An apparatus and method for the electrolytic and electrodialytic removal of metal ions from wastewater in a single cell. A battery of cells, each of which consists of a cathode, anode, anion exchange membrane and cation exchange membrane, is used. The battery of cells may be used in both batch and continuous processes, and is capable of reducing metal ion concentration from thousand ppm to few ppm. It can be used to concentrate dilute acids as a by-product.
|
1. A process for recovering oxygen, hydrogen, metal ions, metals, acid and treated water from waste water effluent from metallurgical and process industries, said process comprising,
(a) providing an apparatus comprising a plurality of cells, wherein each of said cells comprises a wastewater chamber having an inlet and an outlet, a catholyte chamber, and an anolyte chamber; an anion exchange membrane disposed between said anolyte chamber having an inlet and an outlet and wherein each of said cells is separated from one another by an inert, non-porous and impervious partition and said wastewater chamber; a cation exchange membrane disposed between said catholyte chamber and said wastewater chamber; an anode disposed in said anolyte chamber; and a cathode disposed in said catholyte chamber;
(b) providing an anolyte in said anolyte chamber wherein said anolyte is hydrochloric acid or sulfuric acid;
(c) providing a catholyte in said catholyte chamber wherein said catholyte is KOH;
(d) providing waste water to be treated in said wastewater chamber; said water comprising anions and cations including metal ions selected from the group consisting of camion, chromium, copper, lead, gold, nickel, silver and zinc ions and wherein hydrogen is generated at said cathode, wherein the concentration of H+ and the anions in the anolyte are increased to thereby concentrate dilute acid as a by product, wherein dilute acid is fed into said anolyte chambers, and concentrated acid is recovered from said anolyte chamber after the potential difference is applied, wherein oxygen is recovered from said anolyte chamber after the potential difference is applied, wherein hydrogen is recovered from said catholyte chamber after the potential difference is applied and wherein said metal ions are recovered in metallic form at said cathode;
(e) applying a potential difference across said anode and cathode;
(f) allowing said anions to diffuse through said anion exchange membrane;
(g) allowing said cations to diffuse through said cation exchange membrane;
(h) recovering treated water from said catholyte chamber;
(i) recovering metal ions in metallic form from said cathode; and
wherein the concentration of metal ions in said water to be treated is reduced from greater than 1,000 ppm to a few ppm after the potential difference is applied.
|
The present invention relates to the removal and recovery of metal ions from wastewater streams, and more particularly to treatment systems which use electrochemical methods to treat wastewater.
Wastewater effluents originating from metallurgical (e.g. electroplating, mining, metal finishing, etc.) and process (e.g. printing) industries contain heavy metals, such as arsenic, cadmium, copper, gold, nickel, and zinc. These effluents must therefore be adequately treated before being discharged into the water bodies to minimize the effect of the contaminating heavy metals on the environment, especially with regard to the potable water supply. Treatment methods for metal removal from wastewater include precipitation, ion exchange, reverse osmosis, electrolysis, and electrodialysis. With the exception of electrolysis, all of these methods generate sludge or concentrated streams which need further treatment. Electrolysis is capable of removing toxic metal ions, through electrodeposition of the metal ion in metallic form at the cathode, and is a very well studied technique. Review articles and cell design are given by Kuhn and Houghton1, Robertson and Leudolph2, O'Keefee and Ettel3 and Weinginger4. The electrolytic process is mainly mass transfer controlled, and cell configuration that increases the mass transfer at the cathode improves the performance of the cell. For example, rotary drum5, fluidized bed6, flow through a porous electrode7, gas-sparging cell8, rotating cylinder electrode9, bipolar trickle cell10, rotating disc11, and tumbling barrel12-16 have demonstrated improved performance.
Despite the improved mass transfer shown in conventional systems, the electrolytic method becomes expensive when the concentration of the wastewater becomes low due to increased ohmic resistance. Under these conditions, hydrolysis becomes the dominant reaction, manifesting itself as a low current efficiency for metal deposition. One way of solving this problem is to add salt to increase the electrolyte conductivity. However, this results in an undesirable increase in the total dissolved salts in wastewater.
Electrodialysis uses a number of anion and cation exchange membranes held between two electrodes. This technique is capable of treating low concentration wastewater, but produces a concentrated stream that needs further treatment. The first patent on electrodialysis was awarded in 197617. Electrodialysis has been used to treat seawater18,19, to produce chemicals20-22, to recover metal ions in the metal finishing and metallurgical industry23-26, and to treat industrial wastewater27-35.
It is attractive to integrate electrolytic and electrodialytic processes to treat wastewater of moderate concentration and to recover metals. One way of doing so is shown in
The diluted stream is taken out as the treated wastewater, while the concentrated stream is sent to the electrolytic cell. The flow rate and area of exchange are designed so that the exiting concentrated stream has enough concentration so that it is treated easily in the electrolytic cell where the metal is recovered on the cathode. Optimal flow rate and area of exchange are easily calculated by a person of ordinary skill in the art. The residence time in the electrolytic cell is such that the concentration of the exiting stream is similar to the original wastewater and this stream is recycled to the electrodialytic cell. Optimal residence times are easily calculated by a person of ordinary skill in the art. The overall system is complex and the wastewater needs to be pumped back and forth between the two cells. Pumping will increase the operating cost of the system.
Accordingly, there remains a need for an efficient and cost effective apparatus and process for removing and recovering metal ions from wastewater streams using electrochemical methods, which overcome the aforementioned disadvantages.
It is, therefore, an object of the present invention to provide an efficient and cost effective integrated electrolytic-electrodialytic apparatus and process for recovering metals from wastewater streams. More specifically, the invention is capable of reducing metal ion concentration in wastewater from thousands of ppm to a few ppm, and can also be used to concentrate mineral acids. The invention can be used as either a batch process or a continuous process.
For a better understanding of the invention as well as other objects and further features thereof, reference is made to the following detailed description to be read in conjunction with the accompanying drawings, wherein:
Before explaining the disclosed embodiment of the present invention in detail it is to be understood that the invention is not limited in its application to the details of the particular arrangement shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation.
The electrolysis and electrodialysis processes are integrated in one cell.
M+n(aq)+ne−→M(s) (1)
Usually this reaction is accompanied by a hydrogen evolution reaction:
2H2O+2e−→2OH−(aq)+H2(g) (2)
This is a side reaction and will take place if the potential is not maintained perfectly. The anions (Cl−, and/or SO4−2) diffuse through the anion exchange membrane and reach the anode. At the anode, oxygen evolution reaction takes place:
2H2O→4e−+4H+(aq)+O2(g) (3)
In order to reduce ohmic loses in the anolyte and catholyte, a diluted acid (e.g. HCl or H2SO4) and diluted base (e.g. KOH), respectively, can be used. As the process progresses, the concentrations of the anions and cations in the wastewater compartments decrease and the cations (metal ions) are recovered at the cathode. Also, the concentration of the H+ and the anions (Cl−, and/or SO4−2) in the anolyte compartment will increase. Therefore, the cell could be used to concentrate dilute acid as a by-product.
The integrated process is able to reduce the concentration of metal ions from thousands of ppm to few ppm in a single cell. The metal ions are recovered in valuable metallic form. Unlike the electrodialysis, this process does not produce any additional concentrated stream which would need further treatment. This process has better mass transfer across the cation membrane as the concentration difference across it is larger. Unlike electrolysis processes, it is not necessary to alter the hydrodynamics near cathode to increase mass transfer. In addition, the conductivity of the catholyte solution does not change with time. Also, the catholyte solution remains in the cell and is not discharged as effluent. Therefore the conductivity of the solution can be increased by adding a salt without any environmental problem in contrast to the electrolysis process.
A number of single cells can be combined to form a battery of integrated cells to accommodate larger quantities of wastewater as shown in
As mentioned earlier,
A preferred embodiment has been described in detail and a number of alternatives have been considered. As changes in or additions to the above-described embodiments may be made without departing from the nature, spirit or scope of the invention, the invention is not to be limited by or to those details, but only by the appended claims or their equivalents.
With respect to the above description then, it is to be realized that the optimum dimensional relationships for the parts of the invention, to include variations in size, materials, shape, form, function and the manner of operation, assembly and use, are deemed readily apparent and obvious to one skilled in the art, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by the present invention.
Therefore, the foregoing is considered as illustrative only of the principles of the invention. Further, since numerous modification and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly, all suitable modification and equivalents may be resorted to, falling within the scope of the invention.
The following publications cited above are incorporated herein by reference:
Ur Rahman, Sleem, Abo-Gander, Nabil Salem, Zaidi, Syed Mohammad Javaid
Patent | Priority | Assignee | Title |
10179942, | Jan 22 2010 | Secure Natural Resources LLC | Hydrometallurgical process and method for recovering metals |
8840773, | Jun 17 2011 | Empire Technology Development LLP | Reclaiming metal from articles |
8936770, | Jan 22 2010 | Secure Natural Resources LLC | Hydrometallurgical process and method for recovering metals |
9365662, | Oct 18 2010 | BANK OF AMERICA, N A | Method for producing a sulfonated block copolymer composition |
Patent | Priority | Assignee | Title |
4728402, | Jul 24 1985 | Ogussa Osterreichische Gold- und Silber-Scheideanstalt Scheid und | Electrolytic silver refining process |
4976832, | Nov 09 1989 | Cominco Ltd. | Method for making arsenic acid |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 22 2005 | RAHMAN, SLEEM UR | KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016798 | /0282 | |
Feb 22 2005 | ABO0GHANNDER, NABIL SALEM | KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016798 | /0282 | |
Feb 22 2005 | ZAIDI, SYED MOHAMMAD JAVAID | KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016798 | /0282 | |
Apr 05 2005 | KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 06 2014 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Apr 23 2018 | REM: Maintenance Fee Reminder Mailed. |
Oct 15 2018 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Sep 07 2013 | 4 years fee payment window open |
Mar 07 2014 | 6 months grace period start (w surcharge) |
Sep 07 2014 | patent expiry (for year 4) |
Sep 07 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 07 2017 | 8 years fee payment window open |
Mar 07 2018 | 6 months grace period start (w surcharge) |
Sep 07 2018 | patent expiry (for year 8) |
Sep 07 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 07 2021 | 12 years fee payment window open |
Mar 07 2022 | 6 months grace period start (w surcharge) |
Sep 07 2022 | patent expiry (for year 12) |
Sep 07 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |