A laser sight is embedded in a mounting rail otherwise used for attaching accessories to small arms discharge devices such as pistols or rifles. The mounting rail has a transverse profile that extends along an axis of the mounting rail for engaging mating features of the accessories. The laser sight is located at least partly within the transverse profile of the mounting rail and has a sighting axis that extends substantially parallel to the axis of the mounting rail.
|
9. An adapter system comprising:
(a) an adapter body having a receptor and a mounting rail spaced from the receptor, the receptor being engagable to a small arm dischargeable device having a discharge axis for aligning an axis of the mounting rail relative to the discharge axis, the mounting rail having a dovetail cross sectional area transverse to the axis for cooperatively engaging an accessory; and
(b) a beam generator in the adapter body for emitting radiation relative to the discharge axis, at least a portion of the beam generator located within the dovetail cross sectional area of the mounting rail.
19. An adapter system comprising:
(a) an adapter body having a female mount and a male mount spaced from the female mount, the female mount being engagable to a small arm dischargeable device having a discharge axis for aligning an axis of the male mount relative to the discharge axis, the male mount having a profile transverse to the axis for cooperatively engaging an accessory; and
(b) a beam generator in the adapter body for emitting radiation relative to the discharge axis, at least a portion of the male mount being located to dispose the beam generator intermediate the portion of the male mount and the female mount along a direction transverse to the axis of the male mount.
16. An adapter system comprising:
(a) an adapter body having a receptor and a mounting rail spaced from the receptor, the receptor being engagable to a small arm dischargeable device having a discharge axis for aligning an axis of the mounting rail relative to the discharge axis, the mounting rail having a transverse profile extending along the axis for cooperatively engaging an accessory: and
(b) a beam generator in the adapter body for emitting radiation relative to the discharge axis,
wherein the transverse profile includes an outer land surface, and a set of recoil grooves is formed in the outer land surface extending substantially perpendicular to the axis of the mounting rail.
5. An adapter system comprising:
(a) an adapter body having a receptor and a mounting rail supported from the receptor;
(b) the receptor being adaptable to a small arm dischargeable device for aligning an axis of the mounting rail substantially parallel with a discharge axis of the dischargeable device, the mounting rail having a transverse profile that extends along the axis of the mounting rail, and
(c) a beam generator in the adapter body, the beam generator having a sighting axis that extends relative to the axis of the mounting rail, wherein the transverse profile is formed in part by an outer land surface, and a set of recoil grooves in the outer land surface extend substantially perpendicular to the axis of the mounting rail.
1. An adapter system comprising:
(a) an adapter body having an adapter receptor and an adapter mounting rail spaced from the adapter receptor;
(b) the adapter receptor being adaptable to a device mounting rail of a small arm dischargeable device, the device mounting rail extending along a discharge axis, the device mounting rail having a device mounting rail profile transverse to the discharge axis for aligning an axis of the adapter mounting rail with the discharge axis of the small arm dischargeable device, the adapter mounting rail having an adapter mounting rail profile transverse to the axis of the adapter mounting rail, the adapter mounting rail profile being substantially similar to the device mounting rail profile, and
(c) a beam generator in the adapter body.
2. The adapter system of
4. The adapter system of
6. The adapter system of
7. The adapter system of
8. The adapter system of
11. The adapter system of
17. The adapter system of
20. The adapter system of
|
The present application is a division of U.S. application Ser. No. 11/307,385 filed Feb. 4, 2006, herein incorporated by reference.
Not Applicable
Not Applicable
Not Applicable
1. Field of the Invention
The invention relates to sights and their mountings on firearms or other small-arm dischargeable devices.
2. Background of the Invention
Laser sights are particularly effective as sighting devices because the lasers illuminate spots on their targets and do not require users to align an eye with a sighting device, which can limit or obscure the user's view of the targets or their surroundings. When mounted on firearms, the laser sights emit beams that are directed along the expected flight paths of projectiles discharged from the firearms. However, the laser sights are necessarily mounted offset from the firearm barrels, so the laser beams extend generally parallel but offset from the initial flight paths of the projectiles. At close distances, the offset can result in a significant targeting error approximating the initial offset. Small angular adjustments of the laser sights can compensate for the offset at longer distances.
Particularly for handguns, which are intended for targeting over shorter distances, reducing the amount of this offset is desirable. My earlier U.S. Pat. No. 4,934,086 describes mounting a laser sight within the recoil spring tube of a firearm. The spring tube mounting locates the laser sight close to the barrel, protects the laser sight from exposure to external jarring, and avoids the encumbrance of an external accessory. However, such built-in mounting locations are not available in all handguns, so laser sights have also been externally mounted from both conventional rails and special adapters.
Laser sight modules have been mounted from conventional accessory mounts, such as Picatinny rails, in the same way that scopes and other accessories have been mounted on firearms. Typically, the laser sight modules include receptors for engaging the accessory mounts on the firearms. For example, dovetail-type receptors have been formed in laser sight modules for engaging Picatinny rails on the firearms. Laser sight modules have been mounted from different types of accessory mounts on the firearms, including from other types of rails, using mating receptors and have also been mounted on firearms using clamping devices or other forms of attachment for engaging firearm barrels, frames, or other components that are not otherwise intended as accessory mounts.
Often, it is desirable to mount the laser sights so that the sights can be removed and transferred between firearms, generally with as little adjustment as possible. Again, rails, particularly Picatinny-type rails, have been used for this purpose. The rails can be formed integral with the firearm frames or clamped or otherwise attached to the firearm barrels or frames.
Both the accessory mounts presented on firearms and the receptors for engaging them tend to offset the laser sights from the barrels. Alternative adapter structures used for attaching laser sights to firearm components that are not otherwise arranged as mountings also tend to offset the laser sights from firearm barrels. Among the accessory mounts, rail mounts, such as Picatinny rails, offset laser sights by the space occupied by the rails themselves and any attachments for fixing the rails to the firearm barrels or frames. In addition, the receptors used for engaging the rails can take up more space and displace the laser sights farther from firearm barrels. The known laser sight modules mounted in this way are also exposed to jarring and can encumber the handling or operation of firearms, particularly as the laser sights are mounted at increasing offset from firearm barrels.
The invention exploits space occupied by accessory mounts to construct sub-mountings for laser sights for such purposes as minimizing the offset of the laser sights from barrels, protecting the laser sights from exposure to jarring, and reducing encumbrances presented by the laser sights to the safe handling and operation of firearms. The accessory mounts, which present rails or other features for mounting accessories, can be integral parts of the firearms or can be attached as appendages to the firearms. The laser sights are preferably embedded within the accessory mounts without interfering with their function as primary or secondary mounts for attaching accessories to the firearms and also preferably without increasing the size of the accessory mounts.
In other words, the invention exploits space otherwise occupied by the accessory mounts to locate the laser sights closer to barrels, particularly within protected spaces having a reduced external profile with respect to the profile of laser sights mounted as conventional accessories. The accessory mounts within which the laser sights are embedded provide primary or secondary mounts for other accessories for appending or enhancing other functionalities. In addition to conventional firearms, the invention is applicable to other dischargeable devices including air guns, paintball launchers, crossbows, and other small arms that benefit from targeting.
One version of the invention as a new accessory mount for a small-arm dischargeable device includes a conventional dovetail rail for mounting an accessory. The conventional rail has tapered sidewalls that (a) extend along a longitudinal axis of the dovetail rail and (b) are spaced apart along an orthogonal transverse axis of the dovetail rail in positions for engaging mating sidewalls of a dovetail receptor formed in the accessory. However, in contrast to conventional accessory mounts, a laser sight is embedded in the dovetail rail in a position substantially aligned with the longitudinal axis of the dovetail rail and positioned along the transverse axis of the dovetail rail at least partly between the tapered sidewalls.
The laser sight is preferably centered between the tapered sidewalls along the transverse axis of the dovetail rail. The tapered sidewalls of the dovetail rail can have opposing V-shaped profiles with apices aligned along the transverse axis. The laser sight preferably includes a beam generator and a collimating optic aligned by a common housing.
The tapered sidewalls preferably overhang opposite sides of a pedestal that supports the tapered sidewalls. The housing of the laser sight can be entirely embedded in the space between the tapered sidewalls of the rail or can be embedded within a larger space that includes both the space between the sidewalls and a space between the sides of the pedestal.
