A robot cleaner that has a dust collection unit with a cyclone part generating an ascending rotary air current from the dust-laden air being drawn in through a lower part thereof, separating the dust from the air using a centrifugal force, and discharging the dust-separated air to the lower part through a center part, and a collection part surrounding the cyclone part to receive the dust being centrifugally separated.

Patent
   7749294
Priority
Dec 19 2005
Filed
Jun 20 2006
Issued
Jul 06 2010
Expiry
May 06 2029
Extension
1051 days
Assg.orig
Entity
Large
41
20
all paid
1. A robot cleaner comprising:
a dust collection unit including,
a cyclone part generating an ascending rotary air current from dust-laden air being drawn in through a lower part thereof, separating the dust from the air using a centrifugal force, and discharging the dust-separated air to the lower part through a center part thereof; a collection part surrounding the cyclone part and receiving the dust centrifugally separated from the air; and a cover removably connected to an upper part of the dust collection unit to open and close the cyclone part and the collection part, wherein the cover comprises:
a concave portion disposed on the cover at a position corresponding to the inner canister of the cyclone part and recessed toward the inner canister, to decrease volume of an upper end portion of the inner canister for favorable discharge of the air dust-separated by the cyclone part; and
at lease one handle mounted in the concave portion to help withdrawal of the dust collection unit from the cleaner body.
5. A vacuum cleaner comprising:
a dust collection unit including,
a cyclone part generating an ascending rotary air current from the dust-laden air being drawn in through a lower part thereof, separating the dust from the air using a centrifugal force, and discharging the dust-separated air to the lower part through a center part thereof, wherein the cyclone part comprises an inner canister for discharging therethrough the dust-separated air to a discharge path, an outer canister enclosing the inner canister and forming a boundary between the cyclone part and the collection part, and a bottom wall disposed at the inner and the outer canisters to form a spiral path, wherein the bottom wall isolates one side of a suction path and the discharge path from the spiral path, respectively; and
a collection part surrounding the cyclone part to receive the dust centrifugally separated from the air,
whereby the dust collection unit is overlapped at a lower part thereof with a discharge path for guiding the air dust-separated by the dust collection unit to a discharge port,
wherein the dust collection unit further comprises a cover removably connected to an upper part thereof to open and close the cyclone part and the collection part, and
the cover comprises:
a concave portion disposed on the cover at a position corresponding to the inner canister of the cyclone part and recessed toward the inner canister, to decrease volume of an upper end portion of the inner canister for favorable discharge of the air dust-separated by the cyclone part; and
one or more handles mounted in the concave portion to help withdrawal of the dust collection unit from the cleaner body.
6. A vacuum cleaner comprising:
a dust collection unit including,
a cyclone part generating an ascending rotary air current from the dust-laden air being drawn in through a lower part thereof, separating the dust from the air using a centrifugal force, and discharging the dust-separated air to the lower part through a center part thereof, wherein the cyclone part comprises an inner canister for discharging therethrough the dust-separated air to a discharge path, an outer canister enclosing the inner canister and forming a boundary between the cyclone part and the collection part, and a bottom wall disposed at the inner and the outer canisters to form a spiral path, wherein the bottom wall isolates one side of a suction path and the discharge path from the spiral path, respectively,
a collection part surrounding the cyclone part to receive the dust centrifugally separated from the air,
whereby the dust collection unit is overlapped at a lower part thereof with a discharge path for guiding the air dust-separated by the dust collection unit to a discharge port; and
a locking unit for resealably locking the cover to the dust collection unit, and
wherein the locking unit comprises:
a pivot shaft pivotably connected to one lower side of the cover;
a lever connected to one side of the pivot shaft to rotate the pivot shaft;
one or more driving hooks connected by one ends thereof to a circumference of the pivot shaft and pivoting by an angle the same as a rotating angle of the pivot shaft;
one or more fixing hooks dispose at one side of the dust collection unit and snap-connected with the one or more driving hooks; and
a return spring exerting resilience to the pivot shaft so as to resiliently bias the one or more driving hooks toward the corresponding fixing hooks.
2. The robot cleaner of claim 1, wherein
the at least one handle is pivotably mounted to the concave portion by a fixing projection.
3. The robot cleaner of claim 1, further comprising
a locking unit for releasably locking the cover to the dust collection unit.
4. The robot cleaner of claim 3, wherein the locking unit comprises:
a pivot shaft pivotably connected to one lower side of the cover;
a lever connected to one side of the pivot shaft to rotate the pivot shaft;
one or more driving hooks connected to ends of the pivot shaft and pivoting by an angle that is the same as the rotating angle of the pivot shaft;
one or more fixing hooks disposed at one side of the dust collection unit and snap-connected with the one or more driving hooks; and
a return spring exerting resilience to the pivot shaft so as to resiliently bias the one or more driving hooks toward the corresponding fixing hooks.

This application may relate to co-pending, commonly owned U.S. patent application Ser. Nos. 10/753,322, filed Jan. 9, 2004, and 10/887,840, filed Jul. 12, 2004, the subject matter of each of which is incorporated herein by reference.

This application claims benefit under 35 U.S.C. §119(a) of Korean Patent Application No. 2005-125664, filed Dec. 19, 2005, the entire contents of which are incorporated herein by reference.

The present invention relates to a vacuum cleaner. More particularly, the present invention relates to a robot vacuum cleaner that adopts a cyclone structure.

Conventional robot cleaners generally comprise a dust suction unit, which includes a suction port and a rotary brush, a suction motor which provides a vacuum source, a sensor unit which includes an obstacle sensor and a distance sensor measuring a traveling distance and location, driving rollers mounted on both sides thereof, a driving motor for driving the driving rollers, a diverting roller mounted on front and rear sides thereof, and a control unit which controls the dust suction unit, the sensor unit and the driving unit.

The dust suction unit of a conventional robot cleaner usually uses a dust bag made of paper or fabric to collect dust therein. The dust bag also serves as a filter. When using a dust bag made of plastic, a predetermined filter is often separately installed to filter air and discharge the filtered air toward the suction motor. However, when the dust bag is full or the dust receptacle is blocked, the suction force drops considerably, accordingly deteriorating cleaning performance.

Also, conventional robot cleaners generally use a rechargeable battery, which supplies limited amounts of electric power, and accordingly uses a small-size suction motor consuming relatively less power to maintain compact size of the robot cleaner. However, such a small-size suction motor has lower suction efficiency than general suction motors.

In order to overcome the limited suction efficiency of the small-size suction motor, a cyclone structure has been widely used, which is superior to the dust bag with regards to the suction efficiency and even recyclable. Exemplary robot cleaners adopting such a cyclone structure are disclosed in British Patent No. 2344778 and Korean Patent No. 333880, the subject matter of each of which is incorporated by reference.

In British Patent No. 2344778, cyclone units having a conical shape are laterally mounted. However, since this structure increases the volume of the cyclone unit, the robot cleaner is bulky and not compact. In the robot cleaner disclosed in Korean Patent No. 333880, a cyclone unit having a cylindrical form is vertically mounted into a cleaner body and is fluidly communicated through a separate suction pipe connected to a suction port. This structure also makes it hard to compactly design the robot cleaner because the dust receptacle connected to a lower part of the cyclone unit increases the height of dust collection unit.

Furthermore, the cyclone structures as disclosed in British Patent No. 2344778 and Korean Patent No. 333880 have a longer dust suction path for generating a rotating air current than the dust bag structure. The long dust suction path causes loss of energy due to friction with the rotating air current, thereby seriously deteriorating the initial suction force.

If a medium-size motor having higher suction efficiency is used, more rechargeable batteries are required to supply more electric power for driving the medium-size motor. However, this increases weight of the robot cleaner. Additionally, when adopting the cyclone structure in a robot cleaner, centroid of the robot cleaner inclines to the upper side as the height of the robot cleaner is increased. If the robot cleaner climbs an obstacle, such as a doorsill, the robot cleaner may fall down and be damaged.

An aspect of the present invention is to solve at least the above problems and/or disadvantages and to provide at least the advantages described below. Accordingly, an aspect of the present invention is to provide a robot cleaner having compact size.

Another aspect of the present invention is to provide a robot cleaner with a high suction force although adopting a cyclone structure.

In order to achieve the above-described aspects of the present invention, there is provided a robot cleaner that has a dust collection unit including a cyclone part generating an ascending rotary air current from the dust-laden air being drawn in through a lower part thereof, separating the dust from the air using a centrifugal force, and discharging the dust-separated air to the lower part through a center part; and a collection part surrounding the cyclone part to receive the dust being centrifugally separated. According to this structure, the height of the robot cleaner can be reduced, thereby providing a compact robot cleaner.

The dust collection unit may overlap, at a lower part thereof, with a discharge path for guiding the air dust-separated by the dust collection unit to a discharge port.

The cyclone part may include an inner canister for discharging therethrough the dust-separated air to a discharge path; an outer canister enclosing the inner canister and forming a boundary between the cyclone part and the collection part; and a bottom wall disposed at the inner and the outer canisters to form a spiral path, wherein the bottom wall isolates one side of a suction path and the discharge path from the spiral path, respectively.

Accordingly, since the rotative force is exerted through the spiral path to the air being drawn in through the suction path, a high average suction force as well as a high initial suction force can be guaranteed. Also, the size of the robot cleaner can be slimed by adopting the cyclone part having the low height.

The dust collection unit may further comprise a cover removably connected to an upper part thereof to open and close the cyclone part and the collection part. The cover may comprise a concave portion disposed on the cover at a position corresponding to the inner canister of the cyclone part and recessed toward the inner canister, to decrease volume of an upper end portion of the inner canister for favorable discharge of the air dust-separated by the cyclone part; and one or more handles mounted in the concave to help withdrawal of the dust collection unit from the cleaner body. The one or more handles may be pivotably mounted by one ends thereof by a fixing projection formed in the concave.

The robot cleaner may further comprise a locking unit for connecting the cover lockably to the dust collection unit. The locking unit may comprise a pivot shaft pivotably connected to one lower side of the cover; a lever connected to one side of the pivot shaft to rotate the pivot shaft; one or more driving hooks connected by one ends thereof to a circumference of the pivot shaft and pivoting by an angle the same as a rotating angle of the pivot shaft; one or more fixing hooks dispose at one side of the dust collection unit and snap-connected with the one or more driving hooks; and a return spring exerting resilience to the pivot shaft so as to resiliently bias the one or more driving hooks toward the corresponding fixing hooks.

According to another aspect of the present invention, there is provided a vacuum cleaner that has dust collection unit with a cyclone part generating an ascending rotary air current from the dust-laden air being drawn in through a lower part thereof, separating the dust from the air using a centrifugal force, and discharging the dust-separated air to the lower part through a center part; and a collection part surrounding the cyclone part to receive the dust being centrifugally separated, and the dust collection unit overlapping at a lower part thereof with a discharge path for guiding the air dust-separated by the dust collection unit to a discharge port.

The above aspect and other features of the present invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawing figures, wherein;

FIG. 1 is a perspective view of a robot cleaner according to an embodiment of the present invention;

FIG. 2 is a side elevational view of the robot cleaner of FIG. 1 taken in section along line A-A;

FIG. 3 is a perspective view of a dust collection unit of the robot cleaner of FIG. 1;

FIG. 4 is an exploded perspective view of the dust collection unit shown in FIG. 3;

FIG. 5 is a perspective view showing a cover of the dust collection unit of FIG. 4;

FIGS. 6A and 6B are partial sectional views illustrating locking and releasing states of the cover respectively, according to an operation of a locking unit of FIG. 4; and

FIG. 7 is a side elevational view of the dust collection unit of FIG. 4 taken in section along line B-B.

Hereinafter, a robot cleaner according to an embodiment of the present invention will be described in detail with reference to the accompanying drawing figures.

In the following description, same drawing reference numerals are used for the same elements even in different drawings. The matters defined in the description such as a detailed construction and elements are nothing but the ones provided to assist in a comprehensive understanding of the invention. Thus, it is apparent that the present invention can be carried out without those defined matters. Also, well-known functions or constructions are not described in detail since they would obscure the invention in unnecessary detail.

Also, description about general component parts of a robot cleaner, for example, a driving unit for automatic traveling, a sensor unit, and a control unit for conducting the driving unit and the sensor unit, will be omitted herein. Instead, the present invention will be described featuring a dust collection unit capable of realizing slim and compact size and guaranteeing a high suction force.

As shown in FIG. 1, a robot cleaner 10 according to an embodiment of the present invention comprises a cleaner body 11 of a circular shape. However, body 11 can have any shape, such as a square, an oblong circle or the like. As shown in FIG. 2, a rotary brush 13 is disposed at the lower part of the body 11 inside a suction port 21. A dust collection unit 100 is removably mounted in the cleaner body 11 and covered by a main cover 15. The dust collection unit 100 will be described hereinafter with reference to FIGS. 3 through 5.

As shown in FIGS. 3 and 4, the dust collection unit 100 comprises a dust collecting body 110, a cover 120 for covering the open upper part of the dust collecting body 110, and a locking unit 130 releasably locking the cover 120 to the dust collecting body 110.

The dust collecting body 110 includes a cyclone part 116 that accepts dust and air from a lower side thereof through the suction port 21 of the cleaner body 11 and through a suction path P1 (FIG. 2), and centrifugally separates dust from the air by generating a rotary air current. Further, the dust collecting body 110 may include a collection part 117 arranged to encompass the cyclone part 116 so as to collect the dust separated from the air. By arranging the cyclone part 116 and the collection part 117 breadthwise, the height of the robot cleaner can be reduced compared to conventional structures wherein the cyclone part 116 and the collection part 117 are vertically arranged.

In addition, the dust collecting body 110 comprises a discharge path P3 (FIG. 2) disposed at a lower part of the cyclone unit 116. The discharge path P3 guides to a discharge port 23 the air being discharged down through an inner canister 111 disposed in the center of the cyclone part 116. Referring to FIG. 4, the cyclone part 116 may include the inner canister 111 for discharging the dust-separated air through the discharge path P3, and an outer canister 113 enclosing the inner canister 111. The outer canister 113 becomes a boundary between the cyclone part 116 and the collection part 117. A grill filter 118 may be removably mounted to an upper end of the inner canister 111 to prevent the dust from flowing into the inner canister 111 through the grill filter 118.

As shown in FIG. 2, a bottom wall 115 may be connected between the inner and the outer canisters 111 and 113 forms a predetermined path P2 (FIG. 2) spirally extending upward. Because the spiral path P2 exerts a rotative force on the air drawn in through the suction path P1, the suction force is improved, particularly compared to the conventional cyclone structure, and simultaneously prevents deterioration of the initial suction force and maintains the initial suction force during use of the robot cleaner.

As shown in FIG. 2, in addition, since the bottom wall 115 isolates one side of the spiral path P2 from the discharge path P3, an entry portion 112 of the spiral path P2 that is in fluid communication with the suction path P1 can be disposed overlappingly with the discharge path P3 at a lower part of the cyclone part 116. Consequently, the height of the dust collection unit 100 can be minimized and also, the whole volume of the robot cleaner can be reduced. A bottom part 110a constituting the dust collecting body 110 continues to a lower end of the inner canister 111 and separates the entry portion 112 of the spiral path P2 from the discharge path P3.

According to the embodiment of the present invention by adopting the slim cyclone part 116, a suction force as high as the initial suction force can be maintained even if a small-size suction motor (not shown) is used, thereby improving cleaning performance.

The cover 120 may be removably connected to the upper part of the dust collecting body 110 to open and close the cyclone part 116 and the collection part 117. The cover 120 comprises a substantially hemispheric concave portion 121 recessed toward the inner canister 111. The concave portion 121 guides the dust separated from the air from the spiral path P2, to the collection part 117 disposed around the cyclone part 116. In addition, the concave portion 121 may form the upper end of the inner canister 111, where the air is drawn in, to narrow the open end so that air passing through the spiral path P2 is quickly drawn into the inner canister 111.

As shown in FIG. 4, a pair of handles 125a and 125b for separating the dust collection unit 100 from the cleaner body 11 may be provided in the concave 121. Sides of the handles 125a and 125b are pivotably connected by a fixing projection 123 formed in the center of the concave portion 121. Before use, the handles 125a and 125b are received in the concave portion 121, as shown in FIG. 4. When using the handles 125a and 125b, the outer sides of the handles 125a and 125b are pivoted up to a vertical position so that the handles 125a and 125b face to each other, as shown in FIG. 5.

Preferably when the handles 125a and 125b are seated in the concave portion 121 with the fixing projection 123 they have height less than the depth of the concave portion 121. When the dust collection unit 100 is mounted in the cleaner body 11 and the main cover 15 (FIG. 1) is connected to the cleaner body 11, a bottom side of the main cover 15 comes into tight contact with a top side of the cover 120.

As shown in FIG. 4, a locking unit 130 comprises a pivot shaft 133 joined with one lower side of the cover 120. A lever 131 for pivoting the pivot shaft 133 is mounted to one side of the pivot shaft 133. First and second driving hooks 135a and 135b are disposed at opposite ends of the pivot shaft 133 at a predetermined interval from each other, and rotated in association with rotation of the pivot shaft 133 by the same degree as a rotating angle of the pivot shaft 133. Additionally, first and second fixing hooks 139a and 139b are disposed in a receiving part 119 formed at one side of the dust collecting body 110 of the dust collection unit 100, for snap-connection with the first and the second driving hooks 135a and 135b.

For resilient snap-connection of the first and the second driving hooks 135a and 135b with the first and the second fixing hooks 139a and 139b, respectively, the locking unit 130 may include a return spring 137 at one side of the pivot shaft 133. As shown in FIG. 6A, the return spring 137 is fixed to the pivot shaft 133 by a middle portion 140 thereof, supported by the lower surface of the cover 120 by one end 142 thereof, and fixed to a locking projection 136 formed on the first driving hook 135a by the other end 144 thereof.

FIGS. 6A and 6B are partial sectional views showing locked and released states of the cover 120 according to the operation of the locking unit 130 of FIG. 4.

The operations of the locking unit 130 will be described with reference to FIGS. 6A and 6B as follows. Since locking and releasing operations of the first driving hook 135a and the first fixing hook 139a are performed in the same manner as the second driving hook 135b and the second fixing hook 139b, respectively, the operations of only the first driving and fixing hooks 135a and 139a will be explained.

Referring to FIG. 6A, in a locking state, the first driving hook 135a is snap-connected with the first fixing hook 139a by the resilience of the return spring 137. To release the locking unit 130 for removing the cover 120 from the dust collecting body 110, the lever 131 is pivoted by a predetermined angle away from the dust collecting body 110 until the first driving and fixing hooks 135a and 139a are released from each other.

Accordingly, the first driving hook 135a is pivoted together with the pivot shaft 133 in a direction going away from the dust collecting body 110. As a result, the snap-connection between the first driving hook 135a and the first fixing hook 139a is released, thereby releasing the locking unit 130. Then, the cover 120 can be separated from the cleaner body 110 simply by operating the lever 131.

The dust-suction operations of the robot cleaner 10 according to an embodiment of the present invention will now be described hereinafter.

Upon being powered, the robot cleaner 10 travels on the surface being cleaned along a predetermined route, drawing in dust and air through the suction port 21 via a suction motor (not shown), as shown in FIG. 7. The dust-laden air drawn in through the suction port 21 is guided to the lower part of the cyclone part 116 along the suction path P1 and then to the spiral path P2. The dust and air ascend along the spiral path P2, with its rotative force increasing more and more. after completely passing through the spiral path P2, the dust is separated from the air by a centrifugal force of the rotating air. The dust attaches to an inner wall of the outer canister 113 due to the centrifugal force and is then collected in the collection part 117.

The dust-separated air descends back along the inner canister 111, moves along the discharge path P3, and is drawn into a motor chamber 17 through the discharge port 23. The air drawn into the motor chamber 17 is passed through the suction motor (not shown) and discharged to the outside of the cleaner body 11.

According to the embodiment of the present invention as described above, the cyclone part 116, the inner canister 111, and the collection part 117 are arranged breadthwise, and part of the suction path P1 and the discharge path P3 are disposed overlappingly with the cyclone part 116. Therefore, the robot cleaner 10 can be implemented in a slim compact shape.

In addition, since the rotative force is exerted on the air being drawn into the cyclone part 116 through the spiral path P2 formed in the cyclone part 116, a high average suction force as well as a high initial suction force can be guaranteed.

Moreover, the at least one handle 125a and 125b pivotably mounted in the concave portion 121 of the cover 120 facilitates withdrawal of the dust collection unit 100 from the cleaner body 110 without changing the whole contour of the cyclone part 116 or deteriorating the dust separating performance of the cyclone part 116. Accordingly, the dust collection unit 100 can be conveniently mounted and separated with respect to the cleaner body 110, and maintenance of the robot cleaner 10 as well as the dust collection unit 100 is also facilitated. Furthermore, since the cover 120 is lockably connected to the dust collection unit 100, the dust separated is collected in the dust collection unit 100. Therefore, contamination of the environment is prevented, thereby enabling hygienic use of the cleaner.

While the invention has been shown and described with reference to certain embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Oh, Jang-Keun, Lee, Hak-bong

Patent Priority Assignee Title
10045675, Dec 19 2013 Aktiebolaget Electrolux Robotic vacuum cleaner with side brush moving in spiral pattern
10149589, Dec 19 2013 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
10209080, Dec 19 2013 Aktiebolaget Electrolux Robotic cleaning device
10219665, Apr 15 2013 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
10231591, Dec 20 2013 Aktiebolaget Electrolux Dust container
10433697, Dec 19 2013 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
10448794, Apr 15 2013 Aktiebolaget Electrolux Robotic vacuum cleaner
10456002, Dec 22 2016 iRobot Corporation Cleaning bin for cleaning robot
10485394, Mar 30 2018 MIDEA ROBOZONE TECHNOLOGY CO , LTD Dust collection box and robot vacuum cleaner
10499778, Sep 08 2014 Aktiebolaget Electrolux Robotic vacuum cleaner
10518416, Jul 10 2014 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
10534367, Dec 16 2014 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
10617271, Dec 19 2013 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
10678251, Dec 16 2014 Aktiebolaget Electrolux Cleaning method for a robotic cleaning device
10729297, Sep 08 2014 Aktiebolaget Electrolux Robotic vacuum cleaner
10874271, Dec 12 2014 Aktiebolaget Electrolux Side brush and robotic cleaner
10874274, Sep 03 2015 Aktiebolaget Electrolux System of robotic cleaning devices
10877484, Dec 10 2014 Aktiebolaget Electrolux Using laser sensor for floor type detection
10969778, Apr 17 2015 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
11099554, Apr 17 2015 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
11122953, May 11 2016 Aktiebolaget Electrolux Robotic cleaning device
11169533, Mar 15 2016 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
11234569, Dec 26 2018 SAMSUNG ELECTRONICS CO , LTD Dust container and cleaner including the same
11474533, Jun 02 2017 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
11641991, Dec 22 2016 iRobot Corporation Cleaning bin for cleaning robot
11712142, Sep 03 2015 Aktiebolaget Electrolux System of robotic cleaning devices
11921517, Sep 26 2017 AKTIEBOLAG ELECTROLUX Controlling movement of a robotic cleaning device
9119512, Apr 15 2011 MARTINS MAINTENANCE, INC. Vacuum cleaner and vacuum cleaning system and methods of use in a raised floor environment
9375120, Apr 14 2014 JIANGSU MIDEA CLEANING APPLIANCES CO , LTD ; MIDEA GROUP CO , LTD Dust collector for cleaner
9445701, Aug 13 2014 Jiangsu Midea Cleaning Appliances Co., Ltd. Cleaner and vertical cleaner
9451860, Apr 14 2014 JIANGSU MIDEA CLEANING APPLIANCES CO , LTD ; MIDEA GROUP CO , LTD Cyclone separator
9474425, Apr 11 2013 JIANGSU MIDEA CLEANING APPLIANCES CO , LTD Dust collector for cleaner and cleaner having the same
9572467, May 17 2012 Dyson Technology Limited Autonomous vacuum cleaner
9572468, Sep 24 2014 LG Electronics Inc. Robot cleaner
9591957, May 17 2012 Dyson Technology Limited Autonomous vacuum cleaner
9801515, Sep 24 2014 LG Electronics Inc. Robot cleaner
9811089, Dec 19 2013 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
9888820, Apr 15 2011 MARTINS MAINTENANCE, INC. Vacuum cleaner and vacuum cleaning system and methods of use in a raised floor environment
9939529, Aug 27 2012 Aktiebolaget Electrolux Robot positioning system
9946263, Dec 19 2013 Aktiebolaget Electrolux Prioritizing cleaning areas
D850608, Aug 23 2017 COLOPLAST A S Heat moisture exchanger
Patent Priority Assignee Title
4593429, Jun 19 1980 Dyson Technology Limited Vacuum cleaning appliance
5092476, Feb 14 1990 Toyo Seikan Kaisha, Ltd. Synthetic resin vessel having handle
6168641, Jun 26 1998 Akteibolaget Electrolux Cyclone separator device for a vacuum cleaner
6810558, Dec 12 2001 Samsung Gwangji Electronics Co., Ltd. Cyclone dust collecting apparatus for use in vacuum cleaner
6977003, Jun 02 2003 Samsung Gwangju Electronics Co., Ltd. Cyclone dust-collecting apparatus of vacuum cleaner
7113847, May 07 2002 Royal Appliance Mfg. Co.; ROYAL APPLIANCE MFG CO Robotic vacuum with removable portable vacuum and semi-automated environment mapping
7207083, Jun 11 2002 Hitachi Home & Life Solutions, Inc. Electric vacuum cleaner
7276099, Jun 11 2002 Hitachi Home & Life Solutions, Inc. Electric vacuum cleaner
7540335, Mar 18 2004 Positec Power Tools (Suzhou) Co., Ltd. Adjustable handle for a power tool
20050198769,
20060185113,
CN1425352,
EP885585,
EP1360922,
GB2344778,
JP2003236410,
JP2005177100,
JP200527862,
KR200333880,
RU2253346,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 14 2006OH, JANG-KEUNSAMSUNG GWANGJU ELECTRONICS CO , LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0180110971 pdf
Jun 14 2006LEE, HAK-BONGSAMSUNG GWANGJU ELECTRONICS CO , LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0180110971 pdf
Jun 20 2006Samsung Gwangju Electronics Co., Ltd.(assignment on the face of the patent)
Date Maintenance Fee Events
Dec 07 2010ASPN: Payor Number Assigned.
Dec 30 2013M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Jan 09 2014ASPN: Payor Number Assigned.
Jan 09 2014RMPN: Payer Number De-assigned.
Dec 22 2017M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Dec 13 2021M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jul 06 20134 years fee payment window open
Jan 06 20146 months grace period start (w surcharge)
Jul 06 2014patent expiry (for year 4)
Jul 06 20162 years to revive unintentionally abandoned end. (for year 4)
Jul 06 20178 years fee payment window open
Jan 06 20186 months grace period start (w surcharge)
Jul 06 2018patent expiry (for year 8)
Jul 06 20202 years to revive unintentionally abandoned end. (for year 8)
Jul 06 202112 years fee payment window open
Jan 06 20226 months grace period start (w surcharge)
Jul 06 2022patent expiry (for year 12)
Jul 06 20242 years to revive unintentionally abandoned end. (for year 12)