2016 | EIT Emerging Implant Technologies GmbH | Expandable and angularly adjustable intervertebral cages with articulating joint |
11596523, | Jun 28 2016 | EIT Emerging Implant Technologies GmbH | Expandable and angularly adjustable articulating intervertebral cages |
11602438, | Apr 05 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
11607321, | Dec 10 2009 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
11612491, | Mar 30 2009 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
11612493, | Jun 30 2003 | DePuy Synthes Products, Inc. | Intervertebral implant with conformable endplate |
11617655, | Apr 05 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
11622868, | Jun 26 2007 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
11642229, | Dec 07 2006 | DePuy Synthes Products, Inc. | Intervertebral implant |
11654033, | Jun 29 2010 | DePuy Synthes Products, Inc. | Distractible intervertebral implant |
11660206, | Dec 07 2006 | DePuy Synthes Products, Inc. | Intervertebral implant |
11672670, | Jan 24 2013 | Warsaw Orthopedic, Inc. | Expandable spinal implant system and method |
11701234, | Apr 05 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
11707359, | Apr 05 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
11712341, | Apr 05 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
11712342, | Apr 05 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
11712345, | Dec 07 2006 | DePuy Synthes Products, Inc. | Intervertebral implant |
11737881, | Jan 17 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
11752009, | Apr 06 2021 | MEDOS INTERNATIONAL SARL | Expandable intervertebral fusion cage |
11806245, | Mar 06 2020 | EIT Emerging Implant Technologies GmbH | Expandable intervertebral implant |
11850160, | Mar 26 2021 | MEDOS INTERNATIONAL SARL | Expandable lordotic intervertebral fusion cage |
11850164, | Mar 07 2013 | DePuy Synthes Products, Inc. | Intervertebral implant |
11864755, | Apr 12 2005 | Moskowitz Family LLC | Artificial expandable implant systems |
11872139, | Jun 24 2010 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
11911287, | Jun 24 2010 | DePuy Synthes Products, Inc. | Lateral spondylolisthesis reduction cage |
8241294, | Dec 19 2007 | Depuy Synthes Products, LLC | Instruments for expandable corpectomy spinal fusion cage |
8241363, | Dec 19 2007 | HAND INNOVATIONS LLC | Expandable corpectomy spinal fusion cage |
8353961, | Feb 07 2008 | K2M, INC | Expandable vertebral device with cam lock |
8663330, | Feb 07 2008 | K2M, Inc. | Expandable vertebral device with ring plate |
8721723, | Jan 12 2009 | Globus Medical, Inc.; Globus Medical, Inc | Expandable vertebral prosthesis |
8876905, | Apr 29 2009 | Depuy Synthes Products, LLC | Minimally invasive corpectomy cage and instrument |
8882840, | Aug 07 2008 | K2M, Inc. | Expandable vertebral device with cam lock |
9050194, | May 06 2009 | STRYKER EUROPEAN HOLDINGS III, LLC | Expandable spinal implant apparatus and method of use |
9155629, | Jun 13 2002 | NEUROPRO TECHNOLOGIES, INC | Ankle and foot bone growth compositions and methods |
9186262, | Nov 03 2004 | Neuropro Technologies, Inc. | Bone fusion device |
9295562, | Jan 17 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
9320615, | Jun 29 2010 | DEPUY SYNTHES PRODUCTS, INC | Distractible intervertebral implant |
9358122, | Jan 07 2011 | SOO, TEK | Interbody spacer |
9358123, | Aug 09 2011 | NEUROPRO SPINAL JAXX, INC | Bone fusion device, apparatus and method |
9393130, | May 20 2013 | K2M, INC | Adjustable implant and insertion tool |
9402737, | Jun 26 2007 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
9414934, | Apr 05 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
9433510, | Jan 17 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
9474621, | Apr 12 2010 | Globus Medical, Inc. | Expandable vertebral implant |
9474623, | Apr 05 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
9526525, | Aug 22 2006 | NEUROPRO TECHNOLOGIES, INC | Percutaneous system for dynamic spinal stabilization |
9526620, | Mar 30 2009 | DEPUY SYNTHES PRODUCTS, INC | Zero profile spinal fusion cage |
9526625, | Apr 05 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
9532883, | Apr 13 2012 | NEUROPRO TECHNOLOGIES, INC | Bone fusion device |
9545314, | Apr 05 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
9561117, | Jul 26 2012 | DePuy Synthes Products, Inc. | Expandable implant |
9566167, | Aug 22 2013 | K2M, Inc. | Expandable spinal implant |
9579211, | Apr 12 2010 | Globus Medical, Inc | Expandable vertebral implant |
9579215, | Jun 29 2010 | DePuy Synthes Products, Inc. | Distractible intervertebral implant |
9592129, | Mar 30 2009 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
9597195, | Apr 05 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
9603715, | May 06 2009 | STRYKER EUROPEAN HOLDINGS III, LLC | Expandable spinal implant apparatus and method of use |
9707091, | Apr 12 2010 | Globus Medical, Inc. | Expandable vertebral implant |
9707096, | Mar 14 2013 | Ohio State Innovation Foundation | Spinal fixation device |
9717601, | Feb 28 2013 | DEPUY SYNTHES PRODUCTS, INC | Expandable intervertebral implant, system, kit and method |
9724207, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
9750552, | Jul 06 2009 | DePuy Synthes Products, Inc. | Expandable fixation assemblies |
9788963, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
9801729, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
9808351, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
9808353, | May 20 2013 | K2M, Inc. | Adjustable implant and insertion tool |
9808354, | Jan 17 2014 | STRYKER EUROPEAN HOLDINGS III, LLC | Implant insertion tool |
9814590, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
9833334, | Jun 24 2010 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
9839530, | Jun 26 2007 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
9895236, | Jun 24 2010 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
9913727, | Jul 02 2015 | MEDOS INTERNATIONAL SARL | Expandable implant |
9913735, | Apr 12 2010 | Globus Medical, Inc. | Angling inserter tool for expandable vertebral implant |
9925060, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
9931223, | Apr 05 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
9949769, | Mar 06 2004 | DePuy Synthes Products, Inc. | Dynamized interspinal implant |
9962268, | Jan 12 2009 | Globus Medical, Inc. | Expandable vertebral prosthesis |
9968460, | Mar 15 2013 | MEDSMART INNOVATION INC.; MEDSMART INNOVATION INC | Dynamic spinal segment replacement |
9974665, | Nov 03 2004 | Neuropro Technologies, Inc. | Bone fusion device |
9993349, | Jun 27 2002 | DEPUY SYNTHES PRODUCTS, INC | Intervertebral disc |
9993350, | Apr 05 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
RE46261, | Dec 19 2007 | DEPUY SYNTHES PRODUCTS, INC | Instruments for expandable corpectomy spinal fusion cage |
RE48719, | Oct 09 2014 | K2M, Inc. | Expandable spinal interbody spacer and method of use |
RE49753, | May 20 2013 | K2M, Inc. | Adjustable implant and insertion tool |
Patent | Priority | Assignee | Title |
1862759, | |||
4553273, | Nov 23 1983 | Henry Ford Hospital | Vertebral body prosthesis and spine stabilizing method |
4892546, | May 15 1987 | STRYKER TRAUMA GMBH, CORPORATION OF REPUBLIC OF GERMANY | Adjustable prosthesis for a joint bone |
5236460, | Feb 12 1990 | MIDAS REX, L P | Vertebral body prosthesis |
5458641, | Sep 08 1993 | Vertebral body prosthesis | |
5575790, | Mar 28 1995 | Rensselaer Polytechnic Institute | Shape memory alloy internal linear actuator for use in orthopedic correction |
5702455, | Jul 03 1996 | Expandable prosthesis for spinal fusion | |
5776197, | Dec 09 1994 | SDGI Holdings, Inc | Adjustable vertebral body replacement |
6176881, | Apr 15 1997 | Synthes USA, LLC | Telescopic vertebral prosthesis |
6190414, | Oct 31 1996 | HOWMEDICA OSTEONICS CORP | Apparatus for fusion of adjacent bone structures |
6193756, | Sep 30 1997 | Sulzer Orthopaedie AG | Tubular support body for bridging two vertebrae |
6296665, | Mar 20 2000 | ZIMMER BIOMET SPINE, INC | Method and apparatus for spinal fixation |
6375683, | May 02 1997 | STRYKER EUROPEAN HOLDINGS III, LLC | Implant in particular for replacing a vertebral body in surgery of the spine |
6432106, | Nov 24 1999 | DEPUY ACROMED, INC | Anterior lumbar interbody fusion cage with locking plate |
6491696, | May 20 1998 | Medicon Chirurgiemechaniker-Genossenschaft | Device for distracting bone segments, especially in the area of a jaw |
6866682, | Sep 02 1999 | STRYKER EUROPEAN HOLDINGS III, LLC | Distractable corpectomy device |
20020082695, | |||
20020082696, | |||
20020161441, | |||
20060100710, | |||
DE20109599, | |||
DE91016037, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 06 2005 | Synthes USA, LLC | (assignment on the face of the patent) | / | |||
Sep 20 2005 | SCHAR, MANUEL | SYNTHES U S A | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020597 | /0751 | |
Nov 01 2005 | GUTLIN, MICHAEL | SYNTHES U S A | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020597 | /0751 | |
Oct 21 2008 | SCHAER, MANUEL | Synthes GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022294 | /0910 | |
Oct 27 2008 | GUETLIN, MICHAEL | Synthes GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022294 | /0910 | |
Nov 12 2008 | Synthes GmbH | SYNTHES U S A | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022295 | /0825 | |
Dec 23 2008 | SYNTHES U S A | Synthes USA, LLC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 022826 | /0140 |
Date | Maintenance Fee Events |
Sep 04 2013 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 21 2017 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 22 2021 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 06 2013 | 4 years fee payment window open |
Oct 06 2013 | 6 months grace period start (w surcharge) |
Apr 06 2014 | patent expiry (for year 4) |
Apr 06 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 06 2017 | 8 years fee payment window open |
Oct 06 2017 | 6 months grace period start (w surcharge) |
Apr 06 2018 | patent expiry (for year 8) |
Apr 06 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 06 2021 | 12 years fee payment window open |
Oct 06 2021 | 6 months grace period start (w surcharge) |
Apr 06 2022 | patent expiry (for year 12) |
Apr 06 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |