A tapered load plate transfers loads across a joint between adjacent concrete floor slabs. The top and bottom surfaces may taper from approximately 4 inches wide to a narrow substantially pointed end over a length of approximately 12 inches. The tapered load plate accommodates differential shrinkage of cast-in-place concrete slabs. When adjacent slabs move away from each other, the narrow end of the tapered load plate moves out of the void that it created in the slab thus allowing the slabs to move relative to one another in a direction parallel to the joint. tapered load plates may be assembled into a load-plate basket with the direction of the taper alternating from one tapered load plate to the next to account for off-center saw cuts. A tapered load plate and an end cap may be used to provide load transfer across an expansion joint.

Patent
   7716890
Priority
Sep 13 2001
Filed
Jun 09 2008
Issued
May 18 2010
Expiry
Oct 12 2022

TERM.DISCL.
Extension
29 days
Assg.orig
Entity
Large
32
102
all paid
6. Apparatus for transferring loads between a first concrete on-ground cast-in-place slab and a second concrete on-ground cast-in-place slab, the apparatus for use in a system, the system comprising:
a joint separating first and second slabs, at least a portion of the joint being initially defined by a partial depth saw cut that results in a crack below the saw cut, wherein a longitudinal axis of the partial depth portion of the joint formed by the saw cut is formed by an intersection of the saw cut and the upper surface of the first slab;
the apparatus comprising:
a first load plate and a second load plate that in use each protrude into the first and second slabs such that the load plates transfer between the first and second slabs a load applied to either of the slabs directed substantially perpendicular to the upper surface of the first slab;
whereby the load plates restrict relative movement between the first and second slabs in a direction substantially perpendicular to the upper surface of the first slab, and the load plates allow the joint to open by allowing the first and second slabs to move away from each other in a direction substantially perpendicular to the joint;
the load plates each having a width measured in use parallel to the longitudinal axis of the joint; and
wherein the width of each load plate generally tapers from a relatively wide portion near the joint to at least one relatively narrow end in at least one of the slabs such that, as the joint opens, the slabs are allowed increasingly greater relative movement in a direction substantially parallel to the longitudinal axis of the joint; and
wherein the tapered load plates define in use a cross section of tapered load plate material spanning the joint, and the cross section remains substantially constant between the saw cut being positioned on-center relative to the tapered load plates and the saw cut being, in at least one position of the saw cut, off-center relative to the tapered load plates.
1. Apparatus for use in a system for transferring loads between a first concrete on-ground cast-in-place slab and a second concrete on-ground cast-in-place slab, the system comprising the first and second slabs and a joint interposing the first and second slabs, at least the first slab having a substantially planar upper surface, at least a portion of the joint being initially defined by at least one of a crack, cut or a form oriented substantially perpendicular to the substantially planar upper surface of the first slab, wherein a longitudinal axis of the joint is formed by an intersection of the crack, cut or form and the upper surface of the first slab and wherein the joint is subject to opening through a variety of joint opening dimensions;
the apparatus comprising:
a first tapered load plate and a second tapered load plate that each have a taper, protrude in use into the first and second slabs and have an extent in use across the joint such that the load plates span the joint and transfer between the first and second slabs a load applied to either of the slabs directed substantially perpendicular to the upper surface of the first slab; the tapered load plates each having a width in use measured parallel to the longitudinal axis of the joint; the width of each tapered load plate generally tapering from a relatively wide location in the extent of each plate across the joint to a relatively narrow portion;
whereby in use, as the joint opens, a tapered gap opens between the load plate and the slab near the narrow portion such that the slabs are allowed increasingly greater relative movement in the direction substantially parallel to the longitudinal axis of the joint; and
whereby in use the first and second tapered load plates are oriented such that as the joint opens, reduced width of one load plate at the narrowest width in the joint of the one load plate due to plate taper is compensated for by increased width of the other load plate in the joint due to opposing plate taper, such that as the joint opens, the combined widths of the first and second tapered load plates in the joint is substantially consistent for substantially consistent load transfer across the joint; and
whereby in use the tapered load plates restrict relative movement between the first and second slabs in a direction substantially perpendicular to the upper surface of the first slab, allow the joint to open by allowing the first and second slabs to move away from each other in a direction substantially perpendicular to the joint, allow for increasingly greater relative movement in a direction substantially parallel to the longitudinal axis of the joint as the joint opens, and maintain substantially consistent load transfer across the joint.
13. Apparatus for use in a system transferring loads between a first concrete on-ground cast-in-place slab and a second concrete on-ground cast-in-place slab, the system comprising the first and second slabs and a joint interposing the first and second slabs, at least the first slab having a substantially planar upper surface, at least a portion of the joint being initially defined by at least one of a crack, cut or a form oriented substantially perpendicular to the substantially planar upper surface of the first slab, wherein a longitudinal axis of the joint is formed by an intersection of the crack, cut or form and the upper surface of the first slab and wherein the joint is subject to opening through a variety of joint opening dimensions;
the apparatus comprising:
multiple first tapered load plates and multiple second tapered load plates, that each have a taper, protrude in use into the first and second slabs and have an extent in use across the joint such that the load plates span the joint and transfer between the first and second slabs a load applied to either of the slabs directed substantially perpendicular to the upper surface of the first slab; the tapered load plates each having a width in use measured parallel to the longitudinal axis of the joint; the width of each tapered load plate generally tapering from a relatively wide location in the extent of each plate across the joint to a relatively narrow portion; and
a tapered-load-plate basket that facilitates positioning the tapered load plates in the area of the joint before the slabs are cast in place;
whereby in use, as the joint opens, a tapered gap opens between the load plates and the slabs near the narrow portions of the plates such that the slabs are allowed increasingly greater relative movement in the direction substantially parallel to the longitudinal axis of the joint; and
whereby in use the multiple first and multiple second tapered load plates are oriented such that as the joint opens, reduced width of the first load plates at the narrowest width in the joint of the first load plates due to plate taper is compensated for by increased width of the second load plates in the joint due to opposing plate taper, such that as the joint opens, the combined widths of the multiple first and second tapered load plates in the joint is substantially consistent for load transfer across the joint; and
whereby in use the tapered load plates restrict relative movement between the first and second slabs in a direction substantially perpendicular to the upper surface of the first slab, allow the joint to open by allowing the first and second slabs to move away from each other in a direction substantially perpendicular to the joint, allow for increasingly greater relative movement in a direction substantially parallel to the longitudinal axis of the joint as the joint opens, and maintain substantially consistent load transfer across the joint.
2. The apparatus of claim 1, wherein the tapered load plates in use each have a length measured perpendicular to the joint that is substantially greater than the wide portions.
3. The apparatus of claim 1, wherein:
the tapered load plates' wide portions are wide ends; and
the tapered load plates' narrow portions taper to respective substantially narrow ends.
4. The apparatus of claim 1, further comprising a tapered-load-plate basket that positions the tapered load plates before the slabs are cast in place.
5. The apparatus of claim 1, wherein in use the first tapered load plate's wide portion protrudes into the first slab and the second tapered load plate's wide portion protrudes into the second slab.
7. The apparatus of claim 6, wherein the load plates taper to respective substantially pointed ends.
8. The apparatus of claim 6, further comprising a load-plate basket that positions the load plates before the slabs are cast in place.
9. The apparatus of claim 6, wherein the first load plate's relatively narrow end protrudes in use into the first slab and the second load plate's relatively narrow end protrudes in use into the second slab.
10. The apparatus of claim 6, wherein the width of each load plate in use generally tapers from a relatively wide end to the relatively narrow end.
11. The apparatus of claim 10, wherein the first relatively narrow end tapers to a first substantially pointed end.
12. The apparatus of claim 11, wherein the second relatively narrow end tapers to a second substantially pointed end.

This is a continuation of application Ser. No. 10/489,380, filed Mar. 12, 2004, which claims priority to PCT Application No. PCT/US02/29200, filed Sep. 13, 2002, which in turn claims priority to U.S. Provisional Application Ser. No. 60/318,838, filed Sep. 13, 2001, all of which are incorporated by reference in their entirety herein.

This invention relates generally to transferring loads between adjacent cast-in-place slabs and more particularly to a system for transferring, across a joint between a first slab and a second slab, a load applied to either slab.

Referring to FIG. 1, when a concrete floor slab 100 is first placed and the concrete starts to cure the volume of the concrete decreases causing the slab to shrink (usually on the order of ⅛ of an inch per 20 feet). Concrete has a relatively low strength when in tension. When the internal stresses due to shrinkage 104 reach a point greater then the tensile strength of the concrete, random stress-relief cracks 102 occur.

These random cracks 102 are undesirable as they detract from the performance of the floor slab 100 and reduce its life span. Referring to FIGS. 2A and 2B, a typical method of controlling where these cracks 102 occur is to induce a weakened plane by saw cutting the top surface 200 of the concrete slab 100 into small panels, as depicted by saw cut 202.

Referring to FIG. 3, an undesirable side effect of having the floor slab 100 made up of numerous small sections is that when the floor is loaded, such as with the wheels of a moving fork lift 300, each section of the floor may be deflected 302 relative to its neighbor causing damage 304 to the joint edge, as depicted in FIG. 3.

Referring to FIG. 4, a conventional technique for reducing this type of deflection 302 is to span the joint 400 with steel bars 402 each having a round cross-section. These bars 402 are commonly referred to as dowel bars.

Referring to FIGS. 5A-5C, dowels of this type are typically assembled into a wirework frame 500 that holds the dowels at a desired depth 502 and orientation. This assembly is generally known as a dowel basket.

Using circular-cross-section dowel bars is associated with various drawbacks. For instance, if the dowel bars 402 are misaligned 600 such that they are not oriented totally perpendicular to the joint, the dowel bars 402 can lock the joint 400 thereby undesirably restraining the joint from opening, which in turn may cause random cracks 102.

Referring to FIG. 7, if a concrete floor slab, such as slabs 100-1 or 100-2, tries to move along the line of the joint 400 relative to the next panel (for instance due to shrinkage or thermal contraction), the dowel bars 402 will restrain this type of movement 700, thereby causing random cracks 102.

Referring to FIG. 8, at an intersection of two joints, movement 800, which is a combination of the two types of movement discussed above in connection with FIGS. 6 and 7, can cause a situation known as corner cracking 802.

Referring to FIGS. 9A and 9B, the round-dowel-bar drawbacks discussed above have been addressed in the past by using dowel bars 900 having a square or rectangular cross-section in conjunction with a plastic or steel clip 902 that places a compressible material 904 on the two vertical faces of the dowel bar 900. These clips 902 produce a void in the concrete wider than the dowel bar 900 allowing for sideways movement and a slight degree of misalignment. The clips 902, however, undesirably add to the expense associated with using dowel bars 900 having square and/or rectangular cross-sections. A more cost-effective solution that overcomes the misalignment problem to a greater extent, therefore, would be advantageous.

Under certain conditions, such as outdoor applications, concrete slab placement should be able to withstand concrete expansion, which is typically due to thermal changes, such as colder winter temperatures changing to warmer summer temperatures. Referring to FIG. 10, conventionally, a piece of compressible material 1000, such as foam, fiberboard, timber, or the like, is placed in an expansion joint 1002 between concrete slabs 100-1 and 100-2. A round-cross-section dowel bar 402 and an end cap 1004 may be used for transferring a load across the expansion joint 1002. As the slabs 100 expand, they move together, as indicated by arrows 1006, the joint 1002 closes, and the dowel bar 402 goes farther into the end cap 1004. This use of round-cross-section dowel bars, however, is associated with the misalignment drawback discussed above in connection with saw-cut control joints. A cost-effective way of dealing with the misalignment situation while transferring loads between concrete slabs across expansion joints 1002 would therefore be desirable.

Applicants' U.S. Pat. No. 6,354,760 discloses a load plate that overcomes the drawbacks discussed above, namely misalignment and allowing relative movement of slabs parallel to the joint. Referring to FIG. 11, the '760 patent discloses using a load plate 1100 rotated such that the load plate has a widest portion (i.e., opposite corners) of the load plate positioned in the joint between slabs 100-1 and 100-2. Using such a load plate 1100 at a construction joint works well because the load plate can be reliably centered at the construction joint between the slabs 100.

A load plate 1100 is not, however, ideally suited for use at saw-cut control joints. As described above, this type of joint results from cracking induced by a saw cut in the upper surface of a concrete slab. The saw cut may be off center with respect to any load plate embedded within the cement, as shown by the dashed line 1200 in FIG. 12. If the saw cut and joint are off-center, the load plate will not function as intended because more than half of the load plate will be fixed within one of the slabs and less than half of the load plate will be available for transferring loads to and from the other slab. Another situation for which a load plate 1100 is not ideally suited is when a construction joint, formed by an edge form, for instance, is expected to be relatively wide open. Under such circumstances, an undesirably large area of load plates 1100 may undesirably be removed from slabs on either or both sides of the joint thereby reducing the ability of the load plate 1100 to transfer loads between the slabs. For these reasons, a load transfer device that provides the advantages of the load plate of the '760 patent and that is well suited to use in saw-cut control joints and construction joints, which may become relatively wide open, would be desirable.

In accordance with an illustrative embodiment of the invention, a tapered load plate may be used to transfer loads across a joint between adjacent concrete floor slabs. The top and bottom surfaces may taper from approximately 4 inches wide to a narrow substantially pointed end 1308 over a length of approximately 12 inches. As will be apparent, other suitable tapered shapes and/or other suitable dimensions may also be used.

A tapered load plate, in accordance with an illustrative embodiment of the invention, advantageously accommodates misalignment of a saw cut for creating a control joint. Misalignment up to an angle substantially equal to the angle of the load plate's taper may be accommodated.

The tapered shape of the tapered load plate advantageously accommodates differential shrinkage of cast-in-place concrete slabs. When adjacent slabs move away from each other, the narrow end of the tapered load plate moves out of the void that it created in the slab. As the tapered load plate retracts, it will occupy less space within the void in the slab thus allowing the slabs to move relative to one another in a direction parallel to the joint.

Tapered load plates may be assembled into a load-plate basket with the direction of the taper alternating from one tapered load plate to the next. If a saw cut, used for creating a control joint, is positioned off-center relative to the tapered load plates, the alternating pattern of tapered load plates in the load-plate basket will ensure that the cross section of tapered load plate material, such as steel, spanning the joint remains substantially constant across any number of pairs of tapered load plates. For use in connection with a construction joint, an edge form may be used to position tapered load plates before the slabs are cast in place.

In accordance with an illustrative embodiment of the invention, a tapered load plate and an end cap, may be used to provide load transfer across an expansion joint. The tapered shape of the load plate will allow for misalignment. As either or both slabs expand and thereby cause the joint to close, the wide end of the tapered load plate moves farther into the end cap. This results in the allowance of an increasing amount of lateral movement between the slabs parallel to the joint 400 to the central and relatively wider portions of the tapered load plate occupying less space in the tapered void.

In accordance with an illustrative embodiment of the invention, a tapered-load-plate basket may be used to position the tapered load plates and compressible material before the concrete slabs are cast in place.

Additional features and advantages of the invention will be apparent upon reviewing the following detailed description.

FIG. 1 is a plan view of a concrete floor slab with random cracks caused by concrete shrinkage.

FIGS. 2A and 2B are cross-section and plan views of saw-cut control joints.

FIG. 3 depicts vertical deflection of a floor slab under a load and damage to an adjacent floor slab.

FIGS. 4A and 4B are cross section and plan view of dowel bars positioned for transferring loads across joints between adjacent slabs.

FIGS. 5A-5C are plan and sectional views of a dowel basket for positioning dowel bars before a floor slab is cast in place.

FIG. 6 is a plan view of misaligned dowel bars locking a joint and thereby causing a slab to crack.

FIG. 7 is a plan view of cracks caused by dowel bars restricting relative movement of slabs parallel to the joint between the slabs.

FIG. 8 is a plan view showing corner cracking due to misaligned dowel bars and restricted relative movement of slabs parallel to the joints.

FIGS. 9A and 9B are isometric and sectional views of a square dowel and square-dowel clip.

FIG. 10 is a side view of a typical expansion joint with compressible material in the joint.

FIG. 11 is a plan view of a diamond-shaped load plate between two slabs.

FIG. 12 is a plan view illustrating an off-center saw cut relative to diamond-shaped load plates.

FIG. 13 shows a top and two side views of a tapered load plate in accordance with an illustrative embodiment of the invention.

FIG. 14 is a plan view showing a misaligned saw cut relative to a tapered load plate.

FIG. 15 is a plan view of a tapered load plate, two slabs, a joint, and a void created by the narrow end of the tapered load plate.

FIG. 16 shows tapered load plates in a tapered-load-plate basket, wherein the orientation of the tapered load plates alternates from one tapered load plate to the next.

FIG. 17 is a plan view showing an off-center saw cut relative to three alternately oriented tapered load plates.

FIG. 18 is a plan view of an open expansion joint, a tapered load plate, and an end cap.

FIG. 19 is a plan view similar to FIG. 18 with the joint having closed relative to FIG. 18.

FIG. 20 is a side view of an expansion-type tapered-load-plate basket, compressible material, a tapered load plate, and an end cap.

Referring to FIG. 13, in accordance with an illustrative embodiment of the invention, a tapered load plate, such as tapered load plate 1300, may be used to transfer loads across a joint between adjacent concrete floor slabs. The tapered load plate 1300 may have top and bottom surfaces that are tapered, substantially planar, and substantially parallel to one another. A triangular-shaped tapered top surface 1302 and two generally rectangular-shaped side surfaces 1304 and 1306 are shown in FIG. 13. The top and bottom surfaces may taper from approximately 4 inches wide to a narrow substantially pointed end 1308 over a length of approximately 12 inches. As will be apparent, other suitable tapered shapes and/or other suitable dimensions may also be used.

A tapered load plate 1300, in accordance with an illustrative embodiment of the invention, advantageously accommodates misalignment of a saw cut for creating a control joint. Misalignment up to an angle substantially equal to the angle of the load plate's taper may be accommodated. Referring to FIG. 14, a misaligned saw cut 1400 is misaligned by an angle 1402 from correctly aligned saw cut 1404, which is oriented perpendicular to the tapered load plate's longitudinal axis 1406. The load plate's angle of taper is depicted in FIG. 14 by angle 1408.

Referring to FIG. 15, differential shrinkage of cast-in-place concrete slabs is advantageously accommodated by the tapered shape of the tapered load plate 1300. When adjacent slabs, such as slabs 100-1 and 100-2, move away from each other, as indicated by arrow 1500, the joint 400 is said to open. As this occurs, the narrow end of the tapered load plate 1300 moves out of the void 1502 that it created in the slab 100-2. As the tapered load plate 1300 retracts in this manner, it will occupy less space within the void in the slab 100-2 thus allowing the slabs 100-1 and 100-2 to move relative to one another in a direction parallel to the joint 400. In other words, as the slabs move apart, the narrow end of the tapered load plate occupies less of the width of the tapered void 1502.

Referring to FIG. 16, tapered load plates 1300 may be assembled into a load-plate basket 1600 with the direction of the taper alternating from one tapered load plate 1300 to the next. Referring to FIG. 17, if a saw cut 1700, used for creating a control joint, is positioned off-center relative to the tapered load plates 1300, the alternating pattern of tapered load plates 1300 in the load-plate basket 1600 will ensure that the cross section of tapered load plate material, such as steel, spanning the joint remains substantially constant across any number of pairs of tapered load plates 1300. For use in connection with a construction joint, an edge form may be used to position tapered load plates before the slabs are cast in place.

Referring to FIG. 18, in accordance with an illustrative embodiment of the invention, a tapered load plate 1300 and an end cap 1800 may be used to provide load transfer across an expansion joint of the type discussed above in connection with FIG. 10. The tapered shape of the load plate 1300 will allow for misalignment, as discussed above in connection with FIG. 14. As either or both slabs 100-1 and 100-2 expand and thereby cause the joint 400 to close, the wide end of the tapered load plate 1300 moves farther into the end cap 1800. This results in the allowance of an increasing amount of lateral movement between the slabs 100-1 and 100-2 parallel to the joint 400 due to the central and relatively wider portions of the tapered load plate occupying less space in the tapered void 1900.

Referring to FIG. 20, in accordance with an illustrative embodiment of the invention, a tapered-load-plate basket 2000 may be used to position the tapered load plates 1300 and compressible material 1000 before the concrete slabs 100 are cast in place.

While the invention has been described with respect to specific examples including presently preferred modes of carrying out the invention, the invention is limited only by the following claims.

Boxall, Russell, Parkes, Nigel K.

Patent Priority Assignee Title
10077551, Oct 05 2015 Illinois Tool Works Inc. Joint edge assembly and method for forming joint in offset position
10119281, May 09 2016 Illinois Tool Works Inc. Joint edge assembly and formwork for forming a joint, and method for forming a joint
10385567, Oct 05 2015 Illinois Tool Works Inc. Joint edge assembly and method for forming joint in offset position
10533292, Dec 20 2016 Illinois Tool Works Inc. Load transfer plate and method of employing same
10590643, Nov 16 2016 Illinois Tool Works Inc. Load transfer plate and load transfer plate pocket and method of employing same
10774479, Dec 19 2017 Shaw & Sons, Inc. Concrete dowel slip tube assembly
10837144, Mar 09 2018 Illinois Tool Works Inc. Concrete slab load transfer apparatus and method of manufacturing same
10858825, Oct 05 2015 Shaw & Sons, Inc. Concrete dowel placement system and method of making the same
10870985, May 03 2017 Illinois Tool Works Inc. Concrete slab load transfer and connection apparatus and method of employing same
10995486, Nov 16 2016 Illinois Tool Works Inc. Load transfer plate and load transfer plate pocket and method of employing same
11041318, Dec 20 2019 Illinois Tool Works Inc Load transfer plate apparatus
11136727, Oct 13 2017 Illinois Tool Works Inc Edge protection system having clip retainment
11136728, Oct 13 2017 Illinois Tool Works Inc Edge protection system having bridging pins
11136729, Oct 13 2017 Illinois Tool Works Inc Edge protection system having retaining clip
11136756, Oct 13 2017 Illinois Tool Works Inc Edge protection system having dowel plate
11203840, Jun 25 2019 Illinois Tool Works Inc Method and apparatus for two-lift concrete flatwork placement
11280087, Oct 13 2017 Illinois Tool Works Inc Edge protection system with intersection module
11346105, Dec 19 2017 Shaw & Sons, Inc. Concrete dowel slip tube assembly
11434612, Mar 09 2018 Illinois Tool Works Inc. Concrete slab load transfer apparatus and method of manufacturing same
11578491, Feb 07 2020 Shaw Craftsmen Concrete, LLC Topping slab installation methodology
11608629, Nov 19 2018 Illinois Tool Works Inc Support bracket
11623380, Oct 05 2015 Shaw & Sons, Inc. Concrete dowel placement system and method of making the same
11680376, Oct 13 2017 Illinois Tool Works Inc Edge protection system having support foot
11692347, May 03 2017 Illinois Tool Works Inc. Concrete slab load transfer and connection apparatus and method of employing same
11840834, Mar 07 2019 Illinois Tool Works Inc. Linking device
8465222, Mar 19 2012 Load transfer apparatus for cast-in-place concrete slabs
8672579, Jan 21 2008 Peikko Group Oy Expansion joint system of concrete slab arrangement
9458638, Jul 18 2012 Illinois Tool Works Inc. Leave-in-place concrete formwork combining plate dowels, divider plates, and/or finishing, armoring and/or sealing molding
D850896, Dec 19 2017 SHAW & SONS, INC Dowel tube
D919224, Dec 20 2019 Illinois Tool Works Inc Load transfer plate pocket internal bracing insert
D922719, Dec 20 2019 Illinois Tool Works Inc Load transfer plate pocket
D963280, Dec 20 2019 Illinois Tool Works Inc. Load transfer plate pocket
Patent Priority Assignee Title
1092734,
1298018,
1557165,
1632395,
1753316,
1894395,
2064528,
2103337,
2121303,
2149467,
2167904,
2193129,
2201134,
2207168,
2308677,
2309538,
2316233,
2319972,
2337156,
2349983,
2416584,
2441903,
2509180,
2531040,
2589815,
2654297,
2775924,
3104600,
3246433,
3331623,
3430406,
3434263,
3559541,
3561185,
3855754,
3859769,
3960460, Jul 14 1973 Connector for elements made of structural foam
4091589, Jan 08 1976 WILLIAM H MOOT ENGINEERING Element for building contraction or expansion joints and composite unit obtained with this element
4257207, Feb 21 1979 Cubit Corporation Construction system
4353666, Dec 08 1980 Device for transferring loads between adjoining concrete slabs
4373829, Nov 13 1978 Device for the joining of components
4453360, Jan 15 1982 Board of Trustees of the University of Illinois, The Load transfer device for joints in concrete slabs
4531564, Nov 12 1982 G. D. Hanna Incorporated Panel display
4641988, Mar 18 1982 Fitting for releasably joining two structural components
4733513, Oct 21 1986 GREENSTEAK, INC Tying bar for concrete joints
4883385, Apr 15 1988 Dayton Superior Corporation Load transfer assembly
4996816, Oct 06 1989 Support for elongate members in a poured layer
5005331, Oct 27 1988 GREENSTREAK, INC Concrete dowel placement sleeves
5216862, Oct 27 1988 Concrete dowel placement sleeves
5261194, Aug 02 1991 POLYCERAMICS, INC Ceramic building block
5261635, Dec 09 1991 Dayton Superior Corporation; DAYTON SUPERIOR DELAWARE CORPORATION D B A DAYTON SUPERIOR CORPORATION Slab joint system and apparatus for joining concrete slabs in side-by-side relation
5366319, Feb 04 1993 Kansas State University Research Foundation Expansion joint assembly having load transfer capacity
5419965, Jun 01 1990 Propex Operating Company, LLC Reinforcing element with slot and optional anchoring means and reinforced material incorporating same
5439308, Mar 28 1994 Connector
5458433, Feb 03 1993 Biscuit and joint made using same
5487249, Mar 28 1994 Dowel placement apparatus for monolithic concrete pour and method of use
5560151, Mar 06 1995 PolyCeramics, Inc. Building blocks forming hexagonal and pentagonal building units for modular structures
5574028, Oct 31 1994 Eli Lilly and Company Method for treating anxiety
5623799, Mar 08 1995 Device and process for mounting tiles of varying thickness
5640821, Oct 05 1995 Plastic connector plug for modular floor
5674028, Jul 28 1995 Doweled construction joint and method of forming same
5713174, Jan 16 1996 Concrete slab dowel system and method for making same
5730544, Aug 06 1996 One World Technologies Limited Wood joining biscuits with centering feature
5797231, Jan 16 1996 Concrete slab dowel system and method for making same
5941045, Jun 05 1995 Concrete slab sockets
6019546, Aug 31 1998 Meadow Burke, LLC Support for load transfer device for concrete constructions
602769,
6052964, Mar 16 1998 URETEK USA, INC Method for restoring load transfer capability
6145262, Nov 12 1998 GREENSTEAK, INC Dowel bar sleeve system and method
6195956, Dec 28 1998 GREENSTREAK, INC Concrete form
6354053, Apr 29 1998 RCR INDUSTRIAL FLOORING S A R L Structural joint for slabs in moldable material
6354760, Nov 26 1997 Illinois Tool Works Inc System for transferring loads between cast-in-place slabs
6471441, Nov 17 1997 Pecon AG Shear-load chuck holder
6532714, Mar 16 1998 Method for restoring load transfer capability
6926463, Aug 13 2003 SHAW & SONS, INC Disk plate concrete dowel system
7004443, Mar 19 2003 BANK OF AMERICA, N A , AS AGENT Concrete void former
714971,
7201535, Feb 10 2005 Concrete slab dowel system and method for making and using same
7228666, Aug 21 2002 PLAKEBETON S A Device for equipping an expansion joint, in particular an expansion joint between concrete slabs
7338230, Aug 13 2003 Shaw & Sons, Inc. Plate concrete dowel system
7441985, May 17 2006 Meadow Burke, LLC Method and apparatus for providing a dowell connection to maintain cast-in-place concrete slabs in alignment
748746,
811560,
828550,
881762,
920808,
94066,
20060177267,
20070231068,
AT348222,
CH594106,
DE152821,
DE726829,
DE894706,
EP59171,
EP32105,
EP328484,
GB2285641,
21996,
WO9639564,
WO2004065694,
WO9931329,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Aug 18 2014PARKES, NIGEL KIllinois Tool Works IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0343940723 pdf
Aug 20 2014P N A CONSTRUCTION TECHNOLOGIES, INC Illinois Tool Works IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0343900453 pdf
Aug 20 2014BOXALL, RUSSELLIllinois Tool Works IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0343970594 pdf
Date Maintenance Fee Events
Nov 18 2013M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Dec 23 2014STOL: Pat Hldr no Longer Claims Small Ent Stat
Nov 20 2017M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Nov 18 2021M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
May 18 20134 years fee payment window open
Nov 18 20136 months grace period start (w surcharge)
May 18 2014patent expiry (for year 4)
May 18 20162 years to revive unintentionally abandoned end. (for year 4)
May 18 20178 years fee payment window open
Nov 18 20176 months grace period start (w surcharge)
May 18 2018patent expiry (for year 8)
May 18 20202 years to revive unintentionally abandoned end. (for year 8)
May 18 202112 years fee payment window open
Nov 18 20216 months grace period start (w surcharge)
May 18 2022patent expiry (for year 12)
May 18 20242 years to revive unintentionally abandoned end. (for year 12)