The dovetail rail can be formed integrally with the dischargeable device or can be attached to the dischargeable device by a clamp or other fastener. The dovetail rail can also be formed as a part of an adapter that presents the dovetail rail as a secondary mount and has a receptor for engaging a primary mount on the dischargeable device. For example, the adapter receptor can be formed as a dovetail receptor for engaging a dovetail rail attached to the dischargeable device as the primary mount.
An outer land surface of the dovetail rail preferably interconnects the tapered sidewalls. A battery compartment for supplying power to the laser sight can be formed in the dovetail rail through the outer land surface. A repositionable cover for the battery compartment can form a portion of the outer land surface of the dovetail rail.
Another version of the invention modifies a Picatinny-type rail for mounting accessories to a small-arm dischargeable device to incorporate a laser sight that is at least partially embedded in a portion of the Picatinny-type rail having a T-shaped profile for engaging corresponding profile features of the accessories. The T-shaped profile of the Picatinny-type rail includes a pedestal supporting an overhanging platform having relatively inclined sidewalls for engaging the accessories. The T-shaped profile extends along a longitudinal axis of the Picatinny-type rail. The laser sight emits a collimated beam of light along an optical axis that is substantially aligned with the longitudinal axis of the Picatinny-type rail within the T-shaped profile of the Picatinny-type rail. A battery compartment can be formed in the overhanging platform through an outer land surface that extends between the relatively inclined sidewalls of the platform. A repositionable cover for the battery compartment preferably forms a portion of the outer land surface.
Another version of the invention as an adapter system for mounting an accessory to a small-arm dischargeable device includes an adapter body having a receptor and a mounting rail supported from the receptor. The mounting rail has a transverse profile extending along an axis of the mounting rail for engaging mating features of the accessory. The receptor is adaptable to the dischargeable device for aligning the axis of the mounting rail substantially parallel with a discharge axis of the dischargeable device. A light-emitting sighting device is located at least partly within the transverse profile of the mounting rail and has a sighting axis that extends substantially parallel to the axis of the mounting rail.
Preferably, the transverse profile is formed in part by relatively inclined sidewalls of the mounting rail, and the light-emitting sighting device is centered between the relatively inclined sidewalls of the mounting rail. A battery compartment for powering the light-emitting sighting device can also be formed in the mounting rail. A cover for the battery compartment preferably encloses the battery compartment within the mounting rail.
Preferably, the transverse profile is formed in part by an outer land surface, and the outer land surface of the mounting rail includes a set of recoil grooves that extend substantially perpendicular to the axis of the mounting rail. The receptor can be formed integrally with the dischargeable device or can be formed as a clamp for attaching directly to the dischargeable device or for attaching to a mounting rail that is attached to the dischargeable device. For example, the clamp can include mating features for engaging a barrel or frame of the dischargeable device. Alternatively the clamp can include mating features in the form of a receptor for engaging a mounting rail of the dischargeable device.
A conventional pistol 10 depicted in
The laser sight 26, which is embedded within the platform 34 of the dovetail rail 30, occupies a space between the tapered sidewalls 36 and 38 of the platform 34 that would otherwise form a solid part of the dovetail rail 30 or a recess within the dovetail rail 30. The laser sight 26 has an optical axis 28 that is substantially aligned with the longitudinal axis 40 of the dovetail rail 30, but is also preferably adjustable to secure a desired alignment with the discharge axis of the firearm or other discharge device on which the laser sight 26 is mounted. In addition, the laser sight 26 is preferably centered between the tapered sidewalls 36 and 38 along the transverse axis 42. The dovetail rail 30 also includes a set of recoil grooves 52 that cross the dovetail rail 30 in the direction of the transverse axis 42. The laser sight 26 is preferably mounted beneath the recoil grooves 52 to limit environmental exposure or to avoid interfering with any intended functions for the recoil grooves 52.
The laser sight 56 has an optical axis 58 that is substantially aligned with the longitudinal axis 40 and is also preferably adjustable for perfecting the alignment of the optical axis 58 with the expected flight path of a projectile or other emission discharged from a small-arm device on which the laser sight 56 is mounted. The laser sight 56 is also centered along the transverse axis 42 between the sidewalls 36 and 38 of the platform 34.
Thus, space within the entire T-shaped profile of the dovetail rail 30 can be used for embedding a laser sight such as the laser sights 26 and 56. This allows the laser sights 26 and 56 to be mounted within a protected environ closer to the discharge axes of small arms without taking up additional space or creating unnecessary encumbrances. While the invention is expected to be especially useful as a modification to Picatinny rails, other mounting rails, particularly those of the Picatinny-type that differ in size or shape but present a comparable dovetail mounting system with transverse space sufficient for embedding a laser sight, can also benefit from the invention.
As shown in
Another embodiment of the invention depicted in
The secondary mounting rail 78 and the receptor 81 include the mating features of dovetail joints, preferably of the Picatinny-type. For example, the secondary mounting rail 78 has a T-shaped profile with a pedestal 82 supporting an overhanging platform 84. Sidewalls 86 and 88 of the platform 84 have compound surfaces with opposing V-shapes for engaging similarly shaped sidewalls in an accessory receptor (not shown). An outer land surface 90 containing a set of recoil grooves 92 spans the two sidewalls 86 and 88.
The adapter receptor 81 from which the pedestal 82 projects also includes a pair of sidewalls 94 and 96 having a V-shaped configuration for receiving mating sidewalls of a primary mounting rail (not shown), such as may be formed integrally with or as an attachment to a small-arm discharge device. Clamps, including setscrews or other fastening structures, can be incorporated into the receptor 81 for securing the adapter 80 to a primary mounting rail.
The laser sight 76 is embedded in the secondary mounting rail 78 within a space otherwise occupied by the pedestal 82 and overhanging platform 84, which together form the T-shaped profile of the mounting rail 78. An optical axis 98 of the laser sight 76 is substantially aligned with a longitudinal axis 100 or the mounting rail 78, but is preferably adjustable for calibrating the laser sight. At least part of the laser sight 76 is embedded between the tapered sidewalls 94 and 96 of the platform 94 and a remaining part of the laser sight 76 is embedded in the pedestal 92 of the mounting rail 78. In addition, the laser sight 76 is centered between the tapered sidewalls 94 and 96.
A battery compartment 104 is formed in the mounting rail 78 through the outer land surface 90. Two button-type batteries 106 and 108 are shown within the battery compartment 104 for powering the laser sight 76. A slide-on cover 110 for the battery compartment 104 forms a part of the outer land surface 90.
A toggle switch 112 is formed through the mounting rail 78, particularly within the pedestal 92 for electrically connecting and disconnecting the laser sight 76 to the batteries 106 and 108. The toggle switch 112 has a switch arm 114 that is translatable between middle position at which the laser sight 76 is disconnected and either of two end positions at which the laser sight 76 is connected for powering the laser sight. Knobs 116 and 118 at opposite ends of the arm 114 provide handles for manually translating the switch and also provide stops for limiting the translation of the toggle switch 112 to between the off and on positions.
Thus, in addition to embedding the laser sight 76 in the mounting rail 78 of the adapter 80, the battery compartment 104 is formed in the mounting rail 78 for powering the laser sight 76 and a switch 112 is formed through the mounting rail 78 for turning the laser sight 76 both on and off. Together, the laser sight 76, battery compartment 104, and the switch 112 form an entirely self-contained laser module within space otherwise occupied by the mounting rail 78 of the adapter 80, which can be transferred by way of the adapter receptor 81 between small-arm discharge devices.
The receptor 81 can be arranged as a mate to the mounting rail 78, such as by forming both the receptor 81 and the mounting rail 78 according to conventional Picatinny specifications, or the receptor 81 can be arranged to mate with a different style mounting rail so that the secondary mounting rail 78 projecting from the adapter 80 is different from the primary mounting rail intended for engagement by the receptor 81 formed within the adapter 80. In addition to presenting a different choice of mounting rail for attaching accessories, the adapter 80 can be used as a riser for deliberately offsetting other accessories. Either way, the laser sight 76 is embedded in the secondary mounting rail in a protected fashion without requiring additional space beyond the space otherwise required for carrying out the adaptor's other functions.
Alternatively, the receptor 81 could be arranged as a clamp for engaging other components of the small-arm discharge device, such as a barrel, ordinarily not intended for mounting accessories. The receptor could also be formed integrally with the receiver or frame of small-arm discharge devices, and the mounting rail of such an integral structure could be modified to incorporate, in addition to laser sights, battery compartments or switches for operating the laser sights. Conversely, adapters with mounting rails modified to incorporate laser sights can be electrically coupled to the small-arm discharge devices or to accessories of the small-arm discharge devices to obtain power or switch control.
Patent | Priority | Assignee | Title |
10060701, | Dec 19 2011 | Laser Aiming Systems Corporation | Auto on gun accessory |
10113836, | May 26 2016 | CRIMSON TRACE CORPORATION | Moving target activated by laser light |
10132595, | Mar 20 2015 | CRIMSON TRACE CORPORATION | Cross-bow alignment sighter |
10151469, | Jul 29 2011 | SIGNIFY HOLDING B V | Modular lighting system |
10209030, | Aug 31 2016 | CRIMSON TRACE CORPORATION | Gun grip |
10209033, | Jan 30 2018 | CRIMSON TRACE CORPORATION | Light sighting and training device |
10222171, | Dec 01 2016 | BUSHNELL INC | Forward grip laser (FGL) |
10365069, | Mar 30 2018 | AOB Products Company | Firearm accessory having firearm mount |
10371365, | Apr 25 2014 | CRIMSON TRACE CORPORATION | Redirected light beam for weapons |
10436538, | May 19 2017 | CRIMSON TRACE CORPORATION | Automatic pistol slide with laser |
10436553, | Aug 13 2014 | CRIMSON TRACE CORPORATION | Master module light source and trainer |
10466011, | Jan 01 2017 | S&S Precision, LLC | Weapon and accessory link |
10532275, | Jan 18 2012 | CRIMSON TRACE CORPORATION | Laser activated moving target |
10612763, | Jul 29 2011 | SIGNIFY HOLDING B V | Modular lighting system |
11015898, | Nov 13 2013 | RECOVER INNOVATIONS LTD | Integrated handgun grip and rail |
11105586, | Mar 30 2018 | CRIMSON TRACE CORPORATION | Electronic firearm accessory with light source |
11306987, | Oct 14 2016 | Laser Aiming Systems Corporation | Gun-mounted recording device with auto on |
11725909, | Jan 05 2015 | Crosman Corporation | Firearm associated electronic device with acceleration resistant latch |
11750032, | Oct 14 2016 | Laser Aiming Systems Corporation | Gun-mounted recording device |
11788816, | Mar 30 2018 | CRIMSON TRACE CORPORATION | Electronic firearm accessory with light source |
12078793, | Aug 18 2021 | Maztech Industries, LLC | Weapon sight systems |
12130121, | Jul 21 2020 | Laser Aiming Systems Corporation | Data redundancy and hardware tracking system for gun-mounted recording device |
12163762, | Jan 05 2015 | Crosman Corporation | Firearm associated electronic device with acceleration resistant latch |
12173992, | Jul 21 2020 | Laser Aiming Systems Corporation | Gun mounted recording device with quick release battery |
8104218, | Feb 12 2010 | Firearm accessory rail with integral sight elements | |
8166694, | Apr 18 2008 | S&S Precision, LLC | Firearm securing device and method |
8444291, | Nov 21 2008 | S&S Precision, LLC | LED illuminating device for use during tactical operations, and method |
8485686, | Nov 21 2008 | S & S Precision, LLC | Multi-spectrum lighting device with plurality of switches and tactile feedback |
8607492, | Jul 27 2010 | CRIMSON TRACE, INC | Modular vertical foregrip |
8607495, | Oct 10 2008 | CRIMSON TRACE CORPORATION | Light-assisted sighting devices |
8627591, | Sep 05 2008 | CRIMSON TRACE CORPORATION | Slot-mounted sighting device |
8635798, | Aug 23 2011 | TE Connectivity Corporation | Communication connector system for a weapon |
8650794, | Apr 18 2008 | S&S Precision, LLC | Firearm fastener |
8683727, | Nov 22 2010 | DM Innovations | Firearm accessory part with tracking capability |
8695266, | Dec 22 2005 | CRIMSON TRACE CORPORATION | Reference beam generating apparatus |
8696150, | Jan 18 2011 | CRIMSON TRACE CORPORATION | Low-profile side mounted laser sighting device |
8721355, | Feb 01 2012 | Tyco Electronics Corporation | Electrical connector with hood |
8727556, | Sep 02 2010 | S & S Precision, LLC | Integrated illumination device mount |
8752325, | Aug 25 2011 | Leapers, Inc. | Adapter |
8793920, | Jan 14 2011 | Gunsight with visual range indication | |
8813411, | Oct 10 2008 | CRIMSON TRACE CORPORATION | Gun with side mounting plate |
8844189, | Dec 06 2012 | CRIMSON TRACE CORPORATION | Sighting device replicating shotgun pattern spread |
8882292, | Nov 21 2008 | S & S Precision, LLC | Multi-spectrum lighting device with plurality of switches |
8915009, | Nov 16 2010 | CRIMSON TRACE CORPORATION | Modular sighting and lighting system for handguns |
8944838, | Apr 10 2013 | TE Connectivity Corporation | Connector with locking ring |
9052153, | Oct 16 2012 | TE Connectivity Corporation | Communication connector system for a weapon |
9068801, | Sep 11 2012 | Optics assembly with a base with a platform and removable and interchangeable modules | |
9146077, | Dec 06 2012 | CRIMSON TRACE CORPORATION | Shotgun with sighting device |
9170079, | Jan 18 2011 | CRIMSON TRACE CORPORATION | Laser trainer cartridge |
9182194, | Feb 17 2014 | CRIMSON TRACE CORPORATION | Front-grip lighting device |
9188407, | Oct 10 2008 | CRIMSON TRACE CORPORATION | Gun with side mounting plate |
9297614, | Aug 13 2013 | CRIMSON TRACE CORPORATION | Master module light source, retainer and kits |
9404711, | Jun 12 2012 | CRIMSON TRACE, INC | Reusable laser sighting device adapter for rocket launcher |
9429404, | Jan 18 2011 | CRIMSON TRACE CORPORATION | Laser trainer target |
9488445, | Feb 04 2006 | COMPASS GROUP DIVERSIFIED HOLDINGS LLC | Firearm mount with embedded sight |
9506721, | Feb 24 2014 | N cSTAR, Inc.; NCSTAR INC | Firearm mount with sight module |
9644826, | Apr 25 2014 | CRIMSON TRACE CORPORATION | Weapon with redirected lighting beam |
9658031, | Dec 19 2011 | Laser Aiming Systems Corporation | Auto on green laser sight |
9777983, | Nov 13 2013 | RECOVER INNOVATIONS LTD | Integrated handgun grip and rail |
9777997, | Oct 03 2011 | S&S Precision, LLC | Plate carrier apparatus and method |
9829280, | May 26 2016 | CRIMSON TRACE CORPORATION | Laser activated moving target |
9841254, | Feb 17 2014 | CRIMSON TRACE CORPORATION | Front-grip lighting device |
9869462, | Jul 29 2011 | SIGNIFY HOLDING B V | Modular lighting system |
9915508, | Jan 18 2011 | CRIMSON TRACE CORPORATION | Laser trainer target |
D669552, | Jun 29 2011 | CRIMSON TRACE, INC | Laser device |
D669553, | May 11 2011 | CRIMSON TRACE, INC | Laser device |
D669957, | May 10 2011 | CRIMSON TRACE, INC | Laser device |
D669958, | May 10 2011 | CRIMSON TRACE, INC | Laser device |
D669959, | Jun 29 2011 | CRIMSON TRACE INC | Illumination device |
D674861, | Jun 29 2011 | CRIMSON TRACE INC | Illumination device |
D674862, | Jun 29 2011 | CRIMSON TRACE INC | Illumination device |
D677433, | Mar 27 2012 | S & S Precision, LLC; S&S Precision, LLC | Plate carrier vest |
D687120, | Nov 09 2011 | Crimson Trace, Inc. | Laser device |
D689162, | Feb 21 2012 | CRIMSON TRACE INC | Dual laser device |
D692518, | Nov 09 2011 | Crimson Trace, Inc. | Laser device |
D693898, | Nov 02 2011 | CRIMSON TRACE, INC | Laser device |
D694847, | Nov 09 2011 | Crimson Trace, Inc. | Laser device |
D694848, | Nov 09 2011 | Crimson Trace, Inc. | Laser |
D696376, | Jun 29 2011 | CRIMSON TRACE, INC | Laser device |
D802704, | Jul 28 2016 | CRIMSON TRACE CORPORATION | Laser device |
D805153, | Oct 20 2015 | Crosman Corporation | Firearm mount with embedded laser sight |
D812179, | Jul 28 2016 | CRIMSON TRACE CORPORATION | Laser device |
D812180, | Jul 28 2016 | CRIMSON TRACE CORPORATION | Laser device |
D812182, | Aug 02 2016 | CRIMSON TRACE CORPORATION | Laser device |
D812707, | Jul 28 2016 | CRIMSON TRACE CORPORATION | Laser device |
D823971, | Feb 04 2006 | COMPASS GROUP DIVERSIFIED HOLDINGS LLC | Firearm mount with embedded laser sight |
D860375, | Oct 06 2017 | REVELYST OPERATIONS LLC | Forward grip laser sight |
D873946, | Jan 04 2018 | Laser Aiming Systems Corporation | Firearm-mounted optical device |
D878511, | Feb 04 2006 | Crosman Corporation | Firearm mount with embedded laser sight |
D894988, | Dec 18 2018 | CRIMSON TRACE CORPORATION | Scope |
D915541, | Oct 06 2017 | REVELYST OPERATIONS LLC | Forward grip laser sight |
Patent | Priority | Assignee | Title |
1262270, | |||
2236736, | |||
2447892, | |||
3488488, | |||
4415225, | Nov 10 1980 | POLAROID CORPORATION A CORP OF DE | Methods of making holographic images |
4542447, | May 18 1984 | Flashlight attachment for firearms | |
4697226, | Jul 11 1986 | Light mounting for firearms | |
4707772, | Oct 21 1986 | Firearm sight and flashlight mounting system | |
4756733, | Apr 14 1986 | The University of Rochester; University of Rochester | Method and composition for creating gradient-index glass |
4926576, | Aug 13 1987 | ARSOC S.P.R.L. | Mounting device adaptable on a weapon |
4934086, | Mar 31 1989 | Recoil spring guide mounting for laser sight | |
5040322, | Aug 03 1990 | ITURREY, JUAN A - SENIOR; ITURREY, MARIA | Night shooting aid |
5107612, | Jun 04 1990 | Mount for attaching a sighting aid to a pistol | |
5179235, | Sep 10 1991 | CRIMSON TRACE CORPORATION | Pistol sighting device |
5375362, | Oct 07 1993 | Sturm, Ruger & Company, Inc | Laser sighted firearm |
5430967, | Dec 16 1993 | L-3 Communications Insight Technology Incorporated | Aiming assistance device for a weapon |
5435091, | Aug 05 1993 | CRIMSON TRACE CORPORATION | Handgun sighting device |
5509226, | Nov 08 1993 | COMPASS GROUP DIVERSIFIED HOLDINGS LLC | Firearm with modified take down latch for controlling laser sight |
5515636, | Oct 07 1993 | Sturm, Ruger & Company, Inc | Laser sighted firearm |
5584137, | Jun 08 1993 | Modular laser apparatus | |
5617444, | Sep 09 1994 | LASERMAX, INC A DELAWARE CORPORATION | Laser gun and cartridge |
5761235, | Sep 09 1994 | LASERMAX, INC A DELAWARE CORPORATION | Laser gun and cartridge |
6025908, | May 18 1998 | LMD Applied Science, LLC | Alignment of optical elements in telescopes using a laser beam with a holographic projection reticle |
6366349, | May 18 1998 | LMD Applied Science, LLC | Apparatus for aligning optical elements in response to the display of a reflected reticle image and method of aligning |
6591536, | Jun 07 2001 | COMPASS GROUP DIVERSIFIED HOLDINGS LLC | Method and apparatus for side of frame positioning of laser sights and LED illuminators |
6671991, | Jul 03 2002 | CRIMSON TRACE CORPORATION | Target illuminator for long gun |
7260910, | Jan 25 2005 | CRIMSON TRACE CORPORATION | Laser gunsight system for a firearm handgrip |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 11 2007 | HOUDE-WALTER, WILLIAM R | LASERMAX, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020926 | /0688 | |
May 09 2008 | LaserMax, Inc. | (assignment on the face of the patent) | / | |||
Jun 29 2011 | LASERMAX, INC | KEYBANK NATIONAL ASSOCIATION | NOTICE OF SECURITY INTEREST IN PATENTS | 026577 | /0706 | |
Jun 29 2012 | LASERMAX, INC | MANUFACTURERS AND TRADERS TRUST COMPANY | SECURITY AGREEMENT | 028488 | /0647 | |
Jun 29 2012 | KEYBANK NATIONAL ASSOCIATION | LASERMAX, INC | RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL FRAME 026577 0706 ON JULY 12, 2011 | 030873 | /0678 | |
Jun 29 2012 | LASERMAX, INC | LASERMAX, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 044754 | /0480 | |
Sep 18 2013 | LASERMAX, INC A NEW YORK CORPORATION | LASERMAX, INC A DELAWARE CORPORATION | MERGER SEE DOCUMENT FOR DETAILS | 031777 | /0020 | |
Jul 20 2017 | LASERMAX, INC | Crosman Corporation | CORRECTIVE ASSIGNMENT TO CORRECT THE APPLICATION NO 15089782 PREVIOUSLY RECORDED ON REEL 044376 FRAME 0214 ASSIGNOR S HEREBY CONFIRMS THE CORRECTIVE ASSIGNMENT | 045864 | /0363 | |
Jul 20 2017 | LASERMAX, INC | Crosman Corporation | CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT SERIAL NO 29 599,068 PREVIOUSLY RECORDED AT REEL: 043296 FRAME: 0238 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 044376 | /0214 | |
Jul 20 2017 | MANUFACTURERS AND TRADERS TRUST COMPANY | LASERMAX, INC | CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT SERIAL NO 29 599,068 PREVIOUSLY RECORDED AT REEL: 043081 FRAME: 0723 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST | 044697 | /0478 | |
Jul 20 2017 | LASERMAX, INC | Crosman Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043296 | /0238 | |
Jul 20 2017 | MANUFACTURERS AND TRADERS TRUST COMPANY | LASERMAX, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 043081 | /0723 | |
Aug 31 2017 | Crosman Corporation | COMPASS GROUP DIVERSIFIED HOLDINGS LLC | AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT | 044777 | /0026 | |
Aug 31 2017 | Crosman Corporation | COMPASS GROUP DIVERSIFIED HOLDINGS LLC | CORRECTIVE ASSIGNMENT TO CORRECT THE DELETION OF APPLICATION NO 15089782 PREVIOUSLY RECORDED ON REEL 044777 FRAME 0026 ASSIGNOR S HEREBY CONFIRMS THE SECURITY AGREEMENT | 045864 | /0685 | |
Apr 30 2024 | COMPASS GROUP DIVERSIFIED HOLDINGS LLC | Crosman Corporation | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 067310 | /0011 | |
Apr 30 2024 | Daisy Manufacturing Company | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 067289 | /0588 | |
Apr 30 2024 | Crosman Corporation | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 067289 | /0588 |
Date | Maintenance Fee Events |
Oct 24 2013 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Nov 08 2017 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Nov 08 2017 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 10 2021 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 29 2013 | 4 years fee payment window open |
Dec 29 2013 | 6 months grace period start (w surcharge) |
Jun 29 2014 | patent expiry (for year 4) |
Jun 29 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 29 2017 | 8 years fee payment window open |
Dec 29 2017 | 6 months grace period start (w surcharge) |
Jun 29 2018 | patent expiry (for year 8) |
Jun 29 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 29 2021 | 12 years fee payment window open |
Dec 29 2021 | 6 months grace period start (w surcharge) |
Jun 29 2022 | patent expiry (for year 12) |
Jun 29 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |