A capacitive proximity switch has an electrically conductive sensor surface, which is covered by an electrically non-conductive covering plate and which serves as a part of a capacitor with a capacitance that varies with proximity. A household appliance is equipped with a proximity switch of this type. The sensor surface has an active shielding, which is formed by a shielding surface to which a clock signal is applied at the same time as it is applied to the sensor surface.
|
1. A capacitive proximity switch, comprising:
an electrically conducting sensor surface;
an electrically insulating cover plate covering said sensor surface and forming a part of a capacitor, having a capacitance that changes on being approached;
said sensor surface having an active shielding formed by a shielding surface;
said shielding surface and said sensor surface having simultaneously applied thereto a clock signal, resulting in a potential difference between said sensor surface and said shielding surface; and
a switch connected to selectively connect said shielding surface to ground for functional testing of the capacitive proximity switch.
2. The proximity switch according to
3. The proximity switch according to
5. The proximity switch according to
6. The proximity switch according to
7. The proximity switch according to
8. The proximity switch according to
9. The proximity switch according to
10. The proximity switch according to
11. The proximity switch according to
12. The proximity switch according to
13. The proximity switch according to
14. An input field for a domestic appliance, comprising at least one proximity switch according to
15. The input field according to
16. The input field according to
17. A domestic appliance, comprising an input field according to
|
The invention relates to a capacitive proximity switch having an electrically conducting sensor surface covered by an electrically insulating cover plate, as part of a capacitor having a capacitance which changes as a result of proximity.
Numerous devices employing capacitive sensors or switches are already known. The present invention relates to a specific configuration of capacitively operating switches, wherein an electrically conducting sensor surface is covered by an electrically insulating cover plate. Thus the user does not touch the sensor surface directly but only approaches said surface by touching the cover plate. The sensor surface is formed by one plate of an open capacitor, the capacitance of which depends on the distance to a second plate (e.g. ground), which is changed for example by proximity of a user's finger.
Such a capacitive proximity switch is already known from DE 695 19 701 T2. Here a semiconductor switch is provided, the signal input of which is supplied with an input signal in the form of a sequence of polarized pulses and which is in a blocked state when idle, i.e. when the proximity switch is not actuated, so there is no output signal present at the signal output of the semiconductor switch. However such a proximity switch has the disadvantage that it is difficult to distinguish actuation by the user from malfunction, for example due to dirt on the cover plate.
The object of the present invention is therefore to provide an improved, economical capacitive proximity switch.
According to the invention the object set out above is achieved with a capacitive proximity switch of the type mentioned in the introduction, in that the sensor surface has active shielding. The active shielding is formed by a shielding surface to which a clock signal is applied at the same time as to the sensor surface. If the sensor surface and the shielding surface adjacent to the sensor surface are supplied at the same time with the most identical clock signal possible or the same clock signal, this has the advantage that no difference in potential develops between the sensor surface and the shielding surface, and there is thus no shifting of charge and thus no capacitive influencing of the sensor surface. This is particularly important in the case of capacitances of the capacitor formed with the sensor surface in the order of picofarads, because in this range even small interfering capacitances from conductors, adjacent sensor surfaces or metal housings for example affect the measurement of the capacitance of the capacitor. By minimizing the influence of such interfering capacitances on the sensor surface with the aid of active shielding, it is possible to dispose the proximity switch near to metal housing parts, even if these are earthed. Also it is no longer necessary to position the sensor surface in direct proximity to the electronic evaluation system of the proximity switch to minimize interfering capacitances but the sensor surface can be disposed at a distance from the electronic evaluation system together with the shielding surface. This makes it possible to execute the sensor surface and connecting lines in the form of a low-cost copper-clad polyester film, having a connection to the electronic evaluation system.
The clock signal is preferably applied to the shielding surface by way of a low-resistance resistor. In this manner the signal form of the clock signal at the shielding surface can be tailored to the signal form of the clock signal at the sensor surface. The clock signal, which is output in particular from an analog output of a microprocessor, is advantageously a periodic clock signal, in particular a rectangular signal, and preferably has a frequency in the range of 10 to 100 kilohertz. This ensures adequate frequency of scanning of the capacitance of the capacitor formed with the sensor surface to detect actuation of the proximity switch. Also there is no need for an expensive, separate frequency generator to generate the clock signal, thereby reducing the number of components required.
According to one preferred embodiment the shielding surface can be connected to ground by way of a switch to apply ground potential. Ground here refers to a fixed potential, for example earth potential or a reference potential of the proximity switch. To function test the proximity switch, in other words to determine a reference value of the output signal, the shielding surface can be connected temporarily to ground by way of the switch, as a result of which the active shielding is temporarily neutralized, and actuation of the proximity switch is simulated. This enables a test of whether the output signal is shifted sufficiently when the proximity switch is actuated, or whether there is a malfunction, which may be attributable for example to dirt or moisture on the cover plate or aging processes of the proximity switch. This allows malfunctions of the proximity switch to be avoided, thereby improving the functional reliability of the proximity switch. In particular an appliance fitted with the inventive proximity switch can be automatically shut off, if reliable functioning of the proximity switch is no longer ensured. In some instances the signal shift of the output signal can be adjusted dynamically by changing the amplitude of the clock signal, in other words the proximity switch can be automatically calibrated.
The switch advantageously has a control signal input, which is connected to a control signal output of a microprocessor. In particular the switch is a transistor, such as a bipolar PNP or NPN transistor, the base of which is connected to the control signal output of the microprocessor. The switch or transistor can thus be switched in a simple manner by way of the microprocessor using a software program, so that automatic function testing of the proximity switch is possible at predetermined times.
The shielding surface and sensor surface can be arranged differently depending on the application. The shielding surface and sensor surface are attached to the rear face of the cover plate for example, with the shielding surface surrounding the sensor surface. In particular the shielding surface and sensor surface can be vapor-deposited, attached by adhesive or printed onto the rear face of the cover plate. Alternatively the shielding surface and sensor surface are disposed on the same face of a support, with the shielding surface similarly surrounding the sensor surface.
In a further embodiment the sensor surface is disposed on the front face of a support and the shielding surface is arranged on the rear face of the support at least in the region of the sensor surface. In this manner the sensor surface can be shielded from power electronics disposed to the rear, in particular in a domestic appliance, such as a washing machine, tumble dryer, dishwasher, cooking appliance, extractor hood, refrigerator, air conditioner, water heater, or vacuum cleaner for example. In particular the support is a printed board, having a sub-region of its front face as the sensor surface and its entire rear face configured as the shielding surface.
According to one preferred embodiment the support is disposed at a distance from the cover plate and an electrically conductive body is disposed between the cover plate and support, bridging the distance and being connected in an electrically conducting manner to the sensor surface and/or forming at least a part of the sensor surface with at least a part of its surface. The sensor characteristics of the sensor surface are transferred from the support to the rear face of the cover plate by means of the electrically conductive body. The shielding surface is insulated against charge changes on the front face of the cover plate, in particular in the event of contact by a user, by the air layer between the support and cover plate.
In another embodiment the support is a flexible printed board or a copper-clad plastic film. Such a support can be tailored to cover plates with a wide range of curvatures, in such a manner that the sensor surface makes positive contact with the rear face of the cover plate over its entire form. Such a support can in particular be printed onto or attached by adhesive to the rear face of the cover plate.
In the preferred embodiment, in which the support is disposed at a distance from the cover plate and an electrically conductive body is disposed between the cover plate and support, bridging the distance and being connected in an electrically conducting manner to the sensor surface and/or forming at least a part of the sensor surface with at least a part of its surface, it has proven particularly favorable to dispose at least one electronic component on the support in such a manner that it protrudes into a cavity surrounded by the electrically conductive body. In particular together with a shielding surface disposed on the rear face of the printed board, the electrically conductive body, which is in particular a compression spring coiled from an extended body, forms a type of Faraday cage for the electronic component, so that said component is shielded from electromagnetic interfering signals in the surroundings. In this manner the semiconductor switch is preferably disposed on the support and shielded from electromagnetic interfering signals, thereby improving the quality of the output signal.
Advantageously, an illuminating element, e.g. an LED, an incandescent lamp, or an optical waveguide, is disposed on the support and protrudes into the cavity surrounded by the electrically conductive body, and/or is disposed in a region defined by the sensor surface. This illuminating element may serve to identify the sensor surface or to signal various switching states of the proximity switch. Also, a marking may be provided, e.g. in the form of a printed image, on the upper face of the cover plate or on its lower face, if the cover plate is transparent, for purposes of identifying the position of the sensor surface.
Preferably a domestic appliance, such as a washing machine, tumble dryer, dishwasher, cooking appliance, extractor hood, refrigerator, air conditioner, water heater, or vacuum cleaner or an input field for a domestic appliance is fitted with at least one inventive proximity switch. Thus the domestic appliance may be fitted with a standard cover panel encompassing the input field, so that the domestic appliance is protected against ingress of dirt or moisture. The cover panel here corresponds to the electrically insulating cover plate and may be made of glass, glass ceramic, ceramic, plastic, wood, or stone, for example. The inventive proximity switch also ensures appliance safety, since the domestic appliance is automatically shut off, if the proximity switch is no longer functional.
According to one preferred embodiment the input field has a number of sensor surfaces, which are connected in a matrix form for operation in a multiplex method. The high frequency of the clock signal ensures adequate frequency of scanning of the capacitances of the capacitors formed with the sensor surfaces to determine actuation by a user. The use of just one clock signal has the advantage that only one clock signal emitter is required.
In a further embodiment at least two sensor surfaces are disposed adjacently and together form a position sensor, in particular on the rear face of the cover plate or on a common support. Depending on the position in relation to the sensor surfaces in which actuation by the user is detected based on the output signals associated with the sensor surfaces, it is possible for different switching states to be triggered. A slide switch can thus be formed without mechanically movable elements, in that the user for example passes a finger over a region of the cover plate or cover panel assigned to the position sensor.
It should be noted that the features of the subclaims can be combined with each other in any way without deviating from the idea according to the invention.
The invention is described in more detail below, with reference to the drawings, in which:
Before proceeding to the description of the drawings, it should be noted here that identical reference characters have been used to represent corresponding or identical elements or individual parts in the various embodiments of the inventive capacitive proximity switch in all the figures. Where a plurality of elements or individual parts of the same type are used in a drawing and it is sought to differentiate between them, (an) identical figure(s) is/are respectively selected for the initial digit(s) of the corresponding reference character. The subsequent digits of the corresponding reference characters serve to distinguish elements or individual parts of the same type.
An electrically conductive body in the form of a coiled compression spring 8, preferably made of spring wire, is disposed between the cover panel 2 and the printed board 5. The compression spring 8 has a flat coil disk 9 at its upper end, consisting of a plurality of coils, which are spirally nested and positively tailored to the slightly arched shape of the rear face of the cover panel 2 due to the compressive stress to which the compression spring 8 is subject. On its lower end, the compression spring 8 has a lower coil 9′, with which it rests flatly against the sensor surface 7 of the printed board 5 and is for example soldered or adhesively attached to the sensor surface 7 of the printed board 5 there or with which it rests firmly against the sensor surface 7 of the printed board 5 only due to compressive stress, so that there is an electrically conducting connection between the compression spring 8 and the sensor surface 7 of the printed board. Through this electrically conducting connection, the sensor characteristics of the sensor surface 7 are transferred from the printed board 5 to the rear face 6 of the cover panel 2 and the compression spring 8 for its part then forms at least a part of the sensor surface 7, particularly with its coil disks (9, 9′). The electrically conductive body may have other forms, e.g. cylindrical, conical, or rectangular and/or may be configured from other electrically conductive materials, e.g. electrically conductive plastic or a plastic with a metallic core, instead of being a coiled metal compression spring 8.
An electrically conducting reference sensor surface 10 is disposed on the same face of the printed board 5 on which the sensor surface 7 is located, in other words on the front face of the printed board 5 facing the rear face 6 of the cover panel 2. Like the sensor surface 7, the reference sensor surface 10 is connected in an electrically conductive manner to the circuit 14 of the proximity switch 4. An associated reference sensor surface 10 may be provided for each of the sensor surfaces 7 or a common reference sensor surface 10 may be provided for a plurality or all of the sensor surfaces 7. In contrast to the sensor surface 7, the reference sensor surface 10 lacks the electrically conductive compression spring 8, thus the reference sensor surface 10 is electrically insulated with respect to electrical charges and charge changes on the front face of the cover panel 2, by the air layer between the printed board 5 and the cover panel 2.
An electrically conducting shielding surface 11 is disposed on the rear face of the printed board 5, at the position of the sensor surface 7 and/or the reference sensor surface 10, its mode of operation being described below in connection with
The electrical circuit 14 of the proximity switch 4 may be disposed on the front face or rear face of the printed board 5, or on a separate board. A common circuit 14 may also be provided for a plurality of or all the proximity switches 4. In the embodiment illustrated in
If an element, e.g. a user's finger 16 as shown in
A clock signal 28 is applied to the signal input 21 of the semiconductor switch 18, being supplied for example by the analog signal output 25 of the microprocessor 26. The clock signal 28 is a rectangular periodic voltage signal which is switched regularly by the microprocessor 26 between ground potential, i.e. LOW level and the operating voltage of the circuit 14 of the proximity switch 4, i.e. HIGH level, it being possible for ground potential to differ from the earth potential of the user. The clock frequency of the clock signal 28 is preferably in the range 10-100 kilohertz. The signal output 22 of the semiconductor switch 18, in other words the collector of the bipolar PNP transistor, is at the reference potential of the sample and hold stage 24 via another resistor 29. When the clock signal 28 is at the LOW level, the signal input 21 of the semiconductor switch 18 and thus the emitter E of the bipolar PNP transistor, as well as the base-emitter resistor 23, is at ground potential. This causes the sensor surface 7 and/or the capacitor 17 to be discharged via the current-limiting resistor 20 and the base-emitter resistor 23. This means that the base B of the bipolar PNP transistor is positive with respect to the emitter E of the bipolar PNP transistor and the bipolar PNP transistor blocks. The HIGH level of the clock signal 28 following the LOW level results in the charging of the sensor surface 7 and therefore the capacitor 17 via the base-emitter resistor 23 and current-limiting resistor 20. During this charging period of the sensor surface 7 and/or the capacitor 17, there is a voltage drop at the base-emitter resistor 23. This means that the base B of the bipolar PNP transistor is negative with respect to the emitter E and the bipolar PNP transistor becomes conducting, and thus in the switching state, until the sensor surface 7 and/or the capacitor 17 becomes charged to the HIGH level of the clock signal 28. During this charging period of the sensor surface 7 and/or the capacitor 17, an output signal is applied to the resistor 29, via the clock signal 28, which is proportional to the capacitance of the sensor surface 7 and/or the capacitor 17. Thus an output signal is applied to the signal output 22 of the semiconductor switch 18, which follows the clock signal 28, and whose signal parts are proportional to the capacitance of the sensor surface 7 and/or the capacitor 17.
This output signal is converted to a direct voltage signal by means of the sample and hold stage and is applied to the analog signal input 27 of the microprocessor 26. The microprocessor 26 is configured to evaluate a temporal change in the signal parts of the direct voltage signal and thus of the output signal, e.g. with the aid of a software program. Depending on how rapidly the signal parts of the output signal, e.g. the height of the pulse peaks or the pulse widths of successive clock periods change, the microprocessor 26 can recognize an actuation of the proximity switch 4. In other words, if the signal parts change within a predetermined time period of for example 1 second, this is recognized as an actuation, but if the signal parts change more slowly, there is no actuation. In this way, the determination of an actuation of the proximity switch 4 does not depend on the absolute size of the output signal, with the result that long-term changes, e.g. due to aging processes, are eliminated.
In order to apply ground potential, the shielding surface 11 is connected to ground via a switch 31 which is a bipolar NPN transistor in the embodiment illustrated. The switch 31 has a control signal input 32, namely the base of the bipolar NPN transistor, which is connected to a control signal output 33 of the microprocessor 26. Thus the switch 31 or the bipolar NPN transistor can be switched in a simple manner by a software program of the microprocessor 26. For function testing of the proximity switch 4, i.e. to determine a reference value of the output signal, the shielding surface 11 is temporarily connected to ground potential by way of the switch 31, as a result of which the active shielding is temporarily neutralized, and actuation of the proximity switch 4 is simulated. This enables a test of whether the output signal is shifted sufficiently when the proximity switch 4 is actuated, or whether there is a malfunction, which may be attributable for example to dirt or moisture on the cover panel 2 or ambient conditions such as temperature and humidity or aging processes of the proximity switch 4. In some instances the signal shift of the output signal can be dynamically adjusted by changing the amplitude of the clock signal 28, i.e. the proximity switch 4 can be automatically calibrated, as a result of which the functional reliability of the proximity switch 4 is improved. If the reliable functioning of the proximity switch 4 is no longer ensured, as a result for example of a soiled cover panel 2, the domestic appliance 1 is automatically shut off.
The reference sensor surface 10 is connected correspondingly to the sensor surface 7. The reference sensor surface 10 is disposed adjacent to the sensor surface 7, so that the capacitance of the reference sensor surface 10 or of an open reference capacitor formed with the reference sensor surface 10 is a measure of ambient conditions, in other words interfering capacitances, and is also a measure of the influence of temperature, humidity, or aging-related material changes, on the output signal. The same clock signal 28 is applied to the reference sensor surface 10 as to the sensor surface 7, preferably in a time-multiplex method. In other words the sensor surface 7 and the reference sensor surface 10 are supplied in sequence, with different periods of the same clock signal 28. Alternatively, a further clock signal from a further analog signal output of the microprocessor 26 may also be applied to the reference sensor surface 10. The reference signal generated by the reference sensor surface 10 is considered as the base level of the output signal during the evaluation, in the microprocessor 26, of the output signal generated by the sensor surface 7, and thus serves to determine the actuation state of the proximity switch 4. In the case of domestic appliances 1, which are connected using a power mains switch, as soon as the power is turned on, the reference signal is utilized to determine whether there is actuation of the proximity switch 4.
The clock signal 28 is output from one of the three signal outputs 251, 252, 253 of the microprocessor 26 respectively for a predetermined time interval, i.e. a predetermined number of clock periods. The signal outputs 251, 252, 253 are alternated in sequence, with cyclic repetition of the sequence. In the time interval in which the clock signal 28 is output from one of the three signal outputs 251, 252, 253, all three signal inputs 271, 272, 273 of the microprocessor 26 are respectively evaluated. In this way it is possible to check all nine sensor surfaces 711, 712, 713, 721, 722, 723, 731, 732, 733 one after the other to determine whether a user is actuating the corresponding proximity switch using just one circuit.
Grosser, Jörg, Klopfer, Wilfried, Reinker, Bernward, Romanowski, Hans-Jürgen
Patent | Priority | Assignee | Title |
10521045, | Feb 14 2018 | Microchip Technology Incorporated | Reference noise rejection improvement based on sample and hold circuitry |
11118295, | Nov 16 2017 | Whirlpool Corporation | Laundry treating appliance having a user interface within a door assembly |
11959220, | Nov 16 2017 | Whirlpool Corporation | Laundry treating appliance having a user interface within a door assembly |
8471571, | Jul 03 2008 | SOMFY SAS | Method for selecting an item of equipment and control unit enabling this method to be implemented |
8736432, | Jun 07 2011 | Toyota Jidosha Kabushiki Kaisha | Touch sensor having a selectable sensitivity level and method of selecting a sensitivity level of a touch sensor |
D848692, | Dec 21 2017 | Whirlpool Corporation | Bulk dispensing drawer |
D865306, | Dec 21 2017 | Whirlpool Corporation | Laundry treating appliance door |
D866887, | Dec 21 2017 | Whirlpool Corporation | Pedestal |
D874764, | Dec 21 2017 | Whirlpool Corporation | User interface |
D877431, | Dec 21 2017 | Whirlpool Corporation | User interface |
D899720, | Dec 21 2017 | Whirlpool Corporation | Laundry treating appliance |
D900418, | Dec 21 2017 | Whirlpool Corporation | Laundry treating appliance |
D958479, | Dec 21 2017 | Whirlpool Corporation | Laundry treating appliance |
Patent | Priority | Assignee | Title |
6734685, | Mar 08 2000 | Friedrich Grohe AG & Co. KG | Touch sensor, sanitary fitting with touch sensor and method of detecting a touch on an electrically conductive surface |
7323886, | Aug 16 2004 | Linear capacitance measurement and touchless switch |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 17 2006 | BSH Bosch und Siemens Hausgeraete GmbH | (assignment on the face of the patent) | / | |||
Feb 27 2008 | KLOPFER, WILFRIED | BSH Bosch und Siemens Hausgerate GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024544 | /0966 | |
Feb 27 2008 | REINKER, BERNWARD | BSH Bosch und Siemens Hausgerate GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024544 | /0966 | |
Feb 27 2008 | ROMANOWSKI, HANS-JURGEN | BSH Bosch und Siemens Hausgerate GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024544 | /0966 | |
Feb 28 2008 | GROSSER, JORG | BSH Bosch und Siemens Hausgerate GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024544 | /0966 | |
Mar 23 2015 | BSH BOSCH UND SIEMENS HAUSGERÄTE GmbH | BSH HAUSGERÄTE GMBH | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 035624 | /0784 | |
Mar 23 2015 | BSH BOSCH UND SIEMENS HAUSGERÄTE GmbH | BSH HAUSGERÄTE GMBH | CORRECTIVE ASSIGNMENT TO REMOVE USSN 14373413 29120436 AND 29429277 PREVIOUSLY RECORDED AT REEL: 035624 FRAME: 0784 ASSIGNOR S HEREBY CONFIRMS THE CHANGE OF NAME | 036000 | /0848 |
Date | Maintenance Fee Events |
Feb 12 2014 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 12 2018 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 10 2022 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 17 2013 | 4 years fee payment window open |
Feb 17 2014 | 6 months grace period start (w surcharge) |
Aug 17 2014 | patent expiry (for year 4) |
Aug 17 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 17 2017 | 8 years fee payment window open |
Feb 17 2018 | 6 months grace period start (w surcharge) |
Aug 17 2018 | patent expiry (for year 8) |
Aug 17 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 17 2021 | 12 years fee payment window open |
Feb 17 2022 | 6 months grace period start (w surcharge) |
Aug 17 2022 | patent expiry (for year 12) |
Aug 17 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |