An apparatus for supplying respiratory gas to a patient in which respiratory gas components are metered with great accuracy and sources of error are detected early. The apparatus has metering devices for respiratory gas components which are connected, on the leading side of a mixing chamber volume, to a ring line; a first respiratory gas analyzer on the trailing side of the mixing chamber volume; a second respiratory gas analyzer at a patient connection; a regulating device for the respiratory gas components which controls the delivery of respiratory gas components, as a function of the concentration measured with the second respiratory gas analyzer, in such a way that the difference between a predetermined concentration and a measured concentration at the patient connection is minimized; and means for performing a plausibility comparison between the measured values of the first respiratory gas analyzer and the second respiratory gas analyzer.
|
1. An apparatus for supplying respiratory gas to a patient, including:
a ring line with circulation of the respiratory gas;
a patient connection communicating with the ring line;
a respiratory gas feeder unit comprising a blower for generating a circulation of respiratory gas in the ring line;
a carbon dioxide absorber through which respiratory gas flows;
metering devices for respiratory gas components, which are connected to the ring line on a leading side of the carbon dioxide absorber;
a first respiratory gas analyzer for measuring concentrations of respiratory gas components on a trailing side of the carbon dioxide absorber;
a second respiratory gas analyzer for measuring concentrations of respiratory gas components at the patient connection;
a regulating device for the proportion of respiratory gas components in the respiratory gas, said regulating device, as a function of the concentration of respiratory gas components, measured with one of the respiratory gas analyzers, controls the delivery of respiratory gas components such that the difference between a predetermined concentration and a measured concentration at the patient connection is minimized; and
means for performing a plausibility comparison between measured concentration values of the first respiratory gas analyzer and the second respiratory gas analyzer,
wherein one of the metering devices is an anesthesia dosing/metering device; and the respective respiratory gas component is anesthetic agent vapor,
wherein one of the metering devices comprises a gas mixer; and the respective respiratory gas component is oxygen in combination with laughing gas or air,
wherein the anesthesia dosing/metering device and the gas mixer communicate with the ring line via separate lines, and
wherein a first flow rate meter is provided on the trailing side of the gas mixer and a second flow rate meter is provided on the trailing side of the anesthesia dosing/metering device; and the plausibility comparison is performed between the measured values of the flow rate meters and the measured values of the first respiratory gas analyzer or the second respiratory gas analyzer.
3. A method for supplying respiratory gas to a patient, having an apparatus which has a ring line with circulation of the respiratory gas, a patient connection communicating with the ring line, a respiratory gas feeder unit comprising a blower for generating a respiratory gas circulation in the ring line, and a carbon divide absorber through which the respiratory gas flows, comprising:
connecting metering devices for respiratory gas components to the ring line on a leading side of the carbon dioxide absorber;
with a first respiratory gas analyzer for measuring concentrations of respiratory gas components, performing a first gas sample concentration analysis on a trailing side of the carbon dioxide absorber;
with a second respiratory gas analyzer for measuring concentrations of respiratory gas components, performing a second gas sample concentration analysis at the patient connection;
with a regulating device for the proportion of the respiratory gas components in the respiratory gas, as a function of the concentration of respiratory gas components ascertained at the patient connection, that controls the delivery of respiratory gas components in such a way that the difference between the predetermined and the ascertained concentration is minimized; and
performing a plausibility comparison between measured concentration values of the first respiratory gas analyzer and the second respiratory gas analyzer,
wherein one of the metering devices is an anesthesia metering device; and the respective respiratory gas component is anesthetic agent vapor,
wherein one of the metering devices comprises a gas mixer; and the respective respiratory gas component is oxygen in combination with laughing gas or air,
feeding anesthetic agent vapor and oxygen in combination with laughing gas or air into the ring line via separate lines,
further comprising:
on the trailing side of the gas mixer, detecting the gas flow rate with a first flow rate meter;
on the trailing side of the anesthesia metering device, determining the gas flow rate of anesthetic agent vapor with a second flow rate meter; and
performing the plausibility comparison between the measured values of the flow rate meters and the measured values of the first respiratory gas analyzer or the second respiratory gas analyzer.
5. An apparatus for supplying respiratory gas to a patient, including:
a ring line with circulation of the respiratory gas;
a patient connection communicating with the ring line;
a respiratory gas feeder unit for generating a circulation of respiratory gas in the ring line;
a mixing chamber through which respiratory gas flows;
metering devices for respiratory gas components, which are connected to the ring line on a leading side of the mixing chamber;
a first respiratory gas analyzer for measuring concentrations of respiratory gas components on a trailing side of the mixing chamber;
a second respiratory gas analyzer for measuring concentrations of respiratory gas components at the patient connection;
a regulating device for the proportion of respiratory gas components in the respiratory gas, said regulating device, as a function of the concentration of respiratory gas components, measured with one of the respiratory gas analyzers, controls the delivery of respiratory gas components such that the difference between a predetermined concentration and a measured concentration at the patient connection is minimized; and
means for performing a plausibility comparison between measured values of the first respiratory gas analyzer and the second respiratory gas analyzer,
wherein one of the metering devices is an anesthesia dosing/metering device; and the respiratory gas component is anesthetic agent vapor,
wherein one of the metering devices comprises a gas mixer; and the respiratory gas component is oxygen in combination with laughing gas or air,
wherein the anesthesia dosing/metering device and the gas mixer communicate with the ring line via separate lines,
wherein a first flow rate meter is provided on the trailing side of the gas mixer and a second flow rate meter is provided on the trailing side of the anesthesia dosing/metering device; and the plausibility comparison is performed between the measured values of the flow rate meters and the measured values of the first respiratory gas analyzer or the second respiratory gas analyzer, and
wherein a first reversing valve is provided on the trailing side of the anesthesia metering device, and a second reversing valve is provided on the trailing side of the first respiratory gas analyzer; in such a way that in a first switching position “A” of the reversing valves, the metering of the respiratory gas components is effected on the leading side of the mixing chamber volume, and the measurement of the concentration of the respiratory gas components is effected on the trailing side of the mixing chamber volume; and in a second switching position “B”, both the metering of anesthetic agent vapor and the metering of the concentration of the respiratory gas components are performed in a fresh gas line leading to the ring line.
2. The apparatus of
4. The method of
providing a first reversing valve on the trailing side of the anesthesia metering device and a second reversing valve on the trailing side of the first respiratory gas analyzer, in such a way that in a first switching position “A” of the reversing valves, the metering of the respiratory gas components is effected on the leading side of the mixing chamber volume and the measurement of the concentration of the respiratory gas components is effected on the trailing side of the mixing chamber volume; and
in a second switching position “B”, performing the metering of anesthetic agent vapor and the measurement of the concentration of the respiratory gas components in a fresh gas line leading to the ring line.
|
This application is based on and incorporates herein by reference German Patent Application No. DE 103 52 981.0, filed on Nov. 13, 2003.
One apparatus for supplying respiratory gas to a patient is known from German Patent DE 34 22 066 C2. In the known ventilator, an inhalation branch and an exhalation branch communicate with one another in the form of a closed ring line. A blower, as a respiratory gas feeder unit, brings about circulation of the respiratory gas in the ring line. For controlling the phases of respiration, a triggerable inhalation valve is included in the inhalation branch and a triggerable exhalation valve is included in the exhalation branch. When the inhalation valve is open and the exhalation valve is closed, the inhalation pressure builds up in the lungs of the ventilated patient. By comparison, when the inhalation valve is closed and the exhalation valve is open, the lungs of the ventilated patient are evacuated via the intake side of the respiratory gas feeder unit. An absorber disposed in a container removes the carbon dioxide contained in the respiratory gas breathed out.
When the known ventilator is used in anesthesiology, a certain quantity of anesthetic agent is admixed with the respiratory gas. In that case, it is important that the predetermined anesthesia concentration at the patient connection be achieved as accurately as possible; that rapid changes of concentration can be attained; and that safety mechanisms are provided that give a warning if incorrect dosages are given.
It is the object of the invention to disclose an apparatus and a method to enable performing metering of respiratory gas components with great accuracy and detecting sources of error.
This object may be attained with an apparatus for supplying respiratory gas to a patient, including: a ring line with circulation of the respiratory gas; a patient connection communicating with the ring line; a respiratory gas feeder unit for generating a circulation of respiratory gas in the ring line; a mixing chamber volume through which respiratory gas flows; metering devices for respiratory gas components, which are connected on the leading side of the mixing chamber volume to the ring line; a first respiratory gas analyzer on the trailing side of the mixing chamber volume; a second respiratory gas analyzer at the patient connection; a regulating device for the proportion of respiratory gas components in the respiratory gas, which device, as a function of the concentration, measured with one of the respiratory gas analyzers, of respiratory gas components, controls the delivery of respiratory gas components such that the difference between a predetermined concentration and a measured concentration at the patient connection is minimized; and means for performing a plausibility comparison between the measured values of the first respiratory gas analyzer and the second respiratory gas analyzer.
This object may also be attained with A method for supplying respiratory gas to a patient, having an apparatus which has a ring line with circulation of the respiratory gas, a patient connection communicating with the ring line, a respiratory gas feeder unit for generating a respiratory gas circulation in the ring line, and a mixing chamber volume through which the respiratory gas flows, comprising: connecting metering devices for respiratory gas components to the ring line on the leading side of the mixing chamber volume; with a first respiratory gas analyzer, performing a first gas sample analysis on the trailing side of the mixing chamber volume; with a second respiratory gas analyzer, performing a second gas sample analysis at the patient connection; with a regulating device for the proportion of the respiratory gas components in the respiratory gas, as a function of the concentration of respiratory gas components ascertained at the patient connection, controlling the delivery of respiratory gas components in such a way that the difference between the predetermined and the ascertained concentration is minimized; and performing a plausibility comparison between the measured values of the first respiratory gas analyzer and the second respiratory gas analyzer.
An advantage of the invention is essentially that because respiratory gas components are fed separately into the ring line, the regulating circuits for setting a certain concentration of these components in the respiratory gas can operate largely independently of one another. As a result, on the one hand rapid changes of concentration can be attained, and on the other, by feeding the respiratory gas components in upstream of the mixing chamber volume, homogeneous, thorough mixing of the respiratory gas is achieved. This mixing is further reinforced by a blower as a respiratory gas feeder unit, which brings about the circulation of the respiratory gas in the ring line. For regulating and monitoring the proportions of respiratory gas components in the respiratory gas, a first respiratory gas analyzer is provided on the trailing side of the mixing chamber volume, and a second respiratory gas analyzer is provided at the patient connection, as actual-value transducers for the regulation. A regulating device that communicates with both the metering devices and the respiratory gas analyzers controls the delivery of respiratory gas components into the ring line in such a way that the difference between a predetermined concentration and a measured concentration at the patient connection is minimized. Moreover, a plausibility comparison is performed between the measured values of the first respiratory gas analyzer, in the ventilator, and the second respiratory gas analyzer at the patient connection, so that if there are significant deviations, the user is given early warning to enable him to achieve a stable state.
Advantageously, separate metering devices are provided for anesthetic agents and narcosis gas, such as oxygen in combination with laughing gas or air. An anesthesia metering device feeds anesthetic agent vapor into the ring line. A gas mixer creates a mixture of oxygen and laughing gas or of oxygen and air. The regulating device contains separate regulating circuits for the respiratory gas components, anesthetic agent, and oxygen in the ring line.
Advantageously, flow rate meters are provided on the trailing side of the gas mixer and of the anesthesia metering device, for detecting the individual gas flow rates of narcosis gas and anesthetic agent vapor. Taking the measured flow rates of individual gases into account with the flow rate meters makes it possible to perform an additional plausibility comparison with the measured values of the individual gas flow rates and the measured values of the first and second respiratory gas analyzers.
Advantageously, a first reversing valve is provided on the trailing side of the anesthesia metering device and a second reversing valve is provided on the trailing side of the first respiratory gas analyzer. In a first switching position of the reversing valves, the anesthetic agent vapor and the narcosis gas from the gas mixer are fed into the ring line via separate lines on the leading side of the mixing chamber volume, and the anesthesia concentration and the oxygen concentration are measured on the trailing side of the mixing chamber volume. In a second switching position of the reversing valves, conversely, the anesthetic agent vapor is fed into a fresh gas line, which communicates with the gas mixer and leads to the ring line. The measurement of the anesthesia concentration and oxygen concentration is performed directly in the fresh gas line.
The advantage of the second switching position is essentially that the anesthetic agent vapor and the narcosis gas from the gas mixer are united before being fed into the ring line, so that the metering is done regardless of the states in the ring line. By setting a predetermined mixture ratio between anesthetic agent vapor and narcosis gas, a mode of operation without regulation of concentration is possible, in the way that is known from narcosis agent vaporizers operating on the bypass principle. By means of a coupling disposed in the fresh gas line, the possibility exists of disconnecting the fresh gas line from the ring line and using it as a gas supply for an external breathing system.
An anesthesia metering device 17 feeds saturated anesthetic agent vapor into the ring line 2 on the leading side of the blower 7 via a second flow rate meter 8, a first reversing valve 19, and a first anesthesia line 20. A second anesthesia line 21, branching off from the first reversing valve, discharges into the fresh gas line 16. The anesthesia concentration in the ring line 2 is measured with a first respiratory gas analyzer 22, which draws the gas sample either from the fresh gas line 16 or from the inhalation branch 3, depending on the switching position, via a second reversing valve 23. A second respiratory gas analyzer 24 performs a measurement of concentration in a gas sample taken from the patient connection 8. The control unit 9 and a monitoring unit 25, which communicate with the respiratory gas analyzers 22, 24 of the anesthesia dosing/metering device 17, with the gas mixer 14 and with the reversing valves 19, 23, together form a regulating device 26 for the anesthesia concentration and oxygen concentration in the ring line 2. For that purpose, the respiratory gas analyzers 22, 24 are embodied such that they can measure both the anesthesia concentration and the oxygen concentration.
The reversing valves 19, 23 communicate with one another via an actuation rod 28 and are actuated in common between the switching positions “A” and “B”. In the switching position “A” shown in
In switching position “B”, conversely, the anesthetic agent vapor is fed directly into the fresh gas line 16, and the gas sample for the first respiratory gas analyzer is drawn from the fresh gas line 16 as well. The switching position “B” is especially suitable for those applications in which the fresh gas line 16 is disconnected at a coupling 29 and connected to an external ventilation system, not shown in the drawing, such as a Kuhn or Bain system.
The respiration apparatus 1 disclosed according to the invention functions as follows:
The actual values of the concentration of the respiratory gas components for the regulating device 26, the oxygen concentration, and the anesthesia concentration are measured with the second respiratory gas analyzer 24; measured values for both inhalation and exhalation are ascertained. In addition, the second respiratory gas analyzer 24 ascertains the carbon dioxide concentration in exhalation.
The first respiratory gas analyzer 22 by comparison serves to monitor oxygen concentration and the anesthesia concentration; depending on the switching position of the reversing valves 19, 23, the concentration of the respiratory gas components is determined in either the inhalation branch 3 or the fresh gas line 16.
For the regulation mode, it must be noted that the respiratory gas analyzers 22, 24 have some measurement uncertainty, which depending on the type of gas can be on the order of magnitude of approximately ±3 vol. %. In the least favorable case, the measurement uncertainty between the measured values of the respiratory gas analyzers 22, 24 is 6 vol. %. In the switching position “A” of the reversing valves 19, 23, the anesthesia concentration is regulated to a measured value for exhalation, and the oxygen concentration is regulated to a measured value for inhalation. In order, in determining the measured value for exhalation for the anesthesia concentration (AGASexsp.) to the measurement uncertainty of a respiratory gas analyzer 22, 24, to limit the tolerance, this measured value is composed of both the measured value in the inhalation branch 3 measured with the first respiratory gas analyzer 22 (SGAinsp.) and the difference between the measured value for inhalation (PGAinsp.) and the measured value for exhalation (PGAexsp.) of the second respiratory gas analyzer 24, as expressed by the following equation:
AGASexsp.=SGAinsp.+(PGAexsp.−PGAinsp.)
In the switching position “B” of the reversing valves 19, 23, regulation is done to the measured value upon inhalation (AGASinsp.):
AGASinsp.=SGAinsp.
The oxygen concentration FO2 is regulated to the measured value for inhalation (SGOinsp.) measured with the first respiratory gas analyzer 22:
FO2=SGOinsp.
The measured values (SGAinsp.) for the anesthesia concentration and (SGAinsp.) for the oxygen concentration are associated with the first respiratory gas analyzer 22, while the measured values (PGAexsp.), (PGAinsp.) for the anesthesia concentration and (PGOinsp.) for the oxygen concentration belong to the second respiratory gas analyzer 24.
If, during automatic calibration that is required at regular intervals, one of the respiratory gas analyzers 22, 24 is not ready to perform measurement for a certain period of time, then the corresponding measured value is taken from the other respiratory gas analyzer. A predetermined anesthesia concentration in the respiratory gas upon exhalation is attained by supplying a defined quantity of the anesthetic agent in vapor form to the ring line 2 from the anesthesia metering device 17. For that purpose, a predetermined value for the anesthesia concentration upon inhalation (SGAinsp.) is calculated by the control unit 9 in such a way that the desired anesthesia concentration upon exhalation (AGASexsp.) is quickly reached and in the steady state matches the set-point predetermination (AGASexsp.Soll) upon exhalation. At the same time, for the anesthesia concentration upon inhalation (SGAinsp.), an upper limit value (SGAmax.) is predetermined in such a way that a maximum anesthesia concentration in the respiratory gas upon inhalation will not be exceeded. The monitoring of the anesthesia gas concentration is performed such that the monitoring unit 25 compares the value (AGASexsp.), measured instantaneously with the first respiratory gas analyzer 22, with the upper limit value (SGAmax.), and if (SGAmax.) is reached or exceeded, it generates an alarm signal. In addition, a plausibility comparison is performed between the measured values for the anesthesia concentration and the oxygen concentration of the first respiratory gas analyzer 22 and the second respiratory gas analyzer 24. If the monitoring unit 25 finds significant deviations, a suitable warning is given to the user to allow him to establish a stable operating state of the equipment. The significant deviation is a predetermined percentage of deviation between the measured values of the respiratory gas analyzers 22, 24.
The anesthesia concentration (SGAinsp.) in the inhalation branch 3, in the steady state, is greater than anesthesia concentration (AGASexsp.) upon exhalation. In the steady state, the compensation for the takeup of anesthetic agent by the patient's lungs 11 is thus assured. If the set-point value for exhalation (AGASexsp.Soll) increases, the anesthesia concentration in the inhalation branch 3 can be increased for a predetermined length of time via the set-point value for exhalation (AGASexsp.Soll), so that the target value can be reached as quickly as possible. If the set-point value for exhalation (AGASexsp.Soll) decreases, the metering of anesthetic agent vapor is discontinued, and the flow rate of fresh gas delivered from the gas mixer 14 is increased, in order to wash excess anesthetic agent out via the excess-gas outlet 27.
In addition to the first respiratory gas analyzer 22, the first flow rate meter 15 on the trailing side of the gas mixer 14 and the second flow rate meter 18 on the trailing side of the anesthesia metering device 17 are provided as monitoring elements. Recourse to these monitoring elements is made if one of the respiratory gas analyzers 22, 24 fails or furnishes implausible measured values.
If in regulated operation an error is found in the monitoring of the anesthesia concentration, then the monitoring unit 25 causes the control unit 9 to switch the reversing valves 19, 23 over to the switching position “B”. Simultaneously, the gas flow rate furnished by the gas mixer 14 is increased markedly. As a result of the higher gas flow rate, it is attained that the concentration of the respiratory gas that reaches the patient's lungs 11 will correspond to the values set by the user. This does mean a possible dosage of an overly low anesthesia concentration, but it protects the patient's lungs from excessive dosages of anesthetic agent or an inadequate dosage of oxygen. If no further error is found in the switching position “B” of the reversing valves 19, 23, then a switch back to the switching position “A” is made after a certain period of time. As soon as the respiratory gas analyzers 22, 24 furnish plausible measured values again, the regulating device 26 is activated, and in the regulated mode the respiratory gas concentration is set to the predetermined set-point values for oxygen and anesthetic agent.
Dittmann, Ralf, Manigel, Jürgen, Panitz, Gerald, Bunke, Claus
Patent | Priority | Assignee | Title |
10016473, | Aug 17 2012 | HOWARD UNIVERSITY | Method, apparatus, and kit for the pulsing treatment of neurodegenerative diseases and impairments |
10279006, | Aug 17 2012 | HOWARD UNIVERSITY | Method, apparatus and kit for the treatment of neurodegenerative diseases and impairments |
11324954, | Jun 28 2019 | Covidien LP | Achieving smooth breathing by modified bilateral phrenic nerve pacing |
8616205, | Oct 06 2010 | Honeywell International Inc.; Honeywell International Inc | Respirator with end-of-service-life detection |
8870784, | May 27 2008 | L AIR LIQUIDE, SOCIETE ANONYME POUR L ETUDE ET L EXPLOITATION DES PROCEDES GEORGES CLAUDE | Precision of xenon content measurement in a ventilatory anesthesia apparatus |
8978652, | Nov 14 2007 | Maquet Critical Care AB | Anesthetic breathing apparatus having improved monitoring of anesthetic agent |
9079049, | Nov 02 2011 | Honeywell International Inc.; Honeywell International Inc | Respirators with a sacrificial cartridge for end of service life indication |
9101652, | Aug 17 2012 | HOWARD UNIVERSITY | Method, apparatus and kit for the treatment of neurodegenerative diseases and impairments |
9283411, | Apr 19 2013 | Honeywell International Inc. | Gas sensing drift compensation using gas self-referencing for end of service life indication for respirators |
9694152, | Jan 08 2009 | Linde Aktiengesellschaft | Device for supplying gas to a patient |
ER4304, |
Patent | Priority | Assignee | Title |
4637386, | Jun 14 1984 | Dragerwerk AG | Ventilation system having true valve control for controlling ventilation pressures |
4905685, | Apr 14 1987 | SIEMENS AKTIENGESELLSCHAFT, MUNICH, A GERMAN CORP | Inhalation anaesthesia equipment |
5094235, | May 10 1989 | Dragerwerk Aktiengesellschaft | Anesthesia ventilating apparatus having a breathing circuit and control loops for anesthetic gas components |
5509406, | Jul 20 1994 | Maquet Critical Care AB | Anesthesia device |
5522381, | Jul 22 1993 | Siemens-Elema AB | Device for supplying breathing gas to the lungs of a respiratory subject |
5673688, | Sep 26 1996 | Ohmeda Inc. | Anesthesia system with CO2 monitor to suppress CO2 breakthrough |
5730119, | Jan 19 1995 | Maquet Critical Care AB | Method and device for identifying anaesthetic in an anaesthetic system |
5743253, | Jan 26 1995 | Maquet Critical Care AB | Method and apparatus for maintaining a defined respiratory gas flow pattern to a subject by identifying a transfer function of the connection system |
5957129, | Jul 30 1997 | Datex-Ohmeda, Inc | On-line fault detection and correction in anesthesia delivery system |
6095137, | Nov 21 1997 | Drager Medizintechnik GmbH | Anesthesia respirator |
6131571, | Apr 30 1997 | FLORIDA, THE UNIVERSITY OF | Ventilation apparatus and anesthesia delivery system |
6148816, | Jul 02 1998 | Instrumentarium Corp | Ventilator for intensified breathing and valve in patient conduit of apparatus for intensified breathing |
6260550, | Nov 04 1998 | Drager Medizintechnik GmbH | Device and process for controlling a respirator |
6295985, | Oct 27 1998 | Maquet Critical Care AB | Anaesthetic machine |
6349723, | Feb 04 1999 | Maquet Critical Care AB | Anaesthetic machine |
6520180, | Mar 25 2000 | DRÄGERWERK AG & CO KGAA | Device for measuring a breathing gas component in a breathing gas line |
6553990, | Aug 22 2000 | Dräger Medizintechnik GmbH | Process for changing the concentration in an anesthesia apparatus |
6679259, | Aug 22 2000 | DRÄGERWERK AG & CO KGAA | Process for controlling a respirator |
6691705, | Mar 25 2000 | DRÄGERWERK AG & CO KGAA | Arrangement and process for controlling a numerical value for patient respiration |
20060207593, | |||
DE10009274, | |||
DE3422066, | |||
DE4004034, | |||
EP894506, | |||
EP983771, | |||
WO30536, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 10 2004 | BUNKE, CLAUS | DRAGER MEDICAL AG & CO KGAA | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015742 | /0309 | |
Aug 10 2004 | MANIGEL, JURGEN | DRAGER MEDICAL AG & CO KGAA | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015742 | /0309 | |
Aug 10 2004 | PANITZ, GERALD | DRAGER MEDICAL AG & CO KGAA | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015742 | /0309 | |
Aug 10 2004 | DITTMANN, RALF | DRAGER MEDICAL AG & CO KGAA | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015742 | /0309 | |
Aug 26 2004 | Dräger Medical AG & Co. KGaA | (assignment on the face of the patent) | / | |||
Oct 31 2005 | DRAGER MEDICAL AG & CO KGAA | DRAGER MEDICAL AG & CO KG | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 023196 | /0497 | |
Aug 31 2010 | DRAEGER MEDICAL AG & CO KG | Draeger Medical GmbH | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 025150 | /0068 | |
Jun 03 2015 | Draeger Medical GmbH | DRÄGERWERK AG & CO KGAA | MERGER SEE DOCUMENT FOR DETAILS | 036586 | /0718 | |
Jun 03 2015 | DRÄGERWERK AG & CO KGAA | DRÄGERWERK AG & CO KGAA | MERGER SEE DOCUMENT FOR DETAILS | 036586 | /0718 |
Date | Maintenance Fee Events |
Oct 22 2013 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 23 2017 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 13 2021 | REM: Maintenance Fee Reminder Mailed. |
May 30 2022 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Apr 27 2013 | 4 years fee payment window open |
Oct 27 2013 | 6 months grace period start (w surcharge) |
Apr 27 2014 | patent expiry (for year 4) |
Apr 27 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 27 2017 | 8 years fee payment window open |
Oct 27 2017 | 6 months grace period start (w surcharge) |
Apr 27 2018 | patent expiry (for year 8) |
Apr 27 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 27 2021 | 12 years fee payment window open |
Oct 27 2021 | 6 months grace period start (w surcharge) |
Apr 27 2022 | patent expiry (for year 12) |
Apr 27 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |