systems and methods for programming and logging medical device and patient data are provided. The systems include a handheld device, which is capable of communicating with a medical device, and a base station, which provides connectivity for the handheld device to accomplish various functions such as recharging, programming, data back-up and data entry. The methods comprise the steps of detecting a medical device, obtaining and recording information from the medical device. Additionally, medical device parameters may be modified and the recorded information may be archived for future reference.

Patent
   7761167
Priority
Jun 10 2004
Filed
Oct 02 2006
Issued
Jul 20 2010
Expiry
Feb 03 2026
Extension
238 days
Assg.orig
Entity
Large
45
294
all paid
1. A system comprising:
a handheld electronic device, the device configured to communicate with an implantable medical device; and
a base station,
wherein the handheld electronic device is further configured to communicate with the base station, and
wherein the handheld electronic device includes a user interface that is configured to serve as a user input device of the base station, such that when the handheld electronic device is docked to the base station the user interface of the handheld electronic device serves as the user input device of the base station in order to access the base station and any output device that is connected to the base station,
wherein the user interface of the handheld electronic device controls both the handheld electronic device and also the base station, and wherein the user interface of the handheld electronic device comprises a display screen that further functions as a data output device from the base station.
10. A system for programming an implantable medical device and archiving data or parameters of the implantable medical device, the system comprising:
a handheld unit, the handheld unit comprising:
a handheld unit housing;
a power supply seated in the handheld unit housing;
a user interface disposed at least partially in the handheld unit housing;
a microprocessor electronically coupled to the power supply and the user interface;
a telemetry module electronically coupled to the power supply and the microprocessor, wherein the telemetry module provides a communications link with the implantable medical device; and
external connection hardware;
a base station, the base station comprising:
a base station housing having a handheld device cradle; and
electronic memory,
wherein the handheld device cradle in the base station housing is configured to receive at least a portion of the external connection hardware of the handheld unit, and
wherein the user interface of the handheld unit is further configured to serve as a user input device of the base station, such that when the handheld unit is docked within the handheld device cradle of the base station housing, the user interface of the handheld unit serves as the user input device of the base station in order to access the base station and any output device that is connected to the base station,
wherein the user interface of the handheld unit controls both the handheld unit and also the base station, and wherein the user interface of the handheld unit comprises a display screen that further functions as a data output device from the base station.
2. A system according to claim 1, wherein the medical device is adapted to deliver a therapy.
3. A system according to claim 2, wherein the medical device comprises an implantable pulse generator.
4. A system according to claim 1, wherein the base station comprises a housing and a handheld device connector, wherein the handheld device connector is configured to dock the handheld electronic device to the base station.
5. A system according to claim 4, wherein the base station housing is adapted to sit on a substantially horizontal support surface.
6. A system according to claim 4, wherein the base station housing is adapted to be supported on a substantially vertical support surface.
7. A system according to claim 4, wherein the base station further comprises a data output device.
8. A system according to claim 1, wherein the base station includes a computer-readable memory storing a database that contains patient data and medical device data.
9. A system according to claim 1, wherein an input through the user interface of the handheld electronic device operates the base station resulting in an output to the user interface of the handheld electronic device from the base station.
11. A system according to claim 10, wherein the user interface is also electronically coupled to the power supply.
12. A system according to claim 10, wherein the base station further includes a computer-readable memory storing a database that contains patient data and medical device data.
13. A system according to claim 10, wherein an input through the user interface of the handheld unit operates the base station resulting in an output to the user interface of the handheld unit from the base station.

This application is a continuation-in-part of U.S. patent application Ser. No. 11/150,418, filed 10 Jun. 2005, now U.S. Pat. No. 7,239,918, and entitled “Implantable Pulse Generator for Providing Functional and/or Therapeutic Stimulation of Muscles and/or Nerves and/or Central Nervous System Tissue,” which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/599,193, filed 5 Aug. 2004, and entitled “Implantable Pulse Generator for Providing Functional and/or Therapeutic Stimulation of Muscles and/or Nerves,” both of which are incorporated herein by reference.

This application is also a continuation-in-part of U.S. patent application Ser. No. 11/149,654, filed 10 Jun. 2005, now U.S. Pat. No. 7,565,198, and entitled “Systems and Methods for Bilateral Stimulation of Left and Right Branches of the Dorsal Genital Nerves to Treat Dysfunctions, Such as Urinary Incontinence,” which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/578,742, filed 10 Jun. 2004, and entitled “Systems and Methods for Bilateral Stimulation of Left and Right Branches of the Dorsal Genital Nerves to Treat Dysfunctions, Such as Urinary Incontinence,” both of which are incorporated herein by reference.

This application is also a continuation-in-part of co-pending U.S. patent application Ser. No. 11/150,535, filed 10 Jun. 2005, and entitled “Implantable Pulse Generator for Providing Functional and/or Therapeutic Stimulation of Muscles and/or Nerves and/or Central Nervous System Tissue,” which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/680,598, filed 13 May 2005, and entitled “Implantable Pulse Generator for Providing Functional and/or Therapeutic Stimulation of Muscles and/or Nerves and/or Central Nervous System Tissue,” both of which are incorporated herein by reference.

This application is also a continuation-in-part of co-pending U.S. patent application Ser. No. 11/517,056, filed 7 Sep. 2006, and entitled “Implantable Pulse Generator Systems And Methods For Providing Functional And/Or Therapeutic Stimulation Of Muscles And/Or Nerves And/Or Central Nervous System Tissue,” which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/801,003, filed 17 May 2006, and entitled “Implantable Pulse Generator For Providing Functional And/Or Therapeutic Stimulation Of Muscles And/Or Nerves And/Or Central Nervous System Tissue,” both of which are incorporated herein by reference.

The invention relates generally to systems and methods for programming, tracking and recording data from electronic devices. More specifically, the present invention relates to systems and methods for programming, tracking and recording data from medical devices, and especially implantable medical devices (IMDs).

Medical devices, specifically IMDs, are commonly used today to treat patients suffering from various ailments, including by way of example, pain, incontinence, movement disorders such as epilepsy, Parkinson's disease, and spasticity. Additional IMD therapies appear promising to treat a variety of other medical conditions, including physiological, psychological, and emotional conditions. As the number of IMD therapies increases, so do the demands placed on these medical devices.

Known IMDs, such as, cardiac pacemakers, tachyarrhythmia control devices, drug delivery devices, and nerve stimulators, provide treatment therapy to various portions of the body. While the present invention may be used with various medical devices, by way of example and illustration, an implantable pulse generator (IPG) device will be discussed to illustrate the advantages of the invention. In the case of providing electrical stimulation to a patient, an IPG is implanted within the body. The IPG is coupled to one or more electrodes to deliver electrical stimulation to select portions of the patient's body. Neuromuscular stimulation (the electrical excitation of nerves and/or muscle to directly elicit the contraction of muscles) and neuromodulation stimulation (the electrical excitation of nerves, often afferent nerves, to indirectly affect the stability or performance of a physiological system) and brain stimulation (the stimulation of cerebral or other central nervous system tissue) can provide functional and/or therapeutic outcomes.

There exist both external and implantable devices for providing beneficial results in diverse therapeutic and functional restorations indications. The operation of these devices typically includes the use of an electrode placed either on the external surface of the skin, a vaginal or anal electrode, or a surgically implanted electrode. Implantable medical devices may be programmable and/or rechargeable, and the devices may log data, which are representative of the operating characteristics over a length of time. While existing systems and methods provide the capability of programming or recharging IMDs, many limitations and issues still remain.

Implantable devices have provided an improvement in the portability of neurological stimulation devices, but there remains the need for continued improvement in the programming and data management related to such devices. Medical devices are often controlled using microprocessors with resident operating system software. This operating system software may be further broken down into subgroups including system software and application software. The system software controls the operation of the medical device while the application software interacts with the system software to instruct the system software on what actions to take to control the medical device based upon the actual application of the medical device.

As the diverse therapeutic and functional uses of IMDs increase, and become more complex, system software having a versatile interface is needed to play an increasingly important role. This interface allows the system software to remain generally consistent based upon the particular medical device, and allows the application software to vary greatly depending upon the particular application. As long as the application software is written so it can interact with the interface, and in turn the system software, the particular medical device can be used in a wide variety of applications with only changes to application specific software. This allows a platform device to be manufactured in large, more cost effective quantities, with application specific customization occurring at a later time.

While handheld programmers are generally known in the art, there exist many gaps in the methods for programming and tracking specific system or patient data related to medical devices, especially those of the implanted type. Specifically, the art is lacking cohesive systems and methods for programming medical devices, logging medical device and patient data, recharging portable control devices and providing hard copies of information, such as patient or system information.

Filling the identified needs, the present invention provides systems and methods for programming medical devices, logging medical device and patient data, recharging portable control devices and providing hard copies of information, such as patient or system information.

Generally, the systems comprise a handheld device and a base station. The handheld device provides mobile data management and medical device communications capabilities. The base station provides a connectivity point for the handheld unit, thereby allowing recharge of the handheld unit, printing from the handheld unit, the base station, or the handheld unit while residing in the base station, or data entry or modification, among other functions.

Generally, the methods comprise the steps of detecting a medical device and obtaining and recording information from the medical device. Further, medical device parameters may be altered and information archived for future reference.

The systems and methods of the present invention fill the void in the prior art by providing a convenient means to program medical devices, to log data recorded by, and parameters of, medical devices and the ability to create a hard copy of information, such as recorded device or patient data or system parameters.

FIG. 1 is an elevation view of a system according to the present invention in use.

FIG. 2 is a diagrammatic representation of an embodiment of a system according to the present invention.

FIG. 3 is a perspective view of a first embodiment of a handheld device according to the system in FIG. 2.

FIG. 4 is a diagrammatic representation of electrical components used in the handheld device of FIG. 3.

FIG. 5 is a perspective view of a second embodiment of a handheld device according to the system in FIG. 2.

FIG. 6 is a perspective view of a first embodiment of a base station according to the system in FIG. 2.

FIG. 7 is a perspective view of a second embodiment of a base station according to the system in FIG. 2.

FIG. 8 is a perspective view of the first embodiment of a base station having the handheld device of FIG. 3 docked thereto.

FIG. 9 is a perspective view of the system in FIG. 8 and further including an instruction manual.

FIG. 10 is a flow chart of an embodiment of the method of software control for programming and logging device data according to an embodiment of the present invention.

FIG. 11 is an elevation view of a display screen showing the implementation of an embodiment of the method of FIG. 10.

Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention which may be embodied in other specific structures. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.

System

FIG. 1 depicts an embodiment of a system 100 according to the present invention in use. The clinical programmer system 100 comprises generally two subsystems: a mobile, handheld device 101 and a base station 102. The handheld device 101 communicates with a medical device 200, which may be implanted in a patient 202, over a first communication channel 204 and provides an interface to a user, which may be a clinician 206, to enable control of the handheld device 101 and the medical device 200. As stated above, while the present invention may be used with various medical devices 200, by way of example and illustration, an implantable pulse generator (IPG) device will be discussed to illustrate the advantages of the invention.

Referring now to FIG. 2, the embodiment of FIG. 1 is shown diagrammatically. As can further be seen from this figure, the base station 102 may be coupled to the handheld device 101 over a second communication channel 208, thereby allowing performance of various administrative functions, such as battery charging, data back-up, and printing. The base station 102 may have a user input device 103 and a data output device 104. The input device 103 may be, without limitation by way of example, a keyboard, a computer mouse, a digital tablet, a computer network, or the handheld device 101, itself. A plurality of input devices may be used. The data output device 104 may be, without limitation by way of example, a cathode ray tube, a liquid crystal display, a printer, a magnetic disk drive, an optical disk drive, a computer network, or the handheld device 101, itself. A plurality of output devices may be used.

Handheld Device

Referring to FIGS. 2-4, an embodiment of a handheld device 101 according to the present invention is shown. The handheld device 101 is intended to function as a user interface to a medical device 200, such as an IPG, thereby providing sophisticated operation control and intimate access to the programming of the IPG 200 and patient and system data contained therein. Generally, the handheld device 101 comprises a housing 106 that contains a controller 108, associated memory 110 and communications components 112, a telemetry module 114, a power supply 116, external connection hardware 118, and a user interface 130. Optionally, rather than residing in the housing 106, the telemetry module 114 may be a separate component coupled to the device 101. In addition, the handheld device 101 may further comprise recharging circuitry 122, to enable replenishment of the power supply 116. All of the components may be mounted to 1 or more printed circuit boards 124.

In a representative embodiment, the housing 106 is formed from an impact resistant molded plastic and is adapted to fit comfortably into a user's hand. A desirable size for such adaptation may be 25 centimeters long by 8 centimeters wide by 5 centimeters thick; however, the dimensions may change depending upon how the handheld device 101 is used. The housing 106 may include sections having different widths. That is, the housing 106 may have a first section 126 comprising a narrower width for comfortable placement in a user's hand contrasted to a second section 128 comprising a wider width for accommodation of certain features, such as a screen 130 of desirable size. The housing 106 generally houses one or more printed circuit boards 124 carrying electrical components such as a microcontroller 108, nonvolatile memory 110, communications transceivers 112, and associated biasing circuitry. External connections 118 are provided through, or extending from, the housing 106 wherever desired to allow physical connection to other electronic devices. The external connection hardware 118 may include a removable media interface such as Compact Flash memory, a communications interface such as a Universal Serial Bus (USB) interface or conventional serial interface, like an RS-232 interface, or even device support tabs 138a used in docking the handheld device 101 to the base station 102. Additionally, user interface mechanisms may be accessible through the housing 106. For instance, a reset button 107 may be available by use of a special tool, such as a stylus 109. Also, it is contemplated that a power button 111 provides user access through the housing 106 to command system power.

The microcontroller 108 in the handheld device 101 is responsible for running system software, as well as application software. While these tasks may be divided amongst multiple controllers, a single controller 118 is desirable. Representative system software is Microsoft Corporation's Windows CE®. Additional system software features, such as peripheral interfaces, are optional and dependent on the software approach used. Associated with the microcontroller 108 is some sort of electronic memory 110. A desirable memory 110 includes nonvolatile random access memory. Nonvolatile memory provides insurance against loss of data in a situation where power is lost and facilitates an extremely low power or zero power inactive (sleep) state of the microcontroller 108. The nonvolatile memory element 110 is capable of storing patient records, arranged by visit or other desirable characteristics, so that a clinician using the handheld device 101 can quickly establish a historical perspective on patient treatment. The nonvolatile memory element 110 may also store all or part of operating system software, application software, or data for the general use of the microcontroller 108.

The device 101 also has a communications module 114 for communicating with the IPG 200 or other medical device. The communications module 114 may be a telemetry module, which is a protocol translator and radio frequency modem that accepts packets from the microcontroller 108 and converts it into wireless messages directed to the IPG 200. The telemetry module 114 is capable of communicating with individual medical devices 200 within its immediate range and desirably up to six feet away. The telemetry module 114 may implement a variety of communication protocols, such as those standard in the art, or custom communication protocols, which may be predetermined by the capabilities of the medical device 200 to which communications must be sent. The communications module 114 may be disabled while the handheld device 101 is docked on the base station 102.

The device 101 further includes a power supply 116, which provides the required electrical power for desired electronic circuit operation. In one embodiment, a primary power supply 116 may be a rechargeable lithium ion battery. Lithium ion batteries are capable of providing many hours of operation without having to be docked to recharge. For instance, it may be desirable to provide a power supply 116 capable of providing eight hours of use without the need for recharge. While the specific functionality of the device 101 during runtime will affect battery requirements, an acceptable power supply 116 may be a rechargeable lithium ion battery having a capacity of 2600 milliamp hours. The device 101 may also have a backup battery 116′ capable of maintaining program or data memory in the event of a deep discharge or replacement of the primary battery 116. If a rechargeable power supply 116 is used, proper recharging circuitry 122 may be included in the system 100. Such circuitry 122 may be contained within the handheld device 101, as shown, or may reside in the base station 102.

External connection hardware 118 is also provided on the handheld device 101, thereby providing additional input/output capability. Providing data input/output capability, the device may have at least one universal serial bus (USB) port and/or serial communications port, and other ports as needed to communicate with an externally located telemetry module 114 and the base station 102. Also, external connections 118 may be provided to allow the controller 108 of the handheld device 101 to control the base station 102 operation, for example printer operations, in addition to controlling the handheld device 101.

The device 101 further provides a user interface to the IPG 200, so that a clinician can change control parameters in and view data from the IPG 200. In this manner, a clinician may configure parameters in the individual IPG 200 that adjust application limits for a patient user interface to the IPG 200. A patient user interface provides a limited range of programmability for a medical device. For example, a simple patient user interface may be a device having a single button to turn an IMD on or off. In one embodiment, the clinician user interface is a pressure sensitive touch screen 130 incorporated into the handheld device 101. The device 101 may be controlled by use of the stylus 109 on the screen 130. The screen 130 may be a color display screen supporting a fixed or variable pixel resolution. A desirable pixel resolution may be at least 240×240. The embedded operating system software and screen 130 may support both vertical and horizontal viewing.

The handheld device 101 further may implement a system of checks, balances, and redundancies to qualify and prevent the use of unsafe combinations of settings.

FIG. 5 shows a second embodiment of handheld device 101 according to the present invention where, in addition to or instead of the touch screen 130, the housing 106 may be provided with an on-board keypad 129 and programmable function keys 131 as means of data entry and device control. Programmable function keys 131, as generally understood in the art, may be physical buttons or specific pixel array on the display 130, the functionality of which is not dedicated but rather may change, depending upon the state of the software. Further, the device 101 may include one or more indicators 127, which signal predetermined conditions to a user.

Generally, two approaches may be desirable for implementation of the handheld device 101. The first approach entails modification and adaptation of an off-the-shelf personal digital assistant (PDA) or other portable computer. If adopted, the first approach may require further encasing the PDA in the housing 106 along with a communications module 114 or providing connectivity for such communications module 114 to the PDA. The second approach may encapsulate a customized printed circuit board 124 and component combination in a customized housing 106. This second approach provides more design flexibility than the first approach and allows tighter control over system components. Whichever approach is desirable, the handheld device 101 may function as a single purpose device. That is, the handheld device 101 may serve only in the system 100, rather than provide general purpose computing functionality.

Base Station

Referring now to FIGS. 2, 6 and 7, an embodiment of a base station 102 according to the present invention is shown. The base station 102 comprises a base station housing 132, a cradle 134 for holding the handheld device 101, and electronic memory 136. Furthermore, the base station 102 may comprise connectivity for other user input devices 103 and a data output device 104. Alternatively, the base station 102 may contain a user input device 103 and a user output device 104. Each component is described in greater detail below.

The base station housing 132 is of any desirable shape. Adaptation may provide stability on a relatively horizontal surface, such as a desk, or on a relatively vertical surface, such as a wall. The housing 132 generally provides a protective cover for desirable electrical components. Desirable components may be those required to carry out functions such as data backup and restore for the handheld device 101, printing of reports or records for affixing hard copies of information to a patient's chart, power recharging of the handheld device 101, entry of patient data, and export and import of data.

The cradle 134 provides a docking point for the handheld device 101. While connectivity to the handheld device 101 could be provided generally anywhere proximate the base station 102, connectors 140 for power and communication to the handheld device 101 may be provided in the cradle 134.

A user input device 103 may be present in the form of a user interface 142, which allows user intervention and control of the base station 102 functionality. While depicted as discrete buttons 142 on the base station 102, user input may also be achieved through the use of any combination of a standard QWERTY computer keyboard, a computer mouse, or even a custom keyboard. If the microcontroller in the handheld device 101 provides, in addition to control of the handheld device 101, system control for the base station 102, a keyboard 143 may serve as the user input device 103 through the base station 102 to the handheld device 101 through the cradle 134. Furthermore, rather than provide a distinct user input device 103 on or connected to the base station 102, the handheld device 101, itself, may serve as the user input device 103. When the handheld device 101 is docked in the base station 102, the visual display 130 on the handheld device 101 may serve as the user input device 103 to access the base station 102 and any output device 104 connected thereto. As depicted in FIG. 5, the handheld device 101 may also have an on-board keyboard 129 that can be used for data entry. User input to the base station 102 may also be entered through the handheld device screen 130 by way of a stylus 109. It may be desirable to provide storage 139 of the stylus somewhere on the base station 102 or on the handheld device 101 so that it is easily accessible to the user. Positioning of the cradle 134 in the base station 102 may be determined on a basis of ergonomic considerations such as reach and viewing angle.

The base station 102 also includes, or provides connectivity for, a data output device 104. The data output device 104 may comprise a printer 144 to provide hard copy documentation on paper 146 or other substrate suitable for placing into a patient's medical chart. A suitable printer 144 may be a four inch label printer, such as an OEM kiosk printer, that may be mounted on or in the base station 102. Rather than have the printer 144 mounted to the base station 102, a data output device 104 may be connectable to the base station 102. Connectivity of the base station 102 to external devices may be achieved in any desirable way, such as through the use of ports 145. Ports 145 that may be desirable are USB connections or a digital video connection if the output device 104 is a computer monitor 147. A computer monitor 147 may provide an enhanced visual display for the user. The specific technology of the output device 104 is not important; however, if a printer 144 is used, it may employ a thermal print element, inkjet or even impact/ribbon technology.

Data backup may be achieved through the use of computer readable electronic memory 136. The memory 136 may be of any desirable type, including by way of example nonvolatile random access memory, magnetic data storage, optical data storage, or media such as so called flash drives, or other memory types not yet invented.

FIG. 8 depicts an embodiment of a system 100 according to the present invention comprising a base station 102 shown with a handheld device 101 docked thereto. The position of the cradle 134 is not critical, and the handheld device 101 may rest in the cradle 134 in such a way that the device is positioned conveniently for user viewing, keypad-screen control and data input. A docking support 138b may also be provided, to receive the device support tabs 138a to keep the device 101 in place when docked in the base station 102. If positioning of the screen 130 is a different orientation while in the cradle 134 as opposed to when the device 101 is used outside of the cradle 134, the device support tabs 138a may physically contact the docking support 138b and signal to the handheld device software that the orientation of the image on the display 130 needs to be altered. The LCD screen 130 may function both as a user input device 103 to the base station 102 and as a data output device 104 from the base station 102. The cradle 134 may also have an adjustable viewing angle. As elaborated below, the system 100 may be provided with accompanying documentation 150, as shown in FIG. 9.

Software

In addition to physical systems, the present invention contemplates methods of establishing a communication link with a medical device, retrieving medical device data, programming the medical device, logging medical device data or parameters, and archiving information. Additionally, prior to establishing a communication link with a medical device, the method may include the steps of determining whether any medical devices are within a scannable range and selecting a medical device with which to establish the communications link. Archiving information may include recording data on a variety of media, such as recording on computer readable media or printing on paper. Some or all of the steps can occur automatically by way of software, initiated by an event such as inserting the handheld computer into the base station, or by human intervention in conjunction with the software. An embodiment 500 of a user interactive method is shown in FIG. 10. As shown, the steps are carried out by application software, but are generally initiated by a user of the handheld device 101.

In a representative embodiment, the application software included on the handheld device provides the full range of the clinician experience—from initial patient engagement to documentation and retrieval of patient visits. Although the software may exist in any programming language adaptable to the specific microcontroller, C# (C sharp) is preferred due to its tendency towards rapid development, its C-like syntax, its object orientation, and the high degree of reliability of developed applications. The application software may run on top of the system software that is loaded into the handheld device 101.

The application software interfaces with a database 501. The database 501, which encodes patient names, visits, and other data, may be implemented using Microsoft® structured query language (SQL) Mobile Edition having desirable data backup and restore features. Regardless of the type of database 501, a database interface may be installed on the handheld device 101 as part of the application software install. The database interface allows a user to access patient data from the database 501. Access to patient data may be achieved by entering patient-identifying information. Such data may consist only of patient contact information or may include complex historical patient data and time stamped medical device data. The database 501 containing comprehensive patient information may reside on the handheld device 101 directly. Alternatively, the database 501 may reside on the base station 102 or a hospital computer network. If the database 501 does not reside on the handheld device 101, a temporary data construct containing data fields similar to those in the database 501 is preferred, which allows storage of data for several, but not necessarily all, patients on the handheld device 101.

The database 501 may include several tables. One embodiment may implement two tables: a Patient Table 502, and Visit Table 503. The Patient Table 502 contains all patient information that is relatively constant. The purpose of the Visit Table 503 is to record and store relevant IPG data that would be collected over a series of visits. The user may then display trend or comparative data in graphical formats. Fields of data in the respective tables 502,503 may be hard coded, or reconfiguration of the tables 502,503 may be allowed.

FIG. 10 also shows a navigational relationship of a plurality of displayed application software screens. The number of application screens is not determinative of the present invention. In one embodiment, four main application screens 504 are used: a primary programming and administrative screen 506, an advanced programming screen 508, a patient history screen 510, and a tools screen 512. Users may also add customizable screens as needed for other applications A plurality of screen selectors is displayed on the screen 130 to enable a user to switch the image on the display screen 130 to a different application software screen. That is, on the display screen 130 of the handheld device 101, where an application screen is displayed, a plurality of screen selectors may be provided on the border of the functional screen. As shown in FIGS. 10 and 11, a representative embodiment of the screen selectors is a series of selectable tabs 514. Generally, tabbed screen navigation is well-known in the art. When the desired screen selector 514 is chosen, the appropriate application screen is displayed on the handheld device screen 130. The tab control 407 methodology allows for faster screen loading and more visible navigational choices. User interface functionality on the various screens may be predetermined and remain relatively static, or the functions included on the particular screens may change depending upon frequency of use or other desired operating characteristics. For ease of description, a relatively static implementation is described.

Referring again to FIG. 10, when the handheld device is powered on, a logon screen 516 is displayed. The software may be under revision control and the revision level may be displayed on the logon screen 516. To proceed past the logon screen 516, a user may be prompted to verify that he or she has authority to do so. Due to the sensitive nature of medical information, to enhance patient privacy, and perhaps to comply with appropriate privacy guidelines, the system may control access to its data and functions through a protection scheme. The protection scheme may be a relatively simple text password implemented in software, or a more complicated scheme of data protection involving such things as biometric measurements may be employed. Upon authentication, the user is taken to the primary application screen 506.

The primary screen 506 is displayed to a user after user authentication has occurred. The primary screen 506 may group a predetermined number of the most commonly used functions in the system onto a single screen 506. The primary screen 506 provides access to existing patient selection 518, new patient data entry 520 and editing of database records 522. Access to various administrative functions may also be provided via the primary screen 506. To switch between main application screens 504, the tab control 514 is used.

The advanced programming screen 508 provides a user interface to the data and parameters 524 contained in the medical device 200. Examples of medical device data 524 may be an indication of remaining battery charge in the medical device 200, recharge time, and stimulation time. While programmable parameters 524 for various medical devices 200 will differ, representative parameters 524 for an IPG are pulse amplitude, pulse duration and pulse frequency and sequence timing. Additionally, the device interface screen 508 may allow the selection or alteration of limits for any user (patient) adjustable parameters. Furthermore, a set of predetermined parameters or collections of parameters based on common electrophysiological behavior may be preloaded to minimize the effort on the part of the user. Also, after recognizing programmed parameters, the handheld device 101 may recommend parameters to the user.

The patient history screen 510, allows access to existing patient data 526 drawn from the database 501 and entry of new patient visit information, including textual diary data. Once the patient data 526 has been configured, the patient may automatically be identified during his or her next session and relevant historical data may be made available during subsequent patient visits. Rather than automatic identification, the device 101 may be programmed with the proper communications information or a clinician may query a range of medical device identifiers. During a session with a patient, the software may notify the clinician if communications 204 is interrupted or another medical device 200 intrudes on the session. To avoid the potential for incorrectly or incompletely communicating with medical devices, the communications protocol between the handheld device and any medical device may include the identification of which medical device is being addressed by way of, for example, a unique electronic signature or device serial number.

A tools screen 512 is provided to enable modification of system parameters such as accessibility passwords and date and time functions. Also, the tools screen 512 may provide access to the database 501 as well as base station 102 functionality such as printing. Further, the tools screen 512 may provide medical device query capability, thus allowing the device 101 to scan a predetermined area for responsive medical devices 200.

A customizable screen, or plurality of customizable screens, may also be desired, the functionality of which can be tailored to a specific user's operating procedures or tailored applications. Alternatively, the customizable screen may be a screen that is available only when the handheld device 101 is docked in a base station 102.

Some functionality may be desirable no matter which screen is displayed. That is, the application software may monitor the occurrence of hardware faults and also monitor battery level. When predetermined events occur, the handheld device 101 may emit a warning, such as a visual or audio warning, when a hardware fault occurs or if the battery charge for either the telemetry module 114 or handheld device 101 is at a predetermined level. Also, an extensive help menu system may be incorporated. The help menu may be accessible from any displayed screen, perhaps as a separate tab control 514.

Although the handheld device 101 application software provides the ability to download patient data from a database 501, a clinician may have the option of using the handheld device 101 without having patient data available. That is, if all patient data is erased off the handheld device 101 or otherwise not entered, the device 101 may still function as a user interface to the medical device 200. This may require the user to enter at least a default set of patient data, such as patient last name or medical device code.

System Use

The system 100 may be constructed for safe operation within an operating room and desirably does not interfere with any hospital electronic equipment. While it is generally expected that only the handheld device 101 will be used in the operating room, a base station 102 may also be located in an operating room. When the handheld device 101 is used in an operating room or other location where sterility is of utmost importance, the device 101 can be sterilized, or a sterile device cover may be provided to enclose or shield the device 101.

A clinician can use the handheld device 101 in an operating room to turn on an IPG 200 and adjust stimulus parameters in the IPG 200. The clinician simply enters predetermined patient data to be associated with the IPG 200 that is in the process of being programmed. The clinician who is using the handheld device 101 may be the surgeon who has placed the IPG 200, a physician's assistant, a nurse, or other clinician authorized to do so. It is to be appreciated that the handheld device 101, through a wireless range, may be used outside of the sterile field.

In addition to use in an operating room, a clinician may use the system 100 in an office setting when a patient returns for follow-up visits. The handheld device 101 allows a clinician to interrogate the IPG 200 for compliance data such as recharge history and current stimulus parameter settings. The clinician may make adjustments to the stimulus parameters as necessary based on the feedback from the patient. The clinician may also schedule upcoming appointments in the handheld device 101 and recall any details of past appointments.

To ensure reliable and robust operation, the system, at least while certain software is active, may be a single purpose device. Although not a required feature, the system may have the ability to connect to a hospital computer network or directly interface to other devices such as an external disk drive 148, as shown in FIG. 7. The disk drive 148 may comprise a hard magnetic disk drive or a drive capable of reading or writing removable media, such as magnetic or optical disks or non-volatile semiconductor memory cards or sticks. As shown in FIG. 9, the system 100 may be provided with all appropriate documentation 150 that conforms to relevant guidelines and further conforms to health and safety requirements as defined by the appropriate regulatory bodies. In addition to complying with guidelines mandated by regulatory bodies, the documentation 150 may include printed or computer readable instructions 150, which provide guidance on such things as the use of the system, data recovery techniques, and elaborate on the features provided. The features may be general to a system according to the present invention or predetermined custom features may be described in detail.

The foregoing is considered as illustrative only of the principles of the invention. Furthermore, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.

Strother, Robert B., Mrva, Joseph J., Bennett, Maria E., Thrope, Geoffrey B., Pack, Danny R., Rubin, Stuart F., Rundle, Kenneth P., Coburn, James

Patent Priority Assignee Title
10016602, Mar 15 2013 CIRTEC MEDICAL CORP Spinal cord stimulator system
10016605, Mar 15 2013 CIRTEC MEDICAL CORP Spinal cord stimulator system
10149977, Mar 15 2013 CIRTEC MEDICAL CORP Spinal cord stimulator system
10265526, Mar 15 2013 CIRTEC MEDICAL CORP Spinal cord stimulator system
10293168, Jun 10 2005 Medtronic Urinary Solutions, Inc. Systems and methods for clinician control of stimulation systems
10335597, Mar 15 2013 CIRTEC MEDICAL CORP Spinal cord stimulator system
10810614, Mar 15 2013 CIRTEC MEDICAL CORP Spinal cord stimulator system
11191964, Jun 28 2011 CIRTEC MEDICAL CORP Dual patient controllers
11704688, Mar 15 2013 CIRTEC MEDICAL CORP. Spinal cord stimulator system
11883668, Nov 04 2020 Invicta Medical, Inc. Implantable electrodes with remote power delivery for treating sleep apnea, and associated systems and methods
11964154, Dec 22 2022 INVICTA MEDICAL, INC Signal delivery devices to treat sleep apnea, and associated methods and systems
11986658, Nov 04 2020 INVICTA MEDICAL, INC Implantable electrodes with remote power delivery for treating sleep apnea, and associated systems and methods
8186358, Jul 29 2005 MEDOS INTERNATIONAL SARL System and method for locating an internal device in a closed system
8641210, Nov 30 2011 Izi Medical Products Retro-reflective marker including colored mounting portion
8646921, Nov 30 2011 Izi Medical Products Reflective marker being radio-opaque for MRI
8651274, Nov 30 2011 Izi Medical Products Packaging for retro-reflective markers
8661573, Feb 29 2012 Izi Medical Products Protective cover for medical device having adhesive mechanism
8662684, Nov 30 2011 Izi Medical Products Radiopaque core
8667293, Aug 11 2011 Roche Diabetes Care, Inc Cryptographic data distribution and revocation for handheld medical devices
8668342, Nov 30 2011 Izi Medical Products Material thickness control over retro-reflective marker
8668343, Nov 30 2011 Izi Medical Products Reflective marker with alignment feature
8668344, Nov 30 2011 Izi Medical Products Marker sphere including edged opening to aid in molding
8668345, Nov 30 2011 Izi Medical Products Retro-reflective marker with snap on threaded post
8672490, Nov 30 2011 Izi Medical Products High reflectivity retro-reflective marker
8706252, Jun 10 2004 Medtronic, Inc. Systems and methods for clinician control of stimulation system
8929996, Sep 30 2004 MEDOS INTERNATIONAL SARL Dual power supply switching circuitry for use in a closed system
8954148, Jun 28 2011 CIRTEC MEDICAL CORP Key fob controller for an implantable neurostimulator
9085401, Nov 30 2011 Izi Medical Products Packaging for retro-reflective markers
9101768, Mar 15 2013 CIRTEC MEDICAL CORP Spinal cord stimulator system
9216294, Jun 10 2004 Medtronic Urinary Solutions, Inc. Systems and methods for clinician control of stimulation systems
9272152, Aug 31 2011 Cardiac Pacemakers, Inc. Remote programming of MRI settings of an implantable medical device
9308369, Mar 15 2013 CIRTEC MEDICAL CORP Spinal cord stimulator system
9440076, Mar 15 2013 CIRTEC MEDICAL CORP Spinal cord stimulator system
9492665, Mar 15 2013 CIRTEC MEDICAL CORP Spinal cord stimulator system
9550062, Mar 15 2013 CIRTEC MEDICAL CORP Spinal cord stimulator system
9586043, Aug 31 2011 Cardiac Pacemakers, Inc. Remote programming of MRI settings of an implantable medical device
9623246, Mar 15 2013 CIRTEC MEDICAL CORP Spinal cord stimulator system
9827417, Aug 31 2011 Cardiac Pacemakers, Inc. Remote programming of MRI settings of an implantable medical device
9872986, Mar 15 2013 CIRTEC MEDICAL CORP Spinal cord stimulator system
9872997, Mar 15 2013 CIRTEC MEDICAL CORP Spinal cord stimulator system
9878165, Jun 28 2011 CIRTEC MEDICAL CORP Patient programmer having a key-fob-sized form factor
9878170, Mar 15 2013 CIRTEC MEDICAL CORP Spinal cord stimulator system
9887574, Mar 15 2013 CIRTEC MEDICAL CORP Spinal cord stimulator system
9956409, Mar 15 2013 CIRTEC MEDICAL CORP Spinal cord stimulator system
9964649, Nov 30 2011 Izi Medical Products Packaging for retro-reflective markers
Patent Priority Assignee Title
3421511,
3654933,
3727616,
3774618,
3870051,
3902501,
3926198,
3939841, Mar 06 1974 Acupuncture needle guide and restraint
3939843, Mar 04 1974 Medtronic, Inc. Transvenous electrode
3941136, Nov 21 1973 Neuronyx Corporation Method for artificially inducing urination, defecation, or sexual excitation
3943932, Jan 17 1975 Acupuncture needles and holder
3943938, Feb 27 1974 Anal sphincter device and barium enema plug
4232679, Jan 26 1977 PACESETTER, INC , A ST JUDE MEDICAL COMPANY Programmable human tissue stimulator
4254775, Jul 02 1979 MIROWSKI FAMILY VENTURES L L C Implantable defibrillator and package therefor
4257423, Nov 06 1978 MED REL, INC Medical device
4262678, Jun 28 1979 MEDTRONIC, INC , 3055 OLD HIGHWAY EIGHT, MINNEAPOLIS, MN 55418 A CORP OF MN Pacing lead with tine protector
4398545, Oct 10 1979 MICHELSON, STEPHEN A Pain-blocking bandage
4406288, Apr 06 1981 CASH, HUGH P Bladder control device and method
4407303, Apr 21 1980 Pacesetter AB Endocardial electrode arrangement
4512351, Nov 19 1982 Pacesetter, Inc Percutaneous lead introducing system and method
4519404, Sep 28 1983 ENPATH LEAD TECHNOLOGIES, INC , A MINNESOTA CORPORATION Endocardial electrode lead with conical fixation mechanism
4569351, Dec 20 1984 HERMAN M FINCH UNIVERSITY OF HEALTH SCIENCES THE CHICAGO MEDICAL SCHOOL Apparatus and method for stimulating micturition and certain muscles in paraplegic mammals
4573481, Jun 25 1984 Huntington Institute of Applied Research; Huntington Medical Research Institutes Implantable electrode array
4585005, Apr 06 1984 REGENTS OF THE UNIVERSITY OF CALIFORNIA THE, A CORP OF CA Method and pacemaker for stimulating penile erection
4585013, Apr 20 1981 Pacesetter, Inc Lumenless pervenous electrical lead and method of implantation
4590689, Aug 30 1984 ROSENBERG, DAVID Air-trapping insoles
4590946, Jun 14 1984 BIOMED CONCEPTS, INC , A CORP OF MD Surgically implantable electrode for nerve bundles
4592360, Oct 09 1980 Pacesetter, Inc Implantable externally programmable microprocessor-controlled tissue stimulator
4602624, Oct 11 1984 Case Western Reserve University Implantable cuff, method of manufacture, and method of installation
4607639, May 18 1984 REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE, A CORP OF CA Method and system for controlling bladder evacuation
4628942, Oct 11 1984 Case Western Reserve University Asymmetric shielded two electrode cuff
4649936, Oct 11 1984 Case Western Reserve University Asymmetric single electrode cuff for generation of unidirectionally propagating action potentials for collision blocking
4658515, Feb 05 1985 Heat insulating insert for footwear
4703755, May 18 1984 The Regents of the University of California Control system for the stimulation of two bodily functions
4716888, Jun 17 1985 Pacesetter, Inc Tined leads
4721118, Apr 20 1981 TELECTRONICS PACING SYSTEMS, INC Pervenous electrical pacing lead with foldable fins
4739764, May 18 1984 The Regents of the University of California Method for stimulating pelvic floor muscles for regulating pelvic viscera
4750499, Aug 20 1986 Closed-loop, implanted-sensor, functional electrical stimulation system for partial restoration of motor functions
4771779, May 18 1984 The Regents of the University of California System for controlling bladder evacuation
4793353, Jun 30 1981 ADVANCED NEUROMODULATION SYSTEMS, INC Non-invasive multiprogrammable tissue stimulator and method
4835372, Jul 19 1985 McKesson Information Solutions LLC Patient care system
4920979, Oct 12 1988 Huntington Medical Research Institute; Huntington Medical Research Institutes Bidirectional helical electrode for nerve stimulation
4926875, Jan 25 1988 Baylor College of Medicine Implantable and extractable biological sensor probe
4934368, Jan 21 1988 HAMEDI, N M I HASSAN, Multi-electrode neurological stimulation apparatus
4940065, Jan 23 1989 Regents of the University of California Surgically implantable peripheral nerve electrode
4989617, Jul 14 1989 Case Western Reserve University Intramuscular electrode for neuromuscular stimulation system
5095905, Jun 07 1990 Medtronic, Inc. Implantable neural electrode
5113869, Aug 21 1990 Pacesetter, Inc Implantable ambulatory electrocardiogram monitor
5154172, Nov 13 1989 LivaNova USA, Inc Constant current sources with programmable voltage source
5215086, May 03 1991 LivaNova USA, Inc Therapeutic treatment of migraine symptoms by stimulation
5222494, Jul 31 1991 LivaNova USA, Inc Implantable tissue stimulator output stabilization system
5235980, Nov 13 1989 CYBERONICS, INC. Implanted apparatus disabling switching regulator operation to allow radio frequency signal reception
5257634, Jul 16 1992 Angeion Corporation Low impedence defibrillation catheter electrode
5265608, Feb 22 1990 Medtronic, Inc. Steroid eluting electrode for peripheral nerve stimulation
5282845, Oct 01 1990 Pacesetter, Inc Multiple electrode deployable lead
5289821, Jun 30 1993 Method of ultrasonic Doppler monitoring of blood flow in a blood vessel
5300107, Oct 22 1992 Medtronic, Inc. Universal tined myocardial pacing lead
5324322, Apr 20 1992 Case Western Reserve University Thin film implantable electrode and method of manufacture
5330515, Jun 17 1992 LivaNova USA, Inc Treatment of pain by vagal afferent stimulation
5335664, Sep 17 1991 Casio Computer Co., Ltd. Monitor system and biological signal transmitter therefor
5344439, Oct 30 1992 Medtronic, Inc. Catheter with retractable anchor mechanism
5369257, Jul 08 1993 M MANAGEMENT-TEX, LTD Windshield de-icing and defrosting mitt using microwave energy heating and method
5370671, Mar 26 1991 Encore Medical Corporation; Encore Medical Asset Corporation Incontinence electrode apparatus
5397338, Mar 29 1993 Relief Band Medical Technologies LLC Electrotherapy device
5400784, Oct 15 1993 Case Western Reserve University Slowly penetrating inter-fascicular nerve cuff electrode and method of using
5411537, Oct 29 1993 Intermedics, Inc. Rechargeable biomedical battery powered devices with recharging and control system therefor
5449378, May 08 1992 MEAGAN MEDICAL, INC Method and apparatus for the electric stimulation of skin receptors
5454840, Apr 05 1994 Potency package
5461256, Nov 06 1992 Mitsubishi Denki Kabushiki Kaisha Portable semiconductor device with resin
5476500, Dec 20 1993 Pacesetter, Inc Endocardial lead system with defibrillation electrode fixation
5480416, Sep 22 1994 Intermedics, Inc. Cardiac pacemaker with universal coating
5486202, Dec 17 1993 Intermedics, Inc.; INTERMEDICS, INC Cardiac stimulator lead connector
5487756, Dec 23 1994 Simon Fraser University Implantable cuff having improved closure
5505201, Apr 20 1994 Case Western Reserve University Implantable helical spiral cuff electrode
5531778, Sep 20 1994 LivaNova USA, Inc Circumneural electrode assembly
5540730, Jun 06 1995 LivaNova USA, Inc Treatment of motility disorders by nerve stimulation
5562717, May 23 1992 Axelgaard Manufacturing Company, Ltd. Electrical stimulation for treatment of incontinence and other neuromuscular disorders
5588960, Dec 01 1994 VIDAMED, INC , A DELAWARE CORPORATION Transurethral needle delivery device with cystoscope and method for treatment of urinary incontinence
5607461, Oct 20 1995 NEXMED HOLDINGS, INC Apparatus and method for delivering electrical stimulus to tissue
5634462, Oct 15 1993 Case Western Reserve University Corrugated inter-fascicular nerve cuff method and apparatus
5645586, Jul 08 1994 Pacesetter, Inc Conforming implantable defibrillator
5669161, Feb 26 1990 Shock-absorbing cushion
5683432, Jan 11 1996 Medtronic, Inc Adaptive, performance-optimizing communication system for communicating with an implanted medical device
5683447, Dec 19 1995 Pacesetter, Inc Lead with septal defibrillation and pacing electrodes
5690693, Jun 07 1995 Intermedics Inc Transcutaneous energy transmission circuit for implantable medical device
5702431, Jun 07 1995 Sulzer Intermedics Inc. Enhanced transcutaneous recharging system for battery powered implantable medical device
5713939, Sep 16 1996 Sulzer Intermedics Inc. Data communication system for control of transcutaneous energy transmission to an implantable medical device
5716384, Jul 08 1996 Pacesetter, Inc.; Pacesetter, Inc Method and system for organizing, viewing and manipulating information in implantable device programmer
5722482, Jul 14 1992 Phase change thermal control materials, method and apparatus
5722999, Aug 02 1995 Pacesetter, Inc.; Pacesetter, Inc System and method for storing and displaying historical medical data measured by an implantable medical device
5733322, May 23 1995 Medtronic, Inc.; Medtronic, Inc Positive fixation percutaneous epidural neurostimulation lead
5741313, Sep 09 1996 Pacesetter, Inc.; Pacesetter, Inc Implantable medical device with a reduced volumetric configuration and improved shock stabilization
5741319, Jan 27 1995 Medtronic, Inc Biocompatible medical lead
5752977, Apr 15 1997 Medtronic, Inc. Efficient high data rate telemetry format for implanted medical device
5755767, Aug 02 1996 Pacesetter, Inc.; Pacesetter, Inc Anti-dislodgment and anti-perforation distal tip design for transvenous lead
5759199, Aug 02 1995 Pacesetter, Inc.; Pacesetter, Inc System and method for ambulatory monitoring and programming of an implantable medical device
5807397, Jan 04 1995 Medtronic, Inc Implantable stimulator with replenishable, high value capacitive power source and method therefor
5824027, Aug 14 1997 Simon Fraser University Nerve cuff having one or more isolated chambers
5843141, Apr 25 1997 Medronic, Inc. Medical lead connector system
5857968, Nov 24 1997 Coupling device in electroacupuncture
5861015, May 05 1997 Modulation of the nervous system for treatment of pain and related disorders
5861016, May 28 1997 Method of wound healing using electrical stimulation and acupuncture needles
5899933, Jun 16 1997 AXON ENGINEERING, INC Nerve cuff electrode carrier
5919220, Sep 16 1994 Fraunhofer Gesellschaft zur Foerderung der angewandten Forschung e.V. Cuff electrode
5922015, Mar 14 1996 BIOTRONIK MESS - UND THERAPIEGERAETE GMBH & CO INGENIEURBUERO BERLIN WOERMANNKEHRE Implantable device which permits removal without traumatizing the surrounding tissue
5938596, Mar 17 1997 JARO, MICHAEL J Medical electrical lead
5948006, Oct 14 1998 Boston Scientific Neuromodulation Corporation Transcutaneous transmission patch
5957951, Mar 06 1998 DOPPELT, MICHEL Portable device for acupuncture-type percutaneous treatment
5984854, Feb 15 1996 NIHON KOHDEN CORPORATION Method for treating urinary incontinence and an apparatus therefor
6004662, Jul 14 1992 Flexible composite material with phase change thermal storage
6016451, Jun 24 1998 Neurological stabilizer device
6026328, Mar 24 1986 Case Western Reserve University Functional neuromuscular stimulation system with shielded percutaneous interface
6055456, Apr 29 1999 Medtronic, Inc. Single and multi-polar implantable lead for sacral nerve electrical stimulation
6055457, Mar 13 1998 Medtronic, Inc. Single pass A-V lead with active fixation device
6061596, Nov 24 1995 Boston Scientific Neuromodulation Corporation Method for conditioning pelvic musculature using an implanted microstimulator
6091995, Nov 08 1996 VERATHON, INC Devices, methods, and systems for shrinking tissues
6125645, Jun 12 1997 HORN, STEPHEN T ; HORN, PHYLLIS C Moisture removal phase shift personal cooling Garment
6126611, Feb 04 1998 Medtronic, Inc Apparatus for management of sleep apnea
6166518, Apr 26 1999 Exonix Corporation Implantable power management system
6169925, Apr 30 1999 Medtronic, Inc.; Medtronic, Inc Telemetry system for implantable medical devices
6181965, Feb 20 1996 Boston Scientific Neuromodulation Corporation Implantable microstimulator system for prevention of disorders
6181973, Apr 02 1999 SORIN BIOMEDICA CARDIO S P A Anchoring structure for implantable electrodes
6185452, Feb 26 1997 ALFRED E MANN FOUNDATION FOR SCIENTIFIC RESEARCH Battery-powered patient implantable device
6200265, Apr 16 1999 Medtronic, Inc.; Medtronic, Inc Peripheral memory patch and access method for use with an implantable medical device
6208894, Feb 26 1997 Boston Scientific Neuromodulation Corporation System of implantable devices for monitoring and/or affecting body parameters
6212431, Sep 08 1998 Advanced Bionics AG Power transfer circuit for implanted devices
6216038, Apr 29 1998 Dresser, Inc Broadcast audible sound communication of programming change in an implantable medical device
6240316, Aug 14 1998 Boston Scientific Neuromodulation Corporation Implantable microstimulation system for treatment of sleep apnea
6240317, Apr 30 1999 Medtronic, Inc.; Medtronic, Inc Telemetry system for implantable medical devices
6249703, Jul 08 1994 Medtronic, Inc Handheld patient programmer for implantable human tissue stimulator
6257906, Feb 08 1999 Hewlett Packard Enterprise Development LP Functionally illuminated electronic connector with improved light dispersion
6266557, Jun 29 1998 PROCTOR & GAMBLE COMPANY, THE Biofeedback device for an incontinent person
6275737, Oct 14 1998 Boston Scientific Neuromodulation Corporation Transcutaneous transmission pouch
6292703, Oct 08 1998 BIOTRONIK MESS - UND THERAPIEGERATE GMBH & CO INGENIEURBURO, BERLIN Neural electrode arrangement
6308101, Jul 31 1998 Advanced Bionics AG Fully implantable cochlear implant system
6308105, Jul 15 1999 Medtronic, Inc Medical electrical stimulation system using an electrode assembly having opposing semi-circular arms
6319208, Dec 04 1998 Johns Hopkins University, The Telemetric in vivo bladder urine monitor system
6319599, Jul 14 1992 Phase change thermal control materials, method and apparatus
6321124, May 28 1997 Transneuronix, Inc. Implant device for electrostimulation and/or monitoring of endo-abdominal cavity tissue
6338347, Apr 04 2000 Blood circulation stimulator
6345202, Aug 14 1998 Boston Scientific Neuromodulation Corporation Method of treating obstructive sleep apnea using implantable electrodes
6360750, Apr 29 1999 Medtronic, Inc Minimally invasive surgical techniques for implanting devices that deliver stimulant to the nervous system
6381496, Oct 01 1999 Boston Scientific Neuromodulation Corporation Parameter context switching for an implanted device
6409675, Nov 10 1999 Pacesetter, Inc.; Pacesetter, Inc Extravascular hemodynamic monitor
6432037, Aug 31 2000 FLEXIPROBE LTD Intravaginal device for electrically stimulating and/or for sensing electrical activity of muscles and/or nerves defining and surrounding the intravaginal cavity
6442432, Dec 24 1999 Medtronic, Inc.; Medtronic, Inc Instrumentation and software for remote monitoring and programming of implantable medical devices (IMDs)
6442433, Oct 26 1999 Medtronic, Inc.; Medtronic, Inc Apparatus and method for remote troubleshooting, maintenance and upgrade of implantable device systems
6445955, Jul 08 1999 FOSTER BIODEVICE, LLC Miniature wireless transcutaneous electrical neuro or muscular-stimulation unit
6449512, Aug 29 2001 Apparatus and method for treatment of urological disorders using programmerless implantable pulse generator system
6450172, Apr 29 1998 Medtronic, Inc.; Medtronic, Inc Broadcast audible sound communication from an implantable medical device
6453198, Apr 28 2000 Medtronic, Inc.; Medtronic, Inc Power management for an implantable medical device
6456866, Sep 28 1999 Case Western Reserve University Flat interface nerve electrode and a method for use
6464672, Jul 14 1992 Multilayer composite material and method for evaporative cooling
6482154, Aug 02 2000 Medtronic, Inc Long range implantable medical device telemetry system with positive patient identification
6493587, Dec 23 1999 PIXIUM VISION SA Device for the protected operation of neuroprostheses and method therefor
6493881, Aug 07 2001 Head protector for infants and small children
6505074, Oct 26 1998 Neuro and Cardiac Technologies, LLC Method and apparatus for electrical stimulation adjunct (add-on) treatment of urinary incontinence and urological disorders using an external stimulator
6505077, Jun 19 2000 Medtronic, Inc Implantable medical device with external recharging coil electrical connection
6510347, Aug 17 2000 Spinal cord stimulation leads
6516227, Jul 27 1999 Boston Scientific Neuromodulation Corporation Rechargeable spinal cord stimulator system
6535766, Aug 26 2000 Medtronic, Inc. Implanted medical device telemetry using integrated microelectromechanical filtering
6542776, Apr 14 1999 MEDTRONIC TRANSNEURONIX, INC Gastric stimulator apparatus and method for installing
6553263, Jul 30 1999 Boston Scientific Neuromodulation Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
6574510, Nov 30 2000 Cardiac Pacemakers, Inc Telemetry apparatus and method for an implantable medical device
6591137, Nov 09 2000 NeuroPace, Inc Implantable neuromuscular stimulator for the treatment of gastrointestinal disorders
6597954, Oct 27 1997 NEUROSPACE, INC ; NeuroPace, Inc System and method for controlling epileptic seizures with spatially separated detection and stimulation electrodes
6600956, Aug 21 2001 LivaNova USA, Inc Circumneural electrode assembly
6607500, Jul 08 1999 FOSTER BIODEVICE, LLC Integrated cast and muscle stimulation system
6613953, Mar 22 2002 Insulator-conductor device for maintaining a wound near normal body temperature
6622037, Apr 05 2000 Polytronics, Ltd. Transdermal administrating device
6622048, Dec 06 1999 Boston Scientific Neuromodulation Corporation Implantable device programmer
6641533, Aug 18 1998 Medtronic MiniMed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
6643552, May 30 2001 Foster-Miller, Inc Implantable devices having a liquid crystal polymer substrate
6650943, Apr 07 2000 Boston Scientific Neuromodulation Corporation Fully implantable neurostimulator for cavernous nerve stimulation as a therapy for erectile dysfunction and other sexual dysfunction
6652449, Oct 06 1998 ASTORA WOMEN S HEALTH, LLC Control of urge incontinence
6658300, Dec 18 2000 Biosense, Inc Telemetric reader/charger device for medical sensor
6660265, Oct 15 1999 BRIGHAM AND WOMEN S HOSPITAL, INC Fresh, cryopreserved, or minimally cardiac valvular xenografts
6672895, Nov 26 2001 Cardiac Pacemakers, Inc Marking system for lead connector and header
6684109, Sep 13 2000 Oscor Inc. Endocardial lead
6687543, Jun 06 2001 Pacesetter, Inc.; Pacesetter, Inc Implantable cardiac stimulation device having reduced shelf current consumption and method
6701188, Sep 06 2001 Medtronic, Inc Controlling noise sources during telemetry
6721602, Aug 21 2001 Medtronic, Inc. Implantable medical device assembly and manufacturing method
6735474, Jul 06 1998 Boston Scientific Neuromodulation Corporation Implantable stimulator system and method for treatment of incontinence and pain
6735475, Jan 30 2001 Boston Scientific Neuromodulation Corporation Fully implantable miniature neurostimulator for stimulation as a therapy for headache and/or facial pain
6754538, Oct 29 1999 Medtronic, Inc. Apparatus and method for remote self-identification of components in medical device systems
6775715, Mar 20 2001 Schneider Electric IT Corporation Multipurpose data port
6804558, Jul 07 1999 ROSELLINI SCIENTIFIC BENELUX, SPRI System and method of communicating between an implantable medical device and a remote computer system or health care provider
6836684, Oct 29 1999 Neurocon ApS Method to control an overactive bladder
6836685, Apr 07 1998 Nerve stimulation method and apparatus for pain relief
6845271, Jun 03 1998 SPR THERAPEUTICS, INC Treatment of shoulder dysfunction using a percutaneous intramuscular stimulation system
6855410, Jul 14 1992 Phase change material thermal capacitor clothing
6856506, Jun 19 2002 Zebra Technologies Corporation Tablet computing device with three-dimensional docking support
6859364, Jun 06 2000 Panasonic Corporation Portable information appliance
6862480, Nov 29 2001 ASTORA WOMEN S HEALTH, LLC Pelvic disorder treatment device
6868288, Aug 26 2000 Medtronic, Inc. Implanted medical device telemetry using integrated thin film bulk acoustic resonator filtering
6891353, Nov 07 2001 Quallion LLC Safety method, device and system for an energy storage device
6895280, Jul 27 1999 Boston Scientific Neuromodulation Corporation Rechargeable spinal cord stimulator system
6904324, Dec 01 1999 MEAGAN MEDICAL, INC Method and apparatus for deploying a percutaneous probe
6907293, Mar 30 2001 Case Western Reserve University Systems and methods for selectively stimulating components in, on, or near the pudendal nerve or its branches to achieve selective physiologic responses
6907295, Aug 31 2001 Medtronic, Inc Electrode assembly for nerve control
6920359, Feb 15 2000 Boston Scientific Neuromodulation Corporation Deep brain stimulation system for the treatment of Parkinson's Disease or other disorders
6925330, Jul 10 2002 Pacesetter, Inc.; Pacesetter, Inc Implantable medical device and method for detecting cardiac events without using of refractory or blanking periods
6928320, May 17 2001 Medtronic, Inc. Apparatus for blocking activation of tissue or conduction of action potentials while other tissue is being therapeutically activated
6937894, Nov 08 2001 Pacesetter, Inc. Method of recharging battery for an implantable medical device
6941171, Jul 06 1998 Boston Scientific Neuromodulation Corporation Implantable stimulator methods for treatment of incontinence and pain
6963780, Jan 31 2002 Medtronic, Inc. Implantable medical device including a surface-mount terminal array
6974411, Apr 03 2000 Intuitive Surgical Operations, Inc Endoscope with single step guiding apparatus
6985773, Feb 07 2002 Cardiac Pacemakers, Inc Methods and apparatuses for implantable medical device telemetry power management
6990376, Dec 06 2002 Regents of the University of California, The Methods and systems for selective control of bladder function
6993393, Dec 19 2001 Cardiac Pacemakers, Inc Telemetry duty cycle management system for an implantable medical device
6999819, Aug 31 2001 MAMO, LAURA Implantable medical electrical stimulation lead fixation method and apparatus
7031768, Aug 31 1998 The Tapemark Company Controlled dosage drug delivery
7047078, Mar 30 2001 Case Western Reserve University Methods for stimulating components in, on, or near the pudendal nerve or its branches to achieve selective physiologic responses
7078359, Dec 22 2000 ASPEN AEROGELS, INC Aerogel composite with fibrous batting
7101607, Aug 21 2002 Research Foundation of State University of New York, The Process for enhancing material properties and materials so enhanced
7103923, Aug 07 2002 Head protector for infants, small children, senior citizens, adults or physically disabled individuals
7118801, Nov 10 2003 W L GORE & ASSOCIATES, INC Aerogel/PTFE composite insulating material
7136695, Oct 12 2001 NeuroPace, Inc Patient-specific template development for neurological event detection
7167756, Apr 28 2000 Medtronic, Inc.; Medtronic, Inc Battery recharge management for an implantable medical device
7177690, Jul 27 1999 Boston Scientific Neuromodulation Corporation Implantable system having rechargeable battery indicator
7177698, Jun 28 2002 Boston Scientific Neuromodulation Corporation Telemetry system for use with microstimulator
7187968, Oct 23 2003 Duke University Apparatus for acquiring and transmitting neural signals and related methods
7187983, Dec 20 2000 ST JUDE MEDICAL AB Electrode head fixation arrangement
7191012, May 11 2003 Neuro and Cardiac Technologies, LLC Method and system for providing pulsed electrical stimulation to a craniel nerve of a patient to provide therapy for neurological and neuropsychiatric disorders
7198603, Apr 14 2003 Remon Medical Technologies LTD Apparatus and methods using acoustic telemetry for intrabody communications
7225032, Oct 02 2003 Medtronic, Inc External power source, charger and system for an implantable medical device having thermal characteristics and method therefore
7239918, Jun 10 2004 MEDTRONIC URINARY SOLUTIONS, INC Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
7254448, Jun 19 2000 Medtronic, Inc. Method of operating an implantable medical device telemetry processor
7269457, Apr 30 1996 Medtronic, Inc Method and system for vagal nerve stimulation with multi-site cardiac pacing
7280872, Oct 16 2003 CERBERUS BUSINESS FINANCE, LLC, AS COLLATERAL AGENT Wireless communication with implantable medical device
7283867, Jun 10 2004 MEDTRONIC URINARY SOLUTIONS, INC Implantable system and methods for acquisition and processing of electrical signals from muscles and/or nerves and/or central nervous system tissue
7317947, May 16 2003 Medtronic, Inc Headset recharger for cranially implantable medical devices
7328068, Nov 26 2003 Medtronic, Inc Method, system and device for treating disorders of the pelvic floor by means of electrical stimulation of the pudendal and associated nerves, and the optional delivery of drugs in association therewith
7342793, Nov 10 2003 W L GORE & ASSOCIATES, INC Aerogel/PTFE composite insulating material
7343202, Feb 12 2004 MEDTRONIC URINARY SOLUTIONS, INC Method for affecting urinary function with electrode implantation in adipose tissue
7369897, Apr 19 2001 Neuro and Cardiac Technologies, LLC Method and system of remotely controlling electrical pulses provided to nerve tissue(s) by an implanted stimulator system for neuromodulation therapies
7376467, Feb 12 2004 SPR THERAPEUTICS, INC Portable assemblies, systems and methods for providing functional or therapeutic neuromuscular stimulation
7437193, Jun 28 2002 Boston Scientific Neuromodulation Corporation Microstimulator employing improved recharging reporting and telemetry techniques
7443057, Nov 29 2004 Patrick Nunally Remote power charging of electronic devices
7475245, Mar 15 2004 Cardiac Pacemakers, Inc System and method for providing secure exchange of sensitive information with an implantable medical device
7499758, Apr 11 2003 Cardiac Pacemakers, Inc Helical fixation elements for subcutaneous electrodes
7565198, Feb 12 2004 MEDTRONIC URINARY SOLUTIONS, INC Systems and methods for bilateral stimulation of left and right branches of the dorsal genital nerves to treat dysfunctions, such as urinary incontinence
20010022719,
20020019652,
20020055779,
20020077572,
20020164474,
20030018365,
20030065368,
20030074030,
20030078633,
20030114897,
20030114905,
20030120259,
20030220673,
20030235029,
20040030360,
20040088024,
20040093093,
20040098068,
20040147886,
20040150963,
20040209061,
20050038491,
20050055063,
20050080463,
20050143787,
20050149146,
20050175799,
20050192526,
20050278000,
20060004421,
20060025829,
20060033720,
20060035054,
20060100673,
20060122660,
20060173507,
20060184208,
20060271112,
20070060967,
20070100411,
20070123952,
20070239224,
20080071322,
20080097564,
20080132969,
CA2121219,
D337820, Sep 26 1991 Medtronic, Inc. Implantable medical housing
WO2003092227,
WO2000019939,
WO2001083029,
WO2006055547,
WO2009058984,
///////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 02 2006Medtronic Urinary Solutions, Inc.(assignment on the face of the patent)
Dec 15 2006THROPE, GEOFFREY B NDI Medical, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0187400240 pdf
Dec 15 2006STROTHER, ROBERT B NDI Medical, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0187400240 pdf
Dec 15 2006PACK, DANNY RNDI Medical, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0187400240 pdf
Dec 15 2006RUBIN, STUART FNDI Medical, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0187400240 pdf
Dec 15 2006RUNDLE, KENNETH P NDI Medical, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0187400240 pdf
Dec 15 2006BENNETT, MARIA E NDI Medical, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0187400240 pdf
Dec 18 2006COBURN, JAMESNDI Medical, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0187400240 pdf
Apr 17 2007NDI Medical, LLCNDI MEDICAL, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0193410104 pdf
May 21 2008NDI MEDICAL, INC MEDTRONIC URINARY SOLUTIONS, INC CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0211180882 pdf
Apr 13 2010MRVA, JOSEPH JMEDTRONIC URINARY SOLUTIONS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0244960583 pdf
Date Maintenance Fee Events
Jan 20 2014M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Jan 22 2018M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Dec 16 2021M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jul 20 20134 years fee payment window open
Jan 20 20146 months grace period start (w surcharge)
Jul 20 2014patent expiry (for year 4)
Jul 20 20162 years to revive unintentionally abandoned end. (for year 4)
Jul 20 20178 years fee payment window open
Jan 20 20186 months grace period start (w surcharge)
Jul 20 2018patent expiry (for year 8)
Jul 20 20202 years to revive unintentionally abandoned end. (for year 8)
Jul 20 202112 years fee payment window open
Jan 20 20226 months grace period start (w surcharge)
Jul 20 2022patent expiry (for year 12)
Jul 20 20242 years to revive unintentionally abandoned end. (for year 12